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Figure 1. Comparisons on disentangled image manipulation between the StyleCLIP [31] baseline and our Predict, Prevent, and Evaluate
(PPE). Ours manages to manipulate only the command-attribute (as indicated under each column) while remaining unchanged to the others.

Abstract
To achieve disentangled image manipulation, previous

works depend heavily on manual annotation. Meanwhile,
the available manipulations are limited to a pre-defined set
the models were trained for. We propose a novel framework,
i.e., Predict, Prevent, and Evaluate (PPE), for disentangled
text-driven image manipulation that requires little manual
annotation while being applicable to a wide variety of ma-
nipulations. Our method approaches the targets by deeply
exploiting the power of the large-scale pre-trained vision-
language model CLIP [32]. Concretely, we firstly Predict
the possibly entangled attributes for a given text command.
Then, based on the predicted attributes, we introduce an en-
tanglement loss to Prevent entanglements during training.
Finally, we propose a new evaluation metric to Evaluate
the disentangled image manipulation. We verify the effec-
tiveness of our method on the challenging face editing task.
Extensive experiments show that the proposed PPE frame-
work achieves much better quantitative and qualitative re-
sults than the up-to-date StyleCLIP [31] baseline. Code is

*The work was done during Zipeng Xu’s internship at VIS, Baidu.

available at https://github.com/zipengxuc/PPE.

1. Introduction
Disentangled image manipulation [1,8,10,12,21,23,37,

38, 43, 44] aiming at changing the desired attributes of the
image while keeping the others unchanged, has long been
studied for its research significance and application value.
Reaching this target is not easy, especially when attributes
naturally entangle in the real world. Therefore, concrete
attribute annotations are of vital importance, making disen-
tangled image manipulation a labor-consuming task.

Several works [8, 10, 21, 23] use an encoder-decoder
architecture and need manual annotations on multiple at-
tributes of images. The models encode the original image
and the manipulating attribute, then decode the manipu-
lated image. Specifically, they use an attribute-specific loss
to encourage the manipulation of a specific attribute while
discouraging the others. The loss comes from pre-trained
classifiers for all annotated attributes. Many recent works
focus on latent space image manipulation since large-scale
pre-trained GANs, e.g., StyleGANs [15, 16], can generate
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high-quality images from well-disentangled latent spaces.
Despite the convenience of directly using the pre-trained
GANs to generate images, all these methods need human
annotations [1, 12, 37, 38, 43, 44]. Moreover, the available
manipulating attributes are limited to the annotated set.

Recently, the rise of the large-scale pre-trained vision-
language model CLIP [32] has brought a new insight. Since
CLIP provides effective signals about the semantic similar-
ity of image and text, various manipulations [11,31,36] can
be performed with a text command and a CLIP-based loss,
instead of exhaustive human annotations. Nevertheless,
achieving disentangled image manipulation is still tricky.
For instance, StyleCLIP [31] introduces three methods: la-
tent optimization and latent mapper take no consideration
of achieving disentangled results; global direction, which is
based on the more disentangled S latent space [45], needs
human trials-and-errors to find appropriate parameters in
each case to reach the expected effects. To only manipu-
late a desired attribute, TediGAN [46, 47] merely revise the
latent vectors of layers corresponding to that attribute. Yet,
they have to figure out in advance the relations between at-
tributes and layers in StyleGAN.

In this paper, we explore achieving disentangled image
manipulation with as less human labor as possible. We pro-
pose a novel framework, i.e., Predict, Prevent, and Evaluate
(PPE), to approach the target by leveraging the power of
CLIP in depth. Firstly, we propose to Predict the possibly
entangled attributes for given text commands. We assume
that the entanglements result from the distributions of at-
tributes in the real world. Therefore, we draw support from
CLIP to find the attributes that appear most frequently in
the command-related images, then regard the attributes of
high co-occurrence frequency as the possibly entangled at-
tributes. Secondly, we introduce a novel entanglement loss
to Prevent entanglements during training. The loss pun-
ishes the changes of the possibly entangled attributes before
and after the manipulation, so as to enforce the model to find
a less disentangled manipulating direction. Lastly, based on
the predicted entangled attributes, we introduce a new eval-
uation metric to simultaneously Evaluate the manipulation
effect and the entanglement condition. The manipulation ef-
fect is measured based on the change of command-attribute
while the entanglement condition is based on the change of
the entangled attributes, before and after manipulation. All
the changes are estimated according to the CLIP distance
between the texts of attributes and the images.

To evaluate, we implement our method based on the sim-
ple and versatile latent mapper from StyleCLIP and conduct
experiments on the challenging face editing task, using the
large-scale human face dataset CelebA-HQ [14, 25]. Quali-
tative and quantitative results indicate that we achieve supe-
rior disentangled performance compared to the StyleCLIP
baseline. Meanwhile, we show that our results present a

better linear consistency.
To conclude, our main contributions are as follows:

• We propose to predict entangled attributes for disentan-
gled image manipulation.

• We propose a novel entanglement loss to prevent entan-
gled manipulations during training.

• We propose a new evaluation metric that jointly measures
the manipulation effect and the entanglement condition
for disentangled image manipulation.

• By applying our method to the versatile StyleCLIP base-
line, we manage to achieve disentangled image manipu-
lation with very little manual labor. We conduct extensive
experiments on the CelebA-HQ dataset and find that our
qualitative and quantitative results are rather impressive.

2. Related Work

Disentangled Image Manipulation. Many works study
learning a disentangled representation [3, 4, 9, 17, 21], so
that disentangled image manipulation can be solved from
the source. Due to the costly labor, a key challenge of such
works is reducing the supervision for learning the desired
disentanglement. Therefore, weakly-supervised and unsu-
pervised methods have been explored [8,10,24,28]. Despite
progress, all these methods are trained for a fixed set of at-
tributes, thus supporting limited numbers of manipulations.

Recently, growing numbers of works focus on latent
space image manipulation [12,13,37,41,45,48] because of
the remarkable large scale GANs like StyleGAN [15, 16],
which can generate high-resolution images with well dis-
entangled latent space. Thereby, these works firstly invert
the image into the latent space through the GAN inversion
method [16, 50] or an involved encoder [2, 29, 35], then ac-
cordingly compute the latent vector that can derive the ma-
nipulation result through the pre-trained large scale GANs.
For each manipulating attribute, manual annotations are re-
quired, e.g., on images [1, 37] and on unsupervisedly dis-
covered directions in the latent space [12, 38, 43, 44].

Text-Driven Image Manipulation. There are studies
that explore image manipulation with text commands as a
guide. Some previous works [6, 18, 19, 27] use GAN-based
encoder-decoder architectures, which encode the original
image and text command, disentangle the semantics of the
two modalities and decode the manipulated image. In-
stead of training a generator individually, the recent Tedi-
GAN [46, 47] and StyleCLIP [31] use pre-trained Style-
GAN to generate images from manipulated latent vectors.
To reach disentangled manipulation, TediGAN pre-defines
an attribute-to-layer map and only changes the attribute-
corresponding layers in StyleGAN. Besides, TediGAN con-
ducts instance-level manipulation, which means the model
is only applicable to one image that the model was opti-
mized for. The latent mapper method in StyleCLIP is more
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general as the trained model can be applied to manipulate
any in-domain image, but the results are usually entangled.
The global direction method in StyleCLIP can realize a dis-
entangled manipulation, but it requires manual trials-and-
errors to find appropriate thresholds in the method. Our
method proposes to achieve disentangled image manipula-
tions with less manual effort by deeply leveraging the power
from large scale pre-trained models. More than StyleCLIP,
which merely minimizes the CLIP distances between com-
mand texts and manipulated images, we propose to predict,
prevent, and evaluate entanglements via CLIP.

Large Scale Vision-Language Models. Following the
success of large scale pre-trained language models, e.g.,
BERT [5], various large scale pre-trained vision-language
models [20, 26, 39, 40, 49] are proposed. The recent
CLIP [32] is especially remarkable because it is trained
from 400 million text-image pairs and is powerful. CLIP
learns a multi-modal embedding space, which can be used
to measure the semantic similarity of image and text. Using
text descriptions as prompts enables CLIP the strong ability
of zero-shot transfer to downstream tasks. Besides, stun-
ning text-guided image synthesis results [7, 11, 33, 36] are
enabled by CLIP through utilizing the embedding space.

3. Background
StyleCLIP [31] proposes a flexible latent mapper method

for text-driven image manipulation. It is trained for a spe-
cific text command and is applicable for any image in the
domain of the pre-trained StyleGAN [16]. For the text com-
mand tcomd, the method learns a mapper network Mtcomd

to yield a manipulation direction in the W+ space given the
latent image embedding w2W+. Then the manipulated
image is obtained from a pre-trained StyleGAN generator
G as i

0
=G(w+Mtcomd(w)).

To train the mapper network for the purpose of achieving
the text-driven manipulating effect, a CLIP loss LC is intro-
duced to minimize the distance between the text command
tcomd and manipulated image i

0
. LC is formalized as:

LC = DCLIP (i
0
, tcomd), (1)

where DCLIP is the cosine distance between the embed-
dings of its two arguments in CLIP space. In addition, the
method uses L2 loss to norm the manipulation direction and
LID loss [35] to maintain the identity of person. Hence, the
overall loss is formulated as:

LStyleCLIP = LC + �L2LL2 + �IDLID, (2)

where �L2 and �ID are the loss coefficients. Although the
method can simply and efficiently achieve text-driven im-
age manipulation without human annotations, its loss can-
not distinguish between entangled and disentangled manip-
ulations, and the manipulated results are always entangled.

others earrings/makeup/lipstick/wrinkles/glasses/bangs/rosy cheeks/...

beard style goatee/mustache/no beard/sideburns/5 o'clock shadow

face shape pointy/round/square/oval/long face

mouth status open/close mouth

mouth shape big/small mouth

nose big/pointy/long/small/hooked/short/thick/thin/pinched/flat nose

eye status open/close eyes

eyes shape narrow/wide/big/small/round eyes

eyes color blue/brown/black/grey/green eyes

eyebows arched/round/high/long/thick/dark/straight/thin/short eyebows

hair style straight/curly/wavy hair

hair length long/short/no hair

hair color black/brown/blond/grey/red hair

skin white/black/yellow skin

gender male/female

human face

Figure 2. To predict entangled attributes in face editing, we con-
struct a hierarchical attribute structure with the help of BERT [5].

4. Predict, Prevent, and Evaluate (PPE)
The proposed PPE framework consists of three parts: 1)

we design a mechanism to Predict the entangled attributes
for given text commands; 2) based on the predicted at-
tributes, we introduce a novel entanglement loss to Pre-
vent entanglements during training, and 3) we propose a
new evaluation metric to Evaluate disentangled text-driven
image manipulation. All methods leverage the power from
the large-scale pre-trained vision-language model CLIP.

4.1. Predict
We predict the entangled attributes under the assumption

that entanglements result from the frequent co-occurrence
of attributes in real-world images. To this end, we aggre-
gate the images most relevant to the text command, look for
the attributes that appear most frequently in the images and
predict them as the entangled attributes.

Prerequisite. A predefined attribute set that includes ba-
sic visual characteristics is the prerequisite. For manipulat-
ing human faces, we need human face attributes. To obtain
useful human face attributes, we firstly draw support from
the large-scale pre-trained language model BERT [5]. In
concrete, we let BERT predict specific attributes under dif-
ferent categories with designed prompts like “a face with
[MASK] eyes”. By substituting “eyes” with other keywords
of face characteristics, we derive various face attributes in a
category-to-attribute fashion.

After further sorting and adding binary attributes like
“with earrings”, we construct a hierarchical attribute struc-
ture (see Fig. 2) that serves for the subsequent procedures
in Predict. More details are given in Appendix A.

Aggregate. This step aims to aggregate the images that are
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most relevant to the text command. Specifically, we propose
a method based on CLIP. At first, we rank all the images in
the training set w.r.t. their distance to the text command
tcomd in the CLIP space. For an image i2 I , its ranking
score is formalized as:

score(i) = DCLIP (i, tcomd). (3)

Images are ranked by their scores from small to large.
Besides, we use a zero-shot CLIP classifier to exclude

the images that are classified as irrelevant in the ranked list.
For single attribute manipulation, the classification labels
can be obtained via a command-to-category and category-
to-attributes pipeline. Take command “blue eyes” as an
example, we firstly find its category <eyes color> with
the help of an NLP tool (see Appendix B), then the labels
{“blue eyes”, “brown eyes”, . . .} can be easily obtained via
a category-to-attribute map according to the hierarchical at-
tribute structure. Particularly, binary attributes like “with
earrings” will trigger binary labels as {“with earrings”,
“without earrings”}. Afterwards, we select up to top-100
images in the left ranked list to form the command-relevant
image-set I

0
. The generability is discussed in Appendix C.

Find. The last step is to find the attributes that appear most
frequently in the command-relevant image set I

0
, except for

attributes in the same category as commands. First, we rank
the attributes by the sum of their CLIP distances to the im-
ages in I

0
. The ranking score is formalized as:

scorecomd(tattr) =
X

i02I0

DCLIP (i
0
, tattr). (4)

Meanwhile, we consider the ranking results w.r.t. the full
image set I . Similarly, the ranking score is:

scorefull(tattr) =
X

i2I

DCLIP (i, tattr). (5)

By sorting the scores in descending order, we get rcomd and
rfull. In addition, we need to find attributes that only appear
frequently in the command-relevant images. For instance,
“square face” is common for all images and thus ranks high
in rfull, thus it may not be the entangled one even if it ranks
high in rcomd. To this end, we adjust the rcomd with rfull.
In concrete, the final ranking score is:

scorefinal(tattr) =
rcomd(tattr)

min(rfull(tattr), R)
, (6)

where R is a hyper-parameter to determine if the rankings in
rfull are high or not. Eventually, top-N attributes in the final
ranked list (obtained by sorting the scorefinal from small to
large) are predicted as the entangled attributes {tentgn}Nn=1.

Analysis. In Fig. 3, we illustrate some of the predictions
and the corresponding manipulation results from the latent

grey hair: 'short eyebrows', 'short hair', 
'grey eyes', 'narrow eyes', 'white skin', 
'pointy face', 'with makeup'

blue eyes: 'wide eyes', 'with makeup', 
'bags under eyes', 'with lipstick', 'blond 
hair', 'white skin', 'pinched nose'

Origin
al

StyleCLIP

with earrings: 'arched eyebrows', 'short 
hair', 'with makeup', 'high cheekbones', 
'round face', 'round eyes', 'long nose'

wrinkles: 'grey hair', 'receding hairline', 
'no beard', 'high eyebrows', 'male', 
'narrow eyes', 'closed eyes'

Original StyleCLIP

Original StyleCLIP Original StyleCLIP

Figure 3. Illustration of the predicted entangled attributes for var-
ious commands in text-driven image manipulation.

mapper of StyleCLIP. As can be seen, our method predicts
the entangled attributes well, e.g., “wide eyes” and “with
makeup” for blue eyes, “grey eyes” and “white skin” for
grey hair, “short hair” and “with makeup” for with ear-
rings, and “grey hair” and “closed eyes” for with wrinkles.

4.2. Prevent
For a disentangled manipulation, the command-

corresponding attribute should change while other attributes
should be maintained, especially for the possibly entangled
ones. Therefore, based on the predicted entangled attributes
{tentgn}Nn=1, we introduce a novel entanglement loss that
punishes the changes of entangled attributes after the ma-
nipulation. The changes are measured by the CLIP dis-
tances between images and texts of entangled attributes,
thus the proposed entanglement loss is formulated as:

LE =
1

N

X

n

(DCLIP (i, tentgn)�DCLIP (i
0
, tentgn))2,

(7)
where i=G(w) is the original image and i

0
is the manipu-

lated image as introduced in Sec. 3.
Together with the losses described in Eq. (2), our overall

loss is defined as below:

LPPE = LC + �L2LL2 + �IDLID + �ELE , (8)

where �E is the coefficient for the entanglement loss.

18232



!!

!"#
Entanglement loss

(a)

!!"
!#

(b)
Figure 4. Illustration of (a) the effect of the entanglement loss and
(b) the expected result provided by the entanglement loss.

We give an illustration in Fig. 4, where we assume there
is a hyperplane in the latent space that separates having the
attribute or not*, ngt is the unit normal vector of the hy-
perplane corresponding to the command attribute, nS is the
vector found by StyleCLIP method and nP is from PPE. As
shown, the proposed entanglement loss is to constrain the
model to find less entangled manipulating directions.

4.3. Evaluate
For disentangled text-driven image manipulation, we

propose a new evaluation metric, i.e., an indicator that eval-
uates the manipulation and the entanglement effects simul-
taneously, based on the predicted entangled attributes.

Firstly, for each text command, we quantify the manipu-
lation effect as:

4dc = DCLIP (i, tcomd)�DCLIP (i
0
, tcomd), (9)

i.e., the change of command attribute in images measured
by CLIP. The larger the 4dc is, the closer the manipulated
image to the text command is in CLIP space, indicating the
manipulation reaches the command-required effect.

Meanwhile, for each predicted entangled attribute, we
measure the entanglement effect by:

4den = DCLIP (i, tentgn)�DCLIP (i
0
, tentgn), (10)

i.e., the change of entangles attribute in images estimated
by CLIP. The larger the 4den is, the closer the manipu-
lated image to the text of the entangled attribute is in CLIP
space, indicating the manipulated image is entangled with
the command-relevant attribute.

To reach disentangled manipulations, we expect 4dc to
be as large as possible while {|4den |} to be as small as
possible. Thereby, we formalize the indicator as:

indicator =
1
N

PN
n=1 |norm(4den)|
norm(4dc)

, (11)

where N is the number of the predicted entangled attributes
and norm(·) is to make 4dc and {4den} comparable. In
concrete, they are normalized individually as:

norm(4dt)=
4dt

max
i2I

DCLIP (i, t)�min
i2I

DCLIP (i, t)
, (12)

*The assumption draws from InterFaceGAN [37].

where t is in {tcomd, tentg1 , . . . , tentgN } and I is image set.
As described in Eq. (11), assuming 4dc is greater than

0 (as it should be), a high indicator, e.g., 0.5, indicates an
entangled manipulation, because when its 4dc increases,
its {4den} grows correspondingly and significantly. By
contrast, a lower indicator indicates a better disentangled
manipulation, since its {|4den |}’s changes are not as sig-
nificant as its 4dc’s. Using the indicator, the effect of
disentangled image manipulation can be quantified.

5. Experiments
5.1. Implementation Details

To verify the proposed method, we conduct experi-
ments on the challenging face editing task. We compare
our method with our strong baseline, i.e., the latent map-
per in StyleCLIP [31]. Following StyleCLIP, we use the
CelebA-HQ dataset [14, 25], which consists of 30,000 im-
ages, 27,176 for train-set and 2,824 for test-set; Style-
GAN2 [16] pre-trained on FFHQ [15] is used to generate
images; e4e [42] is used to invert images into latent em-
beddings in the latent space of StyleGAN2. Moreover, we
train all models following the original settings as the official
StyleCLIP implementation [30]. In other words, for all text
commands, we train the corresponding models without tun-
ing the hyper-parameters. We use the same loss-coefficients
setting, which is �L2 =0.8 and �ID =0.1. For the proposed
entanglement loss, �E =100. The number of predicted en-
tangle attributes N in the entanglement loss (Eq. (7)) is set
to 10 by default. R in Eq. (6) is set to 40, empirically.

5.2. Quantitative Results
We conduct multiple experiments using different text

commands, which especially include the ones that are re-
garded as entangled in previous works [21, 45]. In Ta-
ble 1, we illustrate the quantitative results using the evalu-
ation metric introduced in Sec. 4.3. In concrete, indicator
is the overall metric for disentangled image manipulation.
Lower indicator means target manipulation is achieved
with fewer entanglements, and vice versa. In addition, 4d

0

c

is the normalized 4dc, and 4d
0

e is the normalized 4de, as
in Eq. (9), Eq. (10) and Eq. (12).

According to the results, we draw the following two con-
clusions: 1) The latent mapper method in StyleCLIP is
highly entangled, and our method predicts the entangled at-
tributes well. As can be seen in the results of “StyleCLIP”,
the manipulated images are closer to text commands while
they are also closer to the text of entangled attributes. For
example, for text command “grey hair” (Table 1a), when
4d

0

c reaches 0.4878, 4d
0

e changes at a comparable scale as
“grey eyes” is 0.2433 and “white skin” is 0.2641. More sig-
nificantly, for text command “blue eyes” (Table 1k), when
4d

0

c reaches 0.4880, the 4d
0

e for “wide eyes” is 0.3635. 2)
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StyleCLIP Ours

indicator(#) 0.3359 0.0071

4d
0
c 0.4878 0.3519

4d
0
e

short eyebrows 0.1637 0.0261
short hair 0.1945 0.0445
with bangs 0.0927 0.0122
grey eyes 0.2433 0.0590
sideburns 0.1548 0.0195
narrow eyes 0.1393 0.0126
high cheekbones 0.0873 -0.0022
white skin 0.2641 0.0644
pointy face 0.1362 0.0161
with makeup 0.1626 0.0149

(a) grey hair

StyleCLIP Ours

indicator(#) 0.5553 0.1411

4d
0
c 0.3628 0.1898

4d
0
e

short eyebrows 0.2362 0.0433
with bangs 0.1583 0.0270
short hair 0.1927 0.0245
black eyes 0.2555 0.0458
narrow eyes 0.2005 0.0228
high cheekbones 0.2002 -0.0253
with lipstick 0.1683 -0.0237
pointy face 0.2078 0.0232
sideburns 0.1694 0.0103
with makeup 0.1708 0.0219

(b) black hair

StyleCLIP Ours

indicator(#) 0.4022 0.1691

4d
0
c 0.2877 0.1442

4d
0
e

blue eyes 0.1249 0.0235
long hair 0.1591 0.0453
brown hair 0.1349 0.0305
with makeup 0.1274 0.0249
wide eyes 0.1186 0.0246
with earrings 0.0940 0.0165
with bangs 0.0815 -0.0105
pinched nose 0.1027 0.0173
with lipstick 0.1136 0.0278
close mouth 0.1004 0.0185

(c) wavy hair

StyleCLIP Ours

indicator(#) 0.3870 0.1266

4d
0
c 0.3451 0.2384

4d
0
e

short hair 0.1568 0.0525
with lipstick 0.1249 0.0318
smiling 0.1030 0.0155
round eyes 0.1418 0.0242
with makeup 0.1368 0.0221
brown hair 0.1927 0.0552
brown eyes 0.1316 -0.0239
with glasses 0.0640 0.0157
thin nose 0.1441 0.0219
with earrings 0.1399 0.0391

(d) with bangs

StyleCLIP Ours

indicator(#) 0.3269 0.1298

4d
0
c 0.3679 0.1341

4d
0
e

grey hair 0.2560 0.0336
receding hairline 0.0417 0.0035
no beard 0.0858 0.0119
long eyebrows 0.1132 0.0316
long face 0.1351 0.0372
male 0.1008 0.0035
narrow eyes 0.1096 -0.0065
big nose 0.0842 0.0013
black eyes 0.0937 0.0104
closed eyes 0.1829 0.0345

(e) with wrinkles

StyleCLIP Ours

indicator(#) 0.2580 0.0900

4d
0
c 0.4072 0.3190

4d
0
e

oval face 0.1498 0.0486
small nose 0.1566 0.0524
narrow eyes 0.1133 0.0285
with lipstick 0.1100 0.0290
long eyebrows 0.1245 0.0210
short hair 0.1004 0.0303
with bangs 0.0594 -0.0121
receding hairline 0.0268 0.0006
sideburns 0.0876 0.0256
high cheekbones 0.1225 0.0404

(f) with glasses

StyleCLIP Ours

indicator(#) 0.4401 0.1521

4d
0
c 0.5371 0.263

4d
0
e

green eyes 0.1867 0.0270
narrow eyes 0.3378 0.0672
dark eyebrows 0.1920 0.0251
with lipstick 0.1914 0.0574
long nose 0.2805 0.0494
high cheekbones 0.1708 0.0322
oval face 0.3418 -0.0489
with makeup 0.2076 0.0275
blond hair 0.1586 0.0181
rosy cheeks 0.2968 0.0472

(g) pale

StyleCLIP Ours

indicator(#) 0.3800 0.1418

4d
0
c 0.5579 0.2452

4d
0
e

open mouth 0.262 0.0376
oval face 0.2924 0.0442
round eyebrows 0.1990 0.0563
big nose 0.2588 0.0243
big mouth 0.2839 0.0485
with lipstick 0.1156 0.0144
sideburns 0.1311 -0.0122
rosy cheecks 0.1566 0.0444
closed eyes 0.2248 0.0466
bald 0.1972 0.0218

(h) double chin

StyleCLIP Ours

indicator(#) 0.3069 0.1491

4d
0
c 0.4904 0.3149

4d
0
e

arched eyebrows 0.1077 0.0270
close mouth 0.2105 0.0814
with makeup 0.2154 0.1035
green eyes 0.0467 0.0134
high cheekbones 0.1517 0.0526
oval face 0.1933 0.0482
pinched nose 0.1070 -0.0027
white skin 0.1668 0.0371
big eyes 0.1157 0.0424
rosy cheeks 0.1900 0.0611

(i) with lipstick

StyleCLIP Ours

indicator(#) 0.4002 0.1881

4d
0
c 0.3585 0.1425

4d
0
e

with lipstick 0.1783 0.0364
round eyes 0.1541 0.0275
with makeup 0.1909 0.0420
thick nose 0.1836 0.0418
round face 0.1222 0.0157
rosy cheeks 0.1404 0.0121
with earrings 0.1044 -0.0278
double chin 0.1633 0.0410
blond hair 0.1112 0.0243
with bangs 0.0865 0.0175

(j) arched eyebrows

StyleCLIP Ours

indicator(#) 0.4220 0.2163

4d
0
c 0.4880 0.2480

4d
0
e

wide eyes 0.3635 0.1212
with makeup 0.2127 0.0677
bags under eyes 0.2702 0.1005
with lipstick 0.1587 0.0350
rosy cheeks 0.2317 0.0375
blond hair 0.1263 0.0321
round face 0.1993 -0.0518
pinched nose 0.1786 0.0374
white skin 0.2236 0.0432
long hair 0.0949 0.0109

(k) blue eyes

StyleCLIP Ours

indicator(#) 0.3703 0.2917

4d
0
c 0.4575 0.0712

4d
0
e

arched eyebrows 0.1425 0.0193
short hair 0.1369 0.0183
with makeup 0.2054 0.0370
high cheekbones 0.1553 0.0188
with lipstick 0.1531 0.0210
green eyes 0.1338 0.0115
round face 0.1965 -0.0233
with bangs 0.0992 0.0142
round eyes 0.1899 0.0203
with makeup 0.2035 0.0240

(l) with earrings
Table 1. Quantitative comparison of disentangled text-driven image manipulation with StyleCLIP [31], using the evaluation metrics
introduced in Sec. 4.3. For the indicator, lower is better. The text command is indicated under each sub-table. Specifically, we illustrate
each individual item in the changes of predicted entangled attributes 4d

0
e.

Our entanglement loss prevents the entanglements in im-
age manipulation effectively. For each text command in
the experiment, the indicator of “Ours” is significantly

lower than that of “StyleCLIP”, indicating that we achieve
more disentangled image manipulation. Changes on pre-
viously entangled attributes are greatly diminished (as in
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Figure 5. Qualitative comparison with StyleCLIP [31] using different text commands (indicated on the top). Ours achieves more disentan-
gled manipulation results as only the desired attribute is manipulated while others are maintained well.
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(d) with wrinkles
Figure 6. Image manipulation results from StyleCLIP [31] and ours, using gradually increasing manipulation strengths. Ours present better
fore-and-aft consistency along the change of manipulation strength.

4d
0

e) while the manipulation effect is not affected much
(according to 4d

0

c). In qualitative results, we illustrate that
our method can achieve comparable manipulation effect
with StyleCLIP when increases the manipulation strength.

5.3. Qualitative Results

Direct Manipulation Outputs. We firstly compare the di-
rectly outputted manipulation results from the trained mod-
els, without changing the manipulation strengths. In Fig. 5,
we illustrate the comparing qualitative results on multiple

text commands. As can be seen in the manipulation re-
sults of “StyleCLIP”, it not only manipulates the required
attributes, but also manipulates other attributes. Take text
command “grey hair” as an example, the manipulated face
gets grey hair, while it gets whiter skin and grey eyes si-
multaneously. Similarly, for the text command “with wrin-
kles”, the manipulated face gets wrinkles, grey hair, and
more closed eyes in the meanwhile. Other manipulation re-
sults are obtained in similar conditions.

By contrast, “Ours” achieves more ideal manipulation
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results, where almost only the desired attribute is manipu-
lated while other attributes of are well preserved. For ex-
ample, for “wavy hair”, “Ours” hair becomes wavy while
the hair length is close to the original one and the skin color
does not become whiter; for “double chin”, “Ours” gets
double chin while the eye color remains light brown, skin
color is kept well, and mouth does not open much. In ad-
dition, it is worth mentioning that the qualitative results are
quite consistent with the quantitative results, indicating that
the proposed evaluation metrics are effective for the disen-
tangled image manipulation task.

Strength-Adjusted Manipulation Outputs. We further
compare the manipulation results with gradually increasing
manipulation strength. To illustrate, we show four groups of
comparing results in Fig. 6. In each group, we present the
manipulation results for male and female, respectively. We
observe that our method learns more disentangled manip-
ulation directions compared to StyleCLIP. For StyleCLIP,
when the manipulation strength increases, the desired at-
tribute becomes more and more obvious, as well as the en-
tangled attributes. As the male-case in Fig. 6a, from left
to right, the eyes become increasingly blue while they also
become wider, the face becomes whiter, and the hair color
becomes lighter. Contrarily, our method presents better ma-
nipulation consistency. When the manipulation strength in-
creases, the target attribute gradually turns apparent while
others remain almost unchanged.

5.4. Discussions

Hyper-Parameters. In the previous sections, we illustrate
the ability of our method to achieve disentangled image ma-
nipulation without human trials-and-errors. To further study
the effects of hyper-parameters, we tune the coefficient of
the proposed entanglement loss �E in Eq. (8) and the num-
ber of constraining attributes N in Eq. (7). We show com-
paring results on “blue eyes” and “with earrings”, which
are found to be more entangled according to previous ex-
perimental results. As in Fig. 7a, when �E increases, the
manipulation effects become less conspicuous while other
attributes remain better. However, the manipulation effect
can be enlarged by increasing the manipulation strength af-
terwards. As in Fig. 7b, when N varies, there are no obvious
differences between the manipulation results. To conclude,
our method is not sensitive to hyper-parameters.

Limitations. The limitations of the proposed PPE method
are as follows: 1) Similar to StyleCLIP, the command out
of the domain of CLIP and StyleGAN may not obtain ideal
manipulation results. 2) The disentanglement extent in the
manipulation results depends on the disentanglement extent
in the latent space of StyleGAN. Since we study latent space
image manipulation, the best our method can do is to find
the most disentangled latent path in the latent space of pre-
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Figure 7. Hyper-parameters study.

trained generator. If the attributes are originally entangled
for the generator, PPE is unable to achieve completely dis-
entangled manipulations.

Ethical Impact. One common issue in the image manipu-
lation model is that it is biased toward the dataset the model
was trained on. For example, BlendGAN [22] indicates that
the ethical biases of a dataset may transfer to their model,
e.g., the model outputs faces with lighter skin while the in-
put faces are darker-skinned. Our work can help reduce this
ethical impact, as our method aims at disentangled image
manipulation that only changes the desired attribute while
letting the others unchanged, e.g., our method can change
the eye color while maintaining the skin color well.

6. Conclusion
We propose Predict, Prevent, and Evaluate (PPE) to

achieve disentangled image manipulation with little man-
ual effort by deeply exploiting the powerful large-scale pre-
trained vision-language model CLIP. CLIP is leveraged to
1) Predict the entangled attributes given textual manipu-
lation command, 2) Prevent the model from finding en-
tangled manipulating latent directions through a novel en-
tanglement loss, and 3) establish a new evaluation metric
that can simultaneously Evaluate the effects of manipula-
tion and entanglement. PPE is tested on the challenging
face editing task and is proven effective.
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