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Abstract

In this paper, we propose a novel method to realize multi-

modal image registration and fusion in a mutually

reinforcing framework, termed as RFNet. We handle the

registration in a coarse-to-fine fashion. For the first time,

we exploit the feedback of image fusion to promote the

registration accuracy rather than treating them as two

separate issues. The fine-registered results also improve the

fusion performance. Specifically, for image registration,

we solve the bottlenecks of defining registration metrics

applicable for multi-modal images and facilitating the

network convergence. The metrics are defined based on

image translation and image fusion respectively in the

coarse and fine stages. The convergence is facilitated by

the designed metrics and a deformable convolution-based

network. For image fusion, we focus on texture preser-

vation, which not only increases the information amount

and quality of fusion results but also improves the feedback

of fusion results. The proposed method is evaluated on

multi-modal images with large global parallaxes, images

with local misalignments and aligned images to validate

the performances of registration and fusion. The results in

these cases demonstrate the effectiveness of our method.

1. Introduction

Multi-modal image fusion aims to merge the informa-

tion from different imaging modalities to generate a sin-

gle image with rich information and high quality. Be-

cause the fused images can describe scenes comprehen-

sively by merging the complementary information, image

fusion serves as a powerful tool for wide applications, such

as security, remote sensing, clinical treatment, etc.

As multi-modal images are taken from different de-

vices/sensors, it inevitably leads to parallaxes due to bi-

ased positions, angles, etc. However, almost all the fusion

methods fail to consider parallaxes. They require an ac-
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Figure 1. Treating registration and fusion as separate issues in ex-

isting methods and the proposed mutually reinforcing framework.

curate registration before fusion can take place, as shown

in Fig. 1(a). Unfortunately, the diversity between differ-

ent modalities poses a great challenge to improve the regis-

tration accuracy, still resulting in mitigated misalignments

in the pre-registered images. When registration and fusion

are separate issues, existing fusion methods have to “toler-

ate” rather than “fight” the pre-registration misalignments.

Thus, multi-modal image registration and fusion become an

urgent issue for the practical application of image fusion.

Meanwhile, in existing separate branches, image fusion

is a downstream task of registration, and fails to provide

feedbacks to improve registration accuracy. Nevertheless,

considering the characteristics of fused images, it is possi-

ble for image fusion to inversely eliminate misalignments.

First, the fused images integrate the information from both

modalities. When the fused image is registered with either

source image, the alleviated modal diversity reduces the dif-

ficulty of registration. Second, the misalignments in fused

images undoubtedly lead to more but repeated salient struc-

tures, i.e., dense gradients. By comparison, an accurate reg-

istration encourages the sparseness of gradients. Thus, the

gradient sparsity of fusion results can act as a criterion to

improve registration accuracy in a feedback fashion with-

out losing the scene information in source images. Third,

the fused images retain the obvious salient structures in a

single image and discard some superfluous and useless in-

formation during the fusion process. It reduces the nega-

tive impact of superfluous information on image registra-

19679



tion. When image fusion helps to eliminate misalignments,

the more precisely aligned data further promotes fusion re-

sults. As a result, these two tasks can be mutually reinforced

in this way, as illustrated in Fig. 1(b).

Specifically to the individual solution of each task, ei-

ther image registration or fusion has its own bottlenecks.

For image registration, it is a difficult problem to develop

appropriate registration metrics or evaluation ways adap-

tive for multi-modal data. The other important issue is to

ensure that the designed registration constraints should be

practical for deep network optimization though gradient de-

scent. For image fusion, a general purpose is to enable fused

images present the most amount of information, partly rep-

resented by gradients. Moreover, as stated above, the gradi-

ents of fused images play a critical role in eliminating mis-

alignments. Combining these two aspects, fusion methods

should be dedicated to the retention of texture information,

which is consistent with both the fusion target and the feed-

back function of image fusion to image registration.

To address the limitations of prior works and unexplored

issues, we explore multi-modal image registration and fu-

sion in a mutually reinforcing framework. We propose an

unsupervised network to realize it, termed as RFNet. The

proposed framework is summarized as Fig. 1(b). The regis-

tration is handled in a coarse-to-fine approach. The coarse

stage corrects the global parallaxes through an evaluation

metric based on image translation. The coarse-registered re-

sults help generate meaningful but rough fused images. Im-

age fusion and fine registration are integrated in a single net-

work. Then, to correct local misalignments, we rely on the

characteristics of fused images to optimize the deformation-

related parts in this network. Finally, the network generates

the fine-registered and fused image.

The main contributions of RFNet are summarized as fol-

lows: i) The problems of multi-modal image registration

and fusion are mutually reinforced in our work. It is the first

time that image fusion is exploited to promote multi-modal

image registration accuracy through a deep neural network.

ii) We focus on designing constraints to optimize the multi-

modal registration performance. In the coarse stage, we

apply image translation to build an image-level evaluation

metric. An improved network architecture is proposed to

help facilitate the network convergence. In the fine stage,

the metric is designed based on the fusion results. iii) Con-

sidering the texture retention in image fusion, we adapt a

gradient channel attention mechanism to adaptively adjust

the channel-wise contributions of features. Besides, we de-

sign a gradient loss with bias. The network architecture and

loss function are both based on the texture richness.

2. Related Works

Multi-modal Image Registration. Traditional registra-

tion methods include transformation- and measure-based

ones. Transformation-based ones transfer images into a

common space to exhibit better consistency [3, 10, 11, 26].

They manually analyse multi-modal characteristics and de-

sign constraints to impose consistency. Nevertheless, the

optimization in these methods is thorny. Measure-based

ones aim to measure the similarity with low sensitivity to

modal variations. Representative methods utilize mutual

information (MI), regional MI [23], etc., which are com-

putationally intractable and not suitable for gradient de-

scent [5]. Recently, deep learning-based methods have been

proposed. For instance, Wang et al. [27] use a network to

create modal-independent features while drawbacks of spar-

sity still exist. Closest to our work, Arar et al. learn a cross-

modality translation [1]. However, the cooperative train-

ing of translation and registration networks increases the

difficulty of optimizing registration network. In our work,

we find that feeding translated images in the same domain

into the network can improve the registration accuracy and

speed up the convergence simultaneously. Besides, com-

pared with existing registration networks [1,20], we employ

deformable convolution in our network as it refers to the de-

formation in unregistered images for higher registration ac-

curacy and stronger robustness. Most relevant to our work,

SIRF [4] confirms that joint registration and fusion can def-

initely improve the results if they are combined properly.

However, this work is realized in a tradition vectorial to-

tal variation model and designed for remote sensing images

with restrictive local misalignments.

Multi-modal Image Fusion. Existing fusion methods

are tailored to aligned images without regard to parallaxes.

Focusing on fusion itself, traditional methods include six

categories: methods based on multi-scale transform [16],

sparse representation [28], subspace, saliency [21], hybrid

methods, and others. They are devoted to designing decom-

position ways and fusion strategies in a manual way while

detailed and diverse designs make them more and more

complex. To solve it, some deep learning-based methods

are proposed [13, 15, 29]. Some of them do not pay atten-

tion to texture preservation and some generative adversarial

network-based methods [7, 18, 19, 32] suffer from generat-

ing fake and blurred details. Even some methods concern

the textures [17,31], they preserve the textures according to

the image modality rather than the actual textures of spe-

cific regions. In this work, we adapt a gradient-based at-

tention mechanism and a gradient loss with bias to enhance

texture retention. Moreover, the network blends the defor-

mation which enables misalignment correction based on the

preserved textures.

3. Proposed Method

We design an unsupervised network for mutually rein-

forcing multi-modal image registration and fusion, term as

RFNet. The overall procedure is shown in Fig. 2, which
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Figure 2. Overall pipeline of our RFNet. Ix and Iy are a paired

but unaligned multi-modal images such as visible (VIS) and near-

infrared (NIR) images. I
C
x is the coarse aligned Ix after coarse

registration. If is the final aligned and fused image. TransNet is an

image translation network to narrow modal differences. AffineNet

is a network to generate the affine transformation parameters.

consists of two main parts. First, a coarse registration mod-

ule performs the global correction based on the affine trans-

formation model. Then, multi-modal images are roughly

aligned except for some local parallaxes, where an affine

model is not applicable. Second, the fine registration and

fusion are realized in a unified module/network, termed as

fine registration and fusion module (F2M).

3.1. Coarse Registration Module

Pipeline of the proposed coarse registration module is

shown in Fig. 3. TransNet firstly transfers multi-modal im-

ages into the same domain (i.e., translating Ix to Ix→y).

AffineNet takes Ix→y and Iy as input, and outputs the affine

parameters to generate the deformation field for Ix.

3.1.1 Image Translation Network

TransNet is aimed at learning the image translation function

T y
x , which denotes translating an image Ix in domain x to

domain y by retaining content information. Thus, we use an

encoder to embed Ix into the content space as cx = Ex(Ix)
while removing the domain information. To ensure that cx
contains the content information, we map it back to domains

through the decoders Dx and Dy , as shown in Fig. 4.

The result of mapping cx back to domain x is expected

to reconstruct Ix, i.e., I recon
x = T x

x (Ix) = Dx(Ex(Ix)).
And the mapping result to domain y should be the translated

Ix, i.e., Ix→y = T y
x (Ix) = Dy(Ex(Ix)). Similarly, for

Iy in domain y, the reconstructed and translated results are

I recon
y = T y

y (Iy) and Iy→x = T x
y (Iy).

To encourage encoders to extract content information

and decoders to recover domain-related information, the re-

construction loss and the translation loss are defined as:

Lrecon = ∥Ix − I recon
x ∥1 + ∥Iy − I recon

y ∥1,

Ltrans = ∥Ix − Iy→x∥1 + ∥Iy − Ix→y∥1.
(1)

The final loss function of TransNet is summarized as

Eq. (2) with a hyper-parameter η controlling the trade-off:

LTransNet = Lrecon + ηLtrans. (2)

Network Architecture. The network architecture of

TransNet is shown in Supplementary Material. We use in-

stance normalization rather than batch normalization as it

performs a kind of style normalization [8]. To map different

domains to a same content space, in addition to the designed

loss functions, the weights of the last layers in encoders and

the first layers in decoders are shared.

3.1.2 Affine Network

AffineNet learns to generate the corresponding affine trans-

formation function C. When feeding a pair of unaligned

images Ix→y and Iy , it outputs the affine parameters paff =
C(Ix→y, Iy). According to paff, we generate a deformation

field φ of size H × W × 2 by applying paff on a regular

sampling grid. φ represents the deformation of all pixels in

Ix→y . Mathematically, the deformed Ix→y is denoted as:

ICx→y[i+ φi,j,1, j + φi,j,2] = Ix→y[i, j], (3)

where i and j denote the position of pixels. Two channels

of φ denote the deviation in vertical and horizontal direc-

tions, respectively. Considering that there may be some

missing pixel values due to the different coordinate types,

a re-sampler S is applied for the betterment of this step.

As described, the problem of multi-modal image regis-

tration has been transformed as the similarity between the

deformed translated image ICx→y and the source image Iy .

Therefore, the loss function of AffineNet is defined to con-

strain their similarity. For ease of computational tractability

and for weaker sensibility to linear changes in illumination

amplitudes, we use normalized cross correlation (NCC) as

similarity measure. The registration loss is thus defined as:

Lcoarse = −NCC(ICx→y, Iy), (4)

where NCC(s, g) is defined as:

NCC(s, g) =
E[(s− µs)⊙ (g − µg)]

√

E[(s− µs)2]
√

E[(g − µg)2]
, (5)

where E[x] = 1
HW

∑H

i=1

∑W

j=1 xi,j , with xi,j being the

pixel of x in the i-th row and j-th column. µs and µg are

the mean values of s and g. ⊙ is the Hadamard product.

When the optimal deformation field φ is obtained, we

perform the same spatial transform on Ix to generate the

coarse aligned image ICx according to the way in Eq. (3).

Network Architecture. The network architecture of

AffineNet is reported in Supplementary Material. For im-

age registration, the region of corresponding objects may

shift considerably in two unregistered images. Taking the

long-distance parallax into account, large kernel sizes and

deep network layers are necessary for wide receptive fields
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to alleviate this problem. Thus, deformable convolution lay-

ers are applied to replace the regular receptive fields in tra-

ditional convolution layers. Deformable convolution lay-

ers augment receptive fields with offsets, which are learned

from additional convolution layers from preceding feature

maps. Thus, it refers to deformations in unregistered images

for higher registration accuracy and stronger robustness.

3.2. Mutually Reinforcing Fine Registration and
Fusion Module (F2M)

In the first phase, F2M realizes the texture-focused im-

age fusion, which is also the foundation of fine registration.

The pipeline is shown in Fig. 5. We optimize the parame-

ters in F2M for image fusion except those in the deforma-

tion block. The deformation block depends on initialized

parameters to generate the deformation field, which auto-

matically tends to be identical. In this case, If combines

the scene information of ICx and Iy , and renders their paral-

laxes in a single image. Loss function is defined as:

Lfus = Lcontent + δLgradient, (6)

where δ controls the trade-off between these two terms.

Lcontent constrains the image-level similarity to merge the

scene content, which is defined as:

Lcontent = (1− γ)∥If − ICx∥1 + γ∥If − Iy∥1. (7)

As the NIR images usually contain more texture details than

RGB images, γ is set to a value between 0.5 and 1.

As salient structures are usually presented in larger gra-

dients, the gradient loss Lgradient is defined as:

Lgradient =
∥

∥

∥
∇If −

∇ICx +∇Iy

|∇ICx +∇Iy |
· max(|∇ICx |, |∇Iy |)

∥

∥

∥

2

, (8)

where ∇ denotes the gradient of an image.

In the second phase, F2M realizes the fine registration

based on the characteristics of fused images. In this phase,

we fix the fusion-related parameters which have been opti-

mized in the first phase and train the deformation block. The

loss function considers the following three aspects. First, Iy
is the fixed image providing the reference texture informa-

tion. If retains the deformed gradients of ICx . After the

correct deformation, ∇If should demonstrate high consis-

tency with ∇Iy . Thus, the first term constrains the con-

sistency with the reference information. Second, it is easy

to observe that any misalignments in If will decrease the

sparsity of gradients. We use the second term to encour-

age the sparsity of ∇If and penalize the salient gradients

that should be corrected. Third, it is clear that neighboring

pixels should have similar deformations, intuitively repre-

sented by the smoothness of the deformation field. Oth-

erwise, the scene structure will be distorted. We deploy a

regularization term to prevent the deformation block from

generating non-smooth deformation fields. Therefore, the

loss function contains the following three terms:

Ldefor = ∥∇If −∇Iy∥1 + ∥∇If∥1 + λLsmooth, (9)

where we use the l1-norm as it encourages sparsity.

Specifically to Lsmooth, denoting the deformation as φf ,

the first order gradients of φf reflect the abrupt changes

of the deformation. Besides, to avoid over-smoothing, in-

spired by [1], a bilateral filter [24] is used to assign variable

weights to different first-order changes, defined as:

Lsmooth =
∑

pn∈R

e−α|If (p)−If (pn)| · |φf (p)−φf (pn)|, (10)

where p is the position index of a pixel in If or φf . R
denotes a set of neighbors of p. pn represents the position

index in this set. α is a coefficient and set to 0.5.

When the deformation block has been optimized, we

once again perform the forward process of F2M entirely to

generate the final aligned and fused image If .

Network Architecture. As shown in Fig. 5, we share

the weights of the first three layers to ensure the intensity

consistency of feature types from different modalities. It

avoids the attenuation and diffusion of information in one

source image compared to the other one. Otherwise, the at-

tenuation and diffusion will cause the fake gradient sparsity

and affect the improvement of registration performance.
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Figure 5. Pipeline of the fine registration and fusion module

(F2M). “Conv”: convolution layer with kernel size as 3 × 3 and

stride as 1.

As the receptive fields grow with depth increases, a pixel

in deeper feature maps corresponds to a larger region in the

image, which are not conducive to improving the registra-

tion accuracy. Thus, we use the shallow features to explore

and generate spatial deformation. The nonlinear mapping

of the first convolution layer eliminates the pixel intensity

differences between ICx and Iy . The deformation block gen-

erates the deformation fields (refer to Supplementary Mate-

rial for details). Resampling, batch normalization [9], and

residual blocks are used to apply to different deformations.

For texture preservation, we introduce the gradient chan-

nel attention block as in Fig. 5. We aggregate the absolute

gradients as they are a better representation of information

richness in feature maps. The information is aggregated

by jointly using max-pooling and average-pooling opera-

tions. Then, the two-branch results are added and fed into

two individual multi-layer perceptrons to generate shared

channel-wise attention weights. Then, several convolution

layers map the features back to generate If .

4. Experiments

Implementation Details. The code of our method is im-

plemented in TensorFlow. Experiments are conducted on

an NVIDIA Geforce GTX Titan X GPU and 2.4 GHz Intel

Core i5-1135 CPU. The parameters in all networks are up-

dated with the Adam Optimizer [12]. The epoch of training

coarse registration network is set to 100, and that of training

F2Net is set to 30. The batch size is 4. The learning rate is

set to 0.0004 with exponential decay. The hyper-parameters

are set as: η = 2, δ = 100, γ = 0.7, λ = 0.1. We build the

training and test datasets based on a publicly available VIS-

NIR Scene dataset [2]1. Images are cropped into patches of

size 384× 384 and flipped for more training data.

4.1. Multimodal Image Registration

We compare our coarse registration module with SOTA

multi-modal registration methods, including traditional

ones (i.e., MI [25], DASC [10,11], NTG [5], SCB [3]) and a

1http://matthewalunbrown.com/nirscene/nirscene.

html

VIS/NIR MI DASC NTG SCB NeMAR RFNet (Ours) orig. diff.

Figure 6. Registration results on three unaligned multi-modal im-

age pairs. Under registration results, the deformed VIS image and

NIR image are shown in pair to show their misalignments.

deep learning-based method NeMAR [1]. For NeMAR, we

retrain the model on our training dataset for 800 epoches.

Qualitative Results. Qualitative results are shown in

Fig. 6. In the first two groups, the proposed RFNet and

NTG show more accurate registration results than others.

MI and SCB perform almost exactly on the first pair while

suffer a large registration error in the second pair. DASC

shows severe geometric distortions, especially in the un-

overlapped regions of two source images. NeMAR shows

a slight improvement than unaligned images. In the third

group, source images exhibit high structure similarity and

repeatability in different regions. In this case, the proposed

RFNet shows higher registration accuracy than comparative

methods, including NTG. These results demonstrate that

our method can outperform the SOTA methods.

Quantitative Evaluation. For quantitative evaluation,

we build 5 pairs of point landmarks in each image pair (see

Supplementary Material for illustration). The points in the

deformed VIS image are expected to be in the same po-

sitions as those in the NIR image. Thus, we measure the

Euclidean distance between the deformed source points and

target points. We count the distances from three aspects,

including root mean square error (RMSE), max square er-

ror (MAE) and median square error (MEE). Furthermore,

we measure the image-level similarity between the de-

formed VIS and NIR images with peak signal-to-noise ratio

(PSNR) and structural similarity index measure (SSIM). All

the metrics are tested on 45 unaligned multi-modal image

pairs and reported in Tab. 1. The coarse registration mod-

ule of RFNet achieves the optimal results on RMSE, MAE

and MEE. By comparison, MI and NTG achieve low means

but high standard deviations as they perform well in some

scenarios while not in others. DASC shows the optimal re-

sults in SSIM and PSNR because the results contain some

incorrect information in un-overlapped regions. However,
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Table 1. Quantitative comparisons of registration accuracy (mean and standard variation, red: best, blue: second best, cyan: third best).

Methods unaligned VIS MI [25] DASC [10, 11] NTG [5] SCB [3] NeMAR [1]
coarse registration

module of RFNet

RMSE 47.223±12.729 15.756±53.284 17.214±10.115 9.942±23.807 37.384±25.209 43.747±12.426 3.972±4.064

MAE 74.652±17.786 25.347±79.450 40.752±22.688 18.221±42.164 67.760±39.807 69.616±17.498 5.209±2.079

MEE 66.199±18.287 22.102±76.505 15.989±14.240 13.430±35.279 49.605±36.250 61.059±17.910 3.475±3.336

SSIM 0.292±0.105 0.505±0.177 0.726±0.064 0.611±0.164 0.324±0.177 0.345±0.115 0.650±0.102

PSNR 11.768±1.996 14.837±3.672 17.582±3.052 15.349±3.453 12.784±3.429 12.179±2.139 15.043±1.073

in other results, the un-overlapped regions are black with

little similarity with NIR images. In general, our method

exhibits comparative registration performances.

4.2. Multimodal Fusion and Our Fine Registration

This section focuses on evaluating the fusion and fine

registration performances of our F2M. As the state-of-the-

art (SOTA) fusion methods cannot deal with unaligned data,

the registration method NTG [5] is utilized as the pre-

registration operation for them as it ranks second in Sec. 4.1.

In other words, we compare RFNet with the combination

of NTG and SOTA fusion methods to evaluate the fusion

performance and observe how significant the registration is

for existing fusion methods. These fusion methods include

DenseFuse [13], IFCNN [34], U2Fusion [30], PMGI [33]

and MDLatLRR [14]. Besides, the fine registration of F2M

is verified when the inputs suffer local misalignments.

Qualitative Results. Qualitative results on six typical

unaligned image pairs are shown in Fig. 7. We analyze the

results from three aspects. First, our method can register

multi-modal images well as well as fuse their complemen-

tary information. As shown in the first two examples, the

registration method fails to completely eliminate the par-

allaxes in two source images. The misalignments remain

in the fusion results and result in disorganized scene con-

tent. By comparison, the joint coarse-to-fine registration

in our method and the feedback of image fusion help cor-

rection the misalignments and improve the fusion perfor-

mance. Second, our method can remove the overlapping

shadows to present clear textures. As shown in the third

and fourth rows, the slightly deficient registration accuracy

causes the overlapping shadows and blurs the fusion results.

By comparison, our method can finely remove the overlap-

ping shadows and preserve more sharp edges. Third, our fu-

sion results exhibit the most abundant and natural textures.

In the last two examples, NIR images contain richer content

than corresponding VIS images. In competitors, the blurred

texture details in the VIS images affect the clarity of fusion

results more or less. And in the fourth row, the trees in the

result of IFCNN are closer to those in the NIR image than

natural ones. By comparison, our results are suitable for the

human visual perception system.

Quantitative Evaluation. We perform the quantita-

tive evaluation of image fusion from two aspects. First,

we assess the characteristics of fused images with average

gradient (AG) [6], entropy (EN) [22] and standard devia-

tion (STD). Second, we measure the similarity between the

fused image and two source images with PSNR. It is worth

noting that if the source images are unaligned, the fused im-

ages will suffer misalignments while the quantitative results

may show fake improvements (e.g., average gradients). To

avoid the negative influence of this situation, we selected 35

image pairs that do not have noticeable misalignments after

being processed by NTG/coarse registration module. The

results are reported in Tab. 2. Our optimal results on AG,

EN and STD show that our results contain the most tex-

ture details, the most amount of information and the most

obvious contrast, respectively. Besides, our optimal result

on PSNR indicates that the proposed fusion method pro-

duces least distortion and our fused images are closest to

the source images.

External Verification on Object Detection. To evalu-

ate the practical benefits of image fusion and its improved

performances, an external verification is further performed.

We compare the detection results by using YOLOv52 as the

detector. As shown in Fig. 8, we perform the detections

both on an unaligned image pair to validate the effect of

registration accuracy and on an aligned image pair to vali-

date the effect of fusion performance. In the first example,

the misalignments in fusion results negatively impact the

detections of the cars. When the images are well registered,

the merged information from two modalities plays a posi-

tive role in promoting the detection result, as shown in the

detection result on our registered and fused image. In the

second example, the images are aligned. In this case, other

fusion methods reduce the accuracy of detecting the stop

sign compared with that in the VIS image. By comparison,

our method increases the detection accuracy by fusing the

information in the NIR image.

4.3. Ablation Study

Essential Factors in Coarse Registration Module. The

essential factors in this module lie in three aspects, includ-

2https://github.com/ultralytics/yolov5
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NTG+MDLatLRR RFNet (Ours)  VIS NIR NTG+DenseFuse NTG+PMGI   NTG+IFCNN NTG+U2Fusion   

Figure 7. Fusion results on six unaligned multi-modal pairs.

Table 2. Quantitative comparisons of fusion performance (mean and standard variation, red: best, blue: second best, cyan: third best).

Methods DenseFuse [13] IFCNN [34] U2Fusion [30] PMGI [33] MDLatLRR [14] RFNet

AG 6.565±1.677 7.859±1.816 8.862±2.206 6.906±1.489 6.122±1.421 10.217±2.516

EN 7.092±0.372 7.290±0.295 7.105±0.403 7.104±0.324 7.222±0.276 7.325±0.288

STD 9.118±0.902 9.575±0.857 9.792±0.858 9.536±0.772 9.616±0.839 10.064±0.877

PSNR 64.678±2.011 65.359±2.376 64.641±1.666 63.712±1.729 66.269±2.334 66.363±2.150

NTG+MDLatLRR RFNet (Ours)

VIS NIR NTG+DenseFuse

NTG+PMGI

NTG+IFCNN

NTG+U2Fusion

Figure 8. Detection results on source images and different regis-

tration and fusion. The detector is YOLOv5.

ing image translation, network architecture of AffineNet

and metric measuring the registration accuracy. We de-

sign three comparison experiments to separately validate

their effectivenesses. The registration accuracy is uni-

formly evaluated by the NCC loss. i) We change the

input of AffineNet and the loss is defined according to

the inputs. We separately feed the descriptors defined in

SCB [3], {Ix, Iy} without translation, and {Ix→y, Iy} gen-

erated by our TransNet. The changes in losses shown in

Fig. 9 demonstrate that the image-level inputs outperform

the sparse descriptors. And the same-domain inputs further

promote the convergence speed and performance. ii) The

deformable convolution layers in AffineNet are replaced

with traditional ones while traditional ones lead to a gra-

dient explosion. iii) We compare the effect of NCC/L1/L2

loss as the metric. L2 loss encounters a gradient explosion

and Fig. 9 shows that NCC loss is superior to L1 loss.

Fine Registration Performance of F2M. To validate

the effectiveness of the fine registration in F2M on elim-

inating local misalignments, we perform two experiments

by comparing F2M with two different competitors. One

situation is that there are merely local parallaxes in source
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Figure 9. Changes in registration losses during training process.

MDLatLRR F2M only  

VIS NIR DenseFuse

PMGI 

IFCNN

U2Fusion   

(a) Dealing with images with small parallaxes without pre-registration

VIS NIR
coarse-registered VIS
and NIR shown in pair

fine registration and 
fusion result of F2M

(b) Comparing the registration accuracy before and after F2M

Figure 10. Qualitative results to validate the effectiveness of the

fine registration in F2M through two experiments.

images. In this case, existing registration methods or our

coarse registration module are not performed in advance.

Instead, we directly apply the SOTA fusion methods and

F2M to deal with the unaligned images. As shown in

Fig. 10(a), our F2M successfully removes the misalign-

ments while they are still distinguishable in the results of

the SOTA fusion methods. From the other side, we validate

the fine-registration effect of F2M on the basis of coarse-

registration results. As the coarse registration module does

not have the fusion function, we show the coarse-registered

VIS and NIR images in pair by the average weighted strat-

egy rather than fused images. As shown in Fig. 10(b), the

fine registration function of F2M helps remove the overlap-

ping shadows in the coarse registration results.

Texture Preservation Strategies. We adapt the gradient

channel attention mechanism, introduce the gradient loss,

and set γ to a relatively high value to preserve texture de-

tails. To validate their effectiveness, we remove the atten-

tion mechanism, remove the gradient loss (δ = 0) and set
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Figure 11. Qualitative comparison results with (w/) and without

(w/o) texture preservation strategies.

NIR RGB coarse-registered RGB orig. diff. corr. diff.

Figure 12. Some examples of scenarios where the performance of

the coarse registration module is prone to degrade.

γ = 0.5. Comparison results are shown in Fig. 11. The re-

sults with texture preservation exhibit more texture details

than those without using these strategies.

Limitations. It is typically difficult to establish strict

correspondences between multi-modal images. In some

cases, the scenes may show obvious cross-modal structure

differences, such as field and forest (e.g., the first example

of Fig. 12). The image translation mainly adjusts the in-

tensity, but rarely changes the scene content or structures

(few edges are generated or eliminated). In other words, it

is difficult for image translation to reduce the cross-modal

structural differences. Moreover, in some other cases, the

scenes may lack salient structures, such as water (e.g., the

second example of Fig. 12). These factors bring challenges

to the coarse registration module which is based on image

translation and NCC loss. Thus, in these cases, the registra-

tion accuracy of the coarse registration module is prone to

degrade, as shown in the last column of Fig. 12.

5. Conclusion

In this paper, a new unsupervised multi-modal image

registration and fusion method is proposed by mutually re-

inforcing the two individual tasks. The registration is han-

dled in a coarse-to-fine approach. The coarse registration is

modeled as an affine transformation and realized through

an deformable convolution-based network and an image

translation-based image-level loss function. The fine regis-

tration relies on the feedback of fusion. The fine-registered

results further improve the fusion results. Also, we focus on

texture preservation for both the feedback of fusion and im-

age fusion itself. Experiments validate the effectiveness of

the proposed method and mutually reinforcing framework.
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