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Abstract

Image steganography aims to hide secret images into a
container image, where the secret is hidden from human vi-
sion and can be restored when necessary. Previous image
steganography methods are limited in hiding capacity and
robustness, commonly vulnerable to distortion on container
images such as Gaussian noise, Poisson noise, and lossy
compression. This paper presents a novel flow-based frame-
work for robust invertible image steganography, dubbed as
RIIS. A conditional normalizing flow is introduced to model
the distribution of the redundant high-frequency component
with the condition of the container image. Moreover, a well-
designed container enhancement module (CEM) also con-
tributes to the robust reconstruction. To regulate the net-
work parameters for different distortion levels, a distortion-
guided modulation (DGM) is implemented over flow-based
blocks to make it a one-size-fits-all model. In terms of both
clean and distorted image steganography, extensive experi-
ments reveal that the proposed RIIS efficiently improves the
robustness while maintaining imperceptibility and capacity.
As far as we know, we are the first to propose a learning-
based scheme to enhance the robustness of image steganog-
raphy in the literature. The guarantee of steganography ro-
bustness significantly broadens the application of steganog-
raphy in real-world applications.

1. Introduction
Steganography is a widely studied topic [12], which aims

to hide messages like audio, image, and hyperlink into one
container in an undetected way. In Fig. 1, image steganog-
raphy takes the secret and host image as input to produce the
container image. In its reverse process, it is only possible
for the receivers with a specific revealing network to recon-
struct secret information from the container image, which
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Figure 1. The upper row depicts the universal pipeline of im-
age steganography. Previous steganography like ISN [35] gains
poor revealed secret and revealed host image when the container
is under slight distortion. On the contrary, our RIIS takes various
distortion into consideration, which shows satisfactory robustness.

is visually identical to the host image. Steganalysis tech-
niques usually distinguish the container and host image by
color, frequency, and other features. Thus the secret image
should be hidden in the invisible domain of the container
image. It is also valuable in applications to embed as much
confidential data as possible into the host image, which is
evaluated as payload capacity.

The image steganography is designed to keep the hid-
ing capacity while considering security and imperceptibil-
ity against steganalysis. Existing steganography schemes
[11, 43, 59] fail to strike a balance between imperceptibility
and high payload capacity. Traditional methods transform
the secret messages in the spatial or adaptive domains [29],
achieving the capacities of 0.2∼4 bits per pixel (bpp). The
secret data is usually embedded into fewer significance bits
[11] or indistinguishable parts, limiting the amount of secret
information capacity. Recent learning-based steganography
methods [7,8] make an effort to exploit the potential capac-
ity of secret. Most of them take the pre-processing, conceal-
ing, and revealing as separate modules and design specific
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networks with independent parameters to handle them.
Recent attempts [50] to introduce invertible neural net-

works (INN) into low-level inverse problems like denoising,
rescaling, and colorization show impressive potential over
auto-encoder, GAN [2, 52], and other learning-based archi-
tectures. The image steganography composed of concealing
and revealing process can be considered as a pair of inverse
problems. Thus flow-based INN is naturally suitable for this
task. Besides, multiple secret images can be easily hidden
into one container by increasing the number of channels of
INN branches. That incredibly improves steganography ca-
pacity and makes ISN [35] the state-of-the-art image hiding
technique in the literature.

Since the earlier image steganography works stress ca-
pacity and invisibility rather than robustness and ignores
the noise and compression interference in practice, they
are usually sensitive to the interference during the media
spread of container. Due to the dependence on inherent in-
vertible bijective transformation property, flows tend to be
more vulnerable to intermediate distortion [27, 31, 41]. In
Fig. 1, we take the state-off-the-art ISN [35] for example.
Once a slight noise or lossy compression is implemented on
the container, the secret revealed is barely recognizable and
also the host image at the receiver end. Even if the network
is specifically finetuned against pre-defined noise or JPEG
compression level, the reconstruction quality and general-
ization are still limited.

In this paper, we design a conditional flow-based frame-
work, dubbed as Robust Invertible Image Steganography
(RIIS), to alleviate the distortion influence and improve ro-
bustness. Inspired by conditional normalizing flow, we si-
multaneously model container image distribution and dis-
posable high-frequency information to keep valuable secret
information implicitly. As the flow model is bijective, our
corresponding enhancement module and optimization strat-
egy handle irreversible processes like channel reduction and
quantization. The main contributions are listed as follows:

• To solve the substantial performance drop under distor-
tion in former learning-based steganography methods,
we proposed a general and robust framework RIIS for
image steganography under diverse distortion (Gaus-
sian noise, Poisson noise, and JPEG compression).

• We introduce the conditional flow into the steganogra-
phy framework by regulating the high-frequency dis-
tribution conditional on the container image to implic-
itly preserve essential information for the revealing.

• We propose a distortion-guided modulation (DGM)
over flow-based blocks to modulate the parameters for
different distortion levels. The modulation makes it a
general, controllable model for various types and dis-
tortion levels, with just one copy of parameters.

• Whether in a lossless or a distorted environment, abun-
dant experiments demonstrate the superior robustness
of our proposed RIIS while maintaining the impercep-
tibility and capacity of steganography. The robustness
of RIIS has been proved successful in broader applica-
tions like real-world steganography, face-swap detec-
tion, and grayscale colorization.

2. Related Work
Image Steganography. Unlike cryptography, Steganogra-
phy is designed to hide secret data into a host to produce
an information container. As for the image steganography
task, the host image acts as the cover of the secret image,
which is confidential. The hiding network first hides the
secret into the host image to produce a container. Next, the
container image can be restored to secret and host image by
the revealing network at the receiver end.

Traditionally, spatial-based [25, 37, 40, 44] methods ul-
tilize the Least Significant Bits (LSB), pixel value differ-
encing (PVD) [40], histogram shifting [48], multiplebit-
planes [37] and palettes [25, 39] to hide images. They
usaually arise statistical suspicion and vulnerable to ste-
ganalysis methods. Adaptive methods [32, 43] decomposed
the steganography into embedding distortion minimization
and data coding, which is indistinguishable by apperance
but limited in capacity. Various transform-based schemes
[12, 29] including JSteg [44] and DCT steganography [22]
also fail to offer high payload capacity.

Various deep learning-based schemes have been pro-
duced to solve image steganography recently. Generative
adversarial networks (GANs) [45] are introduced to syn-
thesize container images. Probability map methods focus
on generating various cost functions satisfying minimal-
distortion embedding [43, 47]. [51] proposed a genera-
tor with U-Net architecture. [46] presents an adversar-
ial scheme under the distortion minimization framework.
Three-player game methods like SteganoGAN [56] and
HiDDeN [59] learn information embedding and recovery by
auto-encoder architecture to adversarially resist steganaly-
sis. Deep Steganography [8] involved a fully convolutional
network consisting of preparation, hiding, and revealing
parts. The previous schemes reveal the potential of image
steganography in digital communication, copyright protec-
tion, information certification, e-commerce, and many other
practical fields [13].
Normalizing Flow-based Model. Normalizing flow [18,
19, 30] is a kind of powerful generative model with the ad-
vantage of straightforward calculation of likelihood. They
are designed to learn a bijective mapping between the in-
put domain and the target domain. The invertible neural
network (INN), which involves the forward and backpropa-
gation operations in the same network, is taken as the back-
bone of normalizing flow. Pioneering researches such as

7876



Host

z

Flow-based 
Block (Forward)

Fl
o

w
-b

as
e

d
 B

lo
ck

 (
Fo

rw
ar

d
)

Container

Secret

A
ct

n
o

rm

Distorted Container

Feature 
Enhancement 

Module
Revealed  Host 

Revealed Secret

1
×

1
 C

o
n

v

A
ff

in
e 

C
o

u
p

li
n

g

C
o

n
d

it
io

n
al

A
ff

in
e 

C
o

u
p

li
n

g

A
ff

in
e 

In
je

ct
o

r

1
×

1
 C

o
n

v

Feature Extractor

…

…

High Frequency

Flo
w

-b
ase

d
 B

lo
ck (B

ackw
ard

)
…

…

…

C
A

N
P

 (
Fo

rw
ar

d
)

Content Aware Noise 
Projection (Forward)

A
ct

n
o

rm

…

Feature Extractor

C
A

N
P

 (B
ackw

ard
)

Enhanced Container

CANP
(Backward)

Flow-based 
Block

(Backward)

High Frequency

Gaussian
Noise

Poisson
Noise

JPEG 
Compression

RIIS Hiding Network RIIS Revealing NetworkDistortion

Figure 2. Overview of our proposed RIIS stegenography framework. The flow-based invertible blocks map the input pair [xs,xh] into
high frequency hf and container image y. The CANP project hf to Gaussian-like noise z under the condition feature extracted from y.
Only y is transmitted by internet media and then receiver will get the distorted container image ỹ. Conversely, restored ĥf along with
enhanced container ŷ are taken into the reversed backward flow-based blocks, which is the same as the forward pass in parameters. Finally
we get the revealed secret and host images [x̂s, x̂h].

NICE [18] and RealNVP [19] mainly stress on the genera-
tion ability of flow-based model. In [20], a further expla-
nation for the invertibility is explored. An unbiased flow-
based generative model is introduced in [14]. Besides, glow
[30] and i-RevNet [26] further improve coupling layers for
density estimation achieving better generation results.

The theory of flow has recently attracted widespread at-
tention in image processing, especially in low-level prob-
lems. Flow models have been proved to share the advan-
tages in estimating the posterior of an inverse problem [6].
Recent flow-based models [3,23,34,38] are capable of han-
dling the image hiding and restoration problems. Due to
the powerful representation ability, normalizing flow is also
exploited in various inference tasks such as image rescal-
ing [50], compression [53] and video super-resolution [60].

Although the existing steganography methods perform
well in given application domains, they are not robust
against distortion [6, 24]. There are also marvelous works
about deblocking [54, 57] and denoising [16, 36]. How-
ever, it is impractical to apply these off-the-shelf meth-
ods into steganography tasks directly. The latest steganog-
raphy method ISN [35] takes advantage of normalizing
flow to perform probabilistic bijective construction for the
steganography task. ISN [35] utilizes a single invertible net-
work to hide and reveal images efficiently. HiNet [28] keeps
almost the same architecture as ISN [35] despite the discrete
wavelet transformation (DWT) channel squeezing. Flow-
based methods [28, 35] show superiority over traditional
schemes but severely rely on the reversibility of the frame-
work. Since most steganography methods ignore the in-
termediate distortion, a subtle interference on the container
usually causes a considerable drop in performance. Simply
introducing distortion or simulation into model training can
only handle a limited range of distortion and fail to produce
satisfactory restoration and generalization.

3. Method

3.1. Overview

The major target of RIIS is to design a general and robust
framework for image steganography under diverse distor-
tion. It hides several secret images xs into one informative
container image y, which is resistant to image distortion.
For training stabilization, our framework directly learns the
bijective mapping between secret images xs, host image xh

and container image y instead of explicitly modeling the
distribution of inner latent. We mark the input as x, com-
posed of host xh and secret image xs. The container image
is capable of covering multiple images in it while keeping
the appearance identical to the host image xh. Our robust
model enables the receiver to restore revealed host x̂h and
secret images x̂s from the distorted container image ỹ.

3.2. Flow-based Invertible Block

The flow-based network is naturally and intuitively suit-
able for the image steganography task because of its re-
versibility. The hiding and revealing procedure are ideally
invertible with shared parameters and should be treated as
the forward and backward processes of normalizing flow to
enable end-to-end optimization. There are two main charac-
teristics of the normalizing-flow model: the log-determinant
of inference function fθ (·) is simple to compute; the corre-
sponding inverse function f−1

θ (·) is tractable to solve.
In Fig. 2, we build up invertible blocks based on IRN

[50]. For a input variable (e.g., an image) x=[xs,xh]
with distribution x∼p(x) and a output variable [hf ,y] with
simple tractable distribution [hf ,y]∼p([hf ,y]), flow mod-
els perform a bijective projection fθ: [hf ,y]=fθ([xs,xh]).
Conversely, x can be recovered from [hf ,y] by the in-
verse mapping [xs,xh] = f−1

θ ([hf ,y]). The input and
output size of normalizing flow are exactly identical. fθ
is composed of a series of invertible flow blocks: fθ =
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Figure 3. The distortion-guided modulation (DGM) over flow-
based invertible blocks. The basic flow block is composed of act-
norm, 1× 1 conv, and affine coupling layer. ϕbi, ϕsc, ψbi and ψsc

are built up with denseblocks to produce the affine-transformation
factors (bias or scale). The CRes module takes the noise level σ or
JPEG QF as an input condition feature to modulate the factors.

f1θ ◦ f2θ ◦ · · · ◦ fNθ . Concretely, block fkθ for k ∈ {1, ..., N}
is composed of 1 × 1 convolution permuting, activation-
normalization layer and affine coupling layer. The interme-
diate variables are defined as uk = fkθ (u

k−1), where u0

represents x and uN is output [hf ,y].
In Fig. 3, uk is split into uk

A and uk
B in the k-th block.

Then, they will pass through affine couplings where ϕ and ψ
constructed by denseblocks with ReLU activation that pro-
duce the scaling and bias on the uk:

uk+1
A = exp

(
ϕsc

(
uk
B

))
⊙ uk

A+ϕbi
(
uk
B

)
,

uk+1
B = exp

(
ψsc

(
uk+1
A

))
⊙ uk

B + ψbi

(
uk+1
A

)
.

(1)

Obviously, the above affine coupling layer is mathemat-
ically invertible and has a triangular Jacobian matrix whose
log-determinant is tractable to compute.

3.3. Content-Aware Noise Projection (CANP)

Earlier normalizing-flows always transform input into a
target image and Gaussian noise distribution. However, due
to the limited network depth and mapping ability of flow
models, the direct target output of Gaussian distribution
may lead to unsatisfactory results.

Inspired by the conditional flow [33], the high-frequency
output hf is assumed to rely on the container y. Once
trained, the forward process will squeeze the input host and
secret images pair [xs,xh] and transform it to container im-
age y and high-frequency hf as p(x|xh) ↔ p(y,hf |xh). y
is constrained to approach host image xh while containing
information from xs. For the tacitness, the model is aimed
to generate exactly the same container y as the input host
image xh. The relation is presented as a Dirac delta func-
tion δ(xh − y) in Eq. (2):

p(y|xh)p(hf |y,xh) = δ(xh − y)p(hf |y)
= lim

Σ→0
N (y|xh,Σ)p(hf |y),

(2)
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Figure 4. Network architecture of the Content-Aware Noise
Projection module based on conditional flow block. It maps the
high-frequency input part hf to Gaussian distribution constrained
z with the conditional feature extracted from containing y.

p(x|xh) ↔ lim
Σ→0

N (y|xh,Σ)N (z|0, I), (3)

where the limit of Gaussian distribution is ultilized to model
Dirac function. Σ is a covariance matrix where all diagonal
elements are approximately zero. In this conditional flow,
the dependent relation between high-frequency component
hf and container image y is deconstructed by the cascaded
conditional mapping. Thus, p(hf |y) is modeled as a Gaus-
sian distribution p(z) ∼ N (z|0, I) in Eq. (3).

This process is dubbed as content-aware noise projec-
tion(CANP) where hf is projected to z with the conditional
feature from y. During the forward direction, CANP can
transform the input image pair [xs,xh] into container im-
age y and nearly Gaussain-random variable z. Given the
container y and random samples z̃ from N (0, I), the bi-
jective RIIS can generate [x̂s, x̂h] in the backward pass. In
Fig. 4, we build the CANP based on the conditional affine
coupling that is powerful and still invertible. A branch of
input dataflow uk

B is merged with conditional features G(y)
extracted from container image y and then be taken as the
input of ϕ. Since there is permutation operation such as 1×1
convolution at the start of each flow block, the information
in uA and uB are both affected by G(y) as:

uk+1
A = exp

(
ϕsc

(
uk
B ;G(y)

))
⊙uk

A+ϕbi
(
uk
B ;G(y)

)
uk+1
B = exp

(
ψsc

(
uk+1
A

))
⊙uk

B + ψbi

(
uk+1
A

)
.

(4)

3.4. Container Enhancement Module (CEM)

A Container Enhancement Module (CEM) is utilized as
the pre-processing module at the receiver end to eliminate
the influence of image distortion like JPEG. In Fig. 2, We
take a compromised step by integrating the CEM in the RIIS
revealing network. The Batch-Normalization layer in the
DnCNN [55] is removed for a lighter and suitable structure.
Ahead of the flow blocks in the revealing network, the dis-
torted image is firstly pre-processed by a simplified DnCNN
network for denoising and JPEG deblocking. Given the dis-
tortion pattern, the CEM will process the container image
to achieve a cleaner input for flow blocks.
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3.5. End-to-End Optimization Strategy

Two-Stage Decoupled Tuning of Flow. To make the flow
model adaptive to the distortion on the container image, we
involve the decoupled training scheme into the latter half of
our training process. In a flow-based model, inference for-
ward and reverse passes are theoretically symmetrical and
equal in parameters. However, there exist irreversible op-
erations such as quantization in codecs, noise interference,
and CEM network. These changes on intermediate con-
tainer images require adjustment of the flow-based model.
To a certain extent, the forward and backward parameters
are proposed to be incompletely equal during the latter half
stage of model training. The relaxation of parameters brings
variance into the forward and backward passes. This strat-
egy is named as Two-Stage Decoupled Tuning (2DT).
Loss Functions. It is required that the revealed host x̂h

and secret images x̂s should be as close as possible to the
input host xh and secret xs. Here we employ the term Lrev

to minimize the average distance among each pair of the
restored and original images. The Container Enhancement
Module (CEM) is meant to reconstruct clean container y,
from the distorted one ỹ to restored ŷ with the term LCEM :

Lrev = ||xs − x̂s||2 + ||xh − x̂h||2. (5)
LCEM = ||y − ỹ||2. (6)
Ldistr = ℓCE(p(z),N (0, I)). (7)
Lcon = ||xh − y||2 + ||FFT(xh)− FFT(y)||2. (8)

Concretely, since the distribution can be tractably de-
picted in flow-based models, CANP encourages the p(z)
to be independent from p(hf ) and p(y) and approximate to
Gaussian distribution by distribution loss Ldistr in Eq. (7).
We depict the distribution distance by cross-entropy (CE)
on z. In order to guide the container image y to be approx-
imately identical to the host image xh both in spatial and
frequency domain, we further apply fast fourier transform
(FFT) [10] to extract frequency component in Eq. (8).

In summary, The total loss function in Eq. (9) consid-
ers the following four components: embedded image re-
vealing, container invisibility, distortion enhancement, and
noise distribution distance:
Ltotal = λ1Lrev + λ2Lcon + λ3LCEM + λ4Ldistr, (9)

JPEG Simulation. The tolerance against JPEG compres-
sion is an essential concern in RIIS. JPEG pipeline con-
sists of four main steps: color space transformation, dis-
crete cosine transformation (DCT), quantization, and en-
tropy encoding [42]. In fact, quantization is a lossy and non-
differentiable step in JPEG compression. Thus, JPEG is not
suitable for direct end-to-end optimization. To enable train-
ing over JPEG operations, a differentiable simulator module
for JPEG compression is introduced in RIIS by replacing
the quantization with fourier transformations(FT) [10].

Figure 5. Visual results of ablation study on CEM and CANP.
Container images here are distorted by the Gaussian noise (σ =
10). It reveals that the participation of CEM enhances the recon-
struction and the CANP evidently adjusts the distribution.

3.6. Distortion-Guided Modulation (DGM)

It is not practical to train a specific network for every
type and level of distortion. For general image steganogra-
phy, we should make the RIIS parameter controllable with
the strength of distortion. Here we propose a distortion-
guided modulation (DGM) to control the affine coupling
layer to handle container images corrupted with Gaussian
noise or JPEG compression artifact. Concretely, given the
distortion level (σ for the Gaussian noise and QF for the
JPEG compression), the parameters in the DGM module
will change with the distortion level through the affine trans-
formation.

In Fig. 3, our DGM is constructed by deploying
CResMD [21] into the affine coupling layer. Specifically,
given the noise level or quality factor, the condition net-
work produces the weight α to modulate the features by
multiplying. The condition network is composed of several
fully-connection layers. In this way, our method can han-
dle various distortion levels by a single model. The unified
framework built up with DGM is marked as RIIS*.

4. Experimental Results

4.1. Implementation and Setup Details

Our proposed framework RIIS successfully maintains
the payload capacity by hiding multiple images in one con-
tainer image. RIIS is implemented with the NVIDIA Tesla
V100 GPU for acceleration. We implement the Adam op-
timizer with β1 = 0.9 and β2 = 0.99. The learning rate is
set to be 0.0001, and the batch size is set to be 16 for train-
ing. The dataset for training and testing is DIV2K [4], if
not specified. For the loss, the corresponding weight factors
are λ1 = 1, λ2 = 16, λ3 = 1 and λ4 = 0.5. The PSNR
(Peak Signal to Noise Ratio) metric is utilized to evaluate
the performance.
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Table 1. Ablation studies for every model design, including 2DT, CANP and CEM in RIIS under various distortion. The results are
evaluated on the pair of revealed secret and original secret images, by PSNR metric. It proves that all the modules make sense in our robust
framework, among which the CANP is the most indispensable.

2DT CANP CEM Gaussian σ = 10 Poisson Noise JPEG Q=40 JPEG Q=80 JPEG Q=90 Clean
× ✓ ✓ 27.61 27.42 26.77 27.55 27.88 42.91
✓ × ✓ 27.38 27.35 26.40 27.28 27.72 42.74
✓ ✓ × 27.82 27.62 26.64 27.46 27.96 43.21
✓ ✓ ✓ 28.08 28.01 27.32 28.25 28.71 44.19

Table 2. The reveal secret image PSNR of different schemes to
producing hf input during the backward pass. The experiments are
evaluated under noise σ = 10 to hide one secret into a container
image. The CANP is proved to be the best mapping of hf .

hf Source z̃ ∼
N (0, I)

Copy
from y

Resblock
from y

CANP from
z̃ (Ours)

Secret 42.53 43.18 43.56 44.19

Figure 6. Visual results of ablation study on DGM. It reveals
that the parameters in the unified framework RIIS* are efficiently
modulated by DGM, evidently better than RIIS-Blind.

4.2. Ablation Study

Effect of CANP. When we assume the high-frequency com-
ponent hf is independent with the container image y and
like IRN [50], the performance remains limited as it fails
to keep an informative prior for image steganography. Ex-
periments in Tab. 2 show that relating hf with the container
image y as conditional prior effectively improves reveal-
ing quality. The simplest modulation of backward input hf

is the copy of container image y, which does not contain
any useful information for revealing except for y. We also
implement a residual block to extract feature from the con-
tainer y as input to produce hf . The performance growth
from these two simple types of modulation over hf proves
the effectiveness of condition input from container y.

The CANP is proposed due to the discovery that the
high-frequency component hf is highly dependent on the
container (low-frequency component y). Tab. 1 and Fig. 5
show that the conditional mechanism CANP efficiently
models the relation between high-frequency hf and low-
frequency components y. Though half the forward output
y is evacuated, the high-frequency part of the input image
pair is implictly stored. When the Gaussian sampling z̃ is
mapped into ĥf with the condition of y in CANP, we get a

Figure 7. The capacity performance for hiding multiple or sin-
gle secret images into one container under distortion on Im-
ageNet [17] (1000 random samples). With the increse of secret
number, The reconstruction quality drops but still maintains ac-
ceptable fidelity.

approximate reconstruction ĥf of original signal.
Effect of 2DT. We involve two-stage decoupled tunning
into the flow-based model to adapt it against distortion and
irreversible operations. According to our experimental re-
sult in Tab. 1, the decoupling evidently improves the recon-
struction performance. After end-to-end training, our de-
coupled model learns to mitigate the loss of quantization
and noise interference.
Effect of CEM. The CEM employs the DnCNN-like net-
work to perform pre-processing over the distorted container
image ỹ to eliminate the effect of distortion. Results in
Tab. 1 and Fig. 5 show that the participation of CEM plays
an indispensable role in the total robust steganography.

4.3. Comparison with SOTA

In the image steganography task, the most common con-
cern is the fidelity of two pairs: revealed secret x̂s and ori-
gin xs, container y and host image xh. For the comparison
with the latest method, we reproduce the State-of-the-art
ISN [35] and reach the performance itself claimed on the
DIV2K [5].
Container Image under distortion. Our model mainly fo-
cuses on the image steganography with the container im-
age under various distortion. In Fig. 8, even under slight
interference on container image, the secret restoration of
HiNet [28] witnesses a substantial drop in performance. It
shows that the previous methods ignorant of distortion are
vulnerable and fragile, limiting their application in practice.
Since the performance of the original ISN model ignorant
of distortion [35] is too poor, we finetuned the ISN network
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Figure 8. Visual comparison of latest HiNet [28], finetuned ISN+ [35] and our RIIS under the same JPEG QF=90 (blue border) or
Gaussian noise σ = 10 (green border). Under both distortion, the left-most column shows the failure of the latest HiNet [28], especially
the revealed secret image. The reconstruction quality of our RIIS shows substantial superiority compared with the latest ISN+ [35].

Figure 9. The PSNR curves with different Gaussian noise σ
and JPEG QF in our experiment settings. RIIS* with distortion-
guided (DGM) modulation achieves a subtle performance gap with
RIIS and only requires one controllable network for all distortion.
The improvement from RIIS-Blind to RIIS* proves that the DGM
successfully adjust RIIS for different distortion levels.

separately for every distortion level in our experiment set-
tings as the baseline. In contrast to the original ISN model,
we name the finetuned ISN as ISN+. The ISN+ is also fine-
tuned for every specific noise or compression level, but it
still fails to offer satisfactory performance. Despite the va-
riety of colors and structures of the images, RIIS can restore
them with no viewable artifacts. The performance of hiding
images with the container image stained by noise or JPEG
compression is shown in Tab. 3. The results reveal that our
proposed method RIIS successfully maintains higher recon-
struction quality compared with the latest methods.

To prove the payload capacity of our method, we in-
crease the channel of RIIS for hiding multiple secret images
into one container. Fig. 7 shows the model performance for
hiding single or multiple secret images into one container
under different distortion. Since RIIS is the first model to
hide multiple images under distortion, no other previous

Table 3. Comparison of secret image restoration quality when con-
tainer image is under diverse distortion. Our RIIS is the highest
under every distortion. The unified model RIIS* also shows evi-
dent performance superiority compared with previous methods.

Method Gaussian Noise Poisson JPEG
σ = 10 σ = 1 Noise QF=40 QF=90

HiNet [28] 9.98 26.93 21.23 11.52 12.59
ISN [35] 8.55 25.19 19.38 10.11 11.25
ISN+ [35] 27.12 28.98 26.71 26.25 27.48
RIIS* 28.03 30.01 27.23 27.18 28.44
RIIS 28.22 30.32 27.47 27.32 28.71

method is available for comparison.
Discussion on unified RIIS* with DGM. We introduce
distortion-guided modulation (DGM) to make network pa-
rameters vary with different distortion levels. The unified
framework for all distortion built up with DGM is marked as
RIIS*. DGM allows RIIS to handle all the distortion levels
with the shared base parameters. We also evaluate the RIIS-
Blind model without DGM as the baseline, also trained un-
der random types and levels of distortion. In Fig. 9, there is
only a subtle gap between the unified RIIS* with DGM and
separately tuned RIIS. In terms of the unified network for all
distortion, the DGM gains substantial performance growth
compared with RIIS-Blind in Fig. 6. The DGM scheme
makes RIIS the first general steganography framework ap-
plicable under various distortions in practice.
Container Image without distortion. Comparison tests
with the latest steganography methods [28, 35] with clean
container images are conducted here. The results for hiding
1 or 5 secret images into a container image are numerically
compared in Tab. 4. Our method shows superior perfor-
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Table 4. Steganography performance comparison for hiding 5 or
1 secret images in a container on ImageNet [17]. Our RIIS shows
the best performance under both circumstances.

Method Multi Secrets Single Secret
Container Secret Container Secret

AutoEncoder [49] 32.35 31.21 - -
ISN [35] 33.77 36.02 42.53 43.58
IICNet [15] 35.64 37.94 - -
HiNet [28] - - 44.16 46.48
RIIS 35.92 38.13 43.97 46.71

Figure 10. Real-world steganography to take photo as con-
tainer. The right-most QR-code is the example of the secret re-
vealed from the container photo, which can still be scanned out. It
can be used for hiding messages on the screen or presswork.

Figure 11. Process of and face-swap detection. The public wa-
termark image is hidden into the container image by RIIS to pro-
tect a series of images. When a face-swap is deployed on the
container, the revealed watermark will mismatch with the public-
distributed watermark copy, which helps to locate manipulation.

mance compared with the latest methods when there is no
distortion on the container image. As the HiNet [28] ignores
multiple images steganography, it is not listed. The average
PSNR for our restoration of images is evidently higher than
IICNet [15], HiNet [28] and ISN [35]. The results show that
our method achieves better performance even when hiding
5 images into one container, demonstrating the superior ca-
pacity and generality of our method.

4.4. Applications Derived from Robustness

Hiding secret in the real world. If we put the container im-
age on display or print it on paper and capture it by a CMOS
sensor, it suffers from transformation, sensor noise, motion
blur, etc. In Fig. 10, our method can even reveal the secret
from photos due to incredible robustness. This would im-
plicitly bridge the cyberspace and real-world vision, which
is potential in the construction of the meta-verse industry. It
also makes sense in the protection of copyright and integrity
of digital assets and artworks.

GT color GrayScale IDN [58] RIIS

Figure 12. Visual comparison of RIIS and IDN [58] with
grayscale image as container, under JPEG compression QF =
80. Notice the areas like sky and wall, the compression signifi-
cantly harms the restored color image by IDN [58]. In contrast,
the image produced by RIIS remains vivid color and fidelity due
to reliable robustness.

Face-Swap Detection. Fig. 11 demonstrates our scheme of
face-swap detection. On receiving the attacked version of
the protected image produced by the RIIS hiding network,
the watermark will be extracted, and the feature matching
operation [9] is conducted between the original and revealed
watermark to determine where the manipulation is. Due to
the robustness of RIIS, the detection is effective and accu-
rate under compression. We also extend our work to detect
stretching and trimming.

Invertible Colorization. Since our framework can effi-
ciently embed multiple images into a single container im-
age, the YUV-channel color image can be embeded into a
single grayscale channel in the same way. In the backward
pass, RIIS reconstructs the color image from the grayscale
container. Previous flow-based SOTA colorization method
IDN [58] highly relies on the distribution of the synthetic
grayscale. IDN also declares it still suffers from the JPEG
compression on grayscale container images. Fig. 12 shows
our superiority under the usual lossy compression situation.
Our robustness against distortion addresses the application
problem of image colorization in practice.

5. Conclusion and Discussion

The image steganography tasks are challenging when a
great capacity of secret images need to be hidden in a lim-
ited size of a container image, especially under noise or
JPEG interference. In this paper, we present a general and
novel robust invertible image steganography (RIIS) frame-
work, where the proposed CANP and CEM module, along
with a well-designed training strategy are leveraged to pre-
vent the container image during steganography from distor-
tion such as Poisson noise, Gaussian noise, and JPEG com-
pression. Experiments prove that our model design guar-
antees us the highest performance. The improvement of
steganography robustness significantly broadens the appli-
cation of information steganography in real-world applica-
tions. The efficiency of our model design is also proved on
other low-level inverse problems like decolorization. Our
future work will support RIIS on MindSpore [1], which is a
new deep learning computing framework.
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