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Abstract

We study joint video and language (VL) pre-training to
enable cross-modality learning and benefit plentiful down-
stream VL tasks. Existing works either extract low-quality
video features or learn limited text embedding, while ne-
glecting that high-resolution videos and diversified se-
mantics can significantly improve cross-modality learn-
ing. In this paper, we propose a novel High-resolution
and Diversified VIdeo-LAnguage pre-training model (HD-
VILA) for many visual tasks. In particular, we collect a
large dataset with two distinct properties: 1) the first high-
resolution dataset including 371.5k hours of 720p videos,
and 2) the most diversified dataset covering 15 popular
YouTube categories. To enable VL pre-training, we jointly
optimize the HD-VILA model by a hybrid Transformer
that learns rich spatiotemporal features, and a multimodal
Transformer that enforces interactions of the learned video
features with diversified texts. Our pre-training model
achieves new state-of-the-art results in 10 VL understand-
ing tasks and 2 more novel text-to-visual generation tasks.
For example, we outperform SOTA models with relative
increases of 40.4% R@1 in zero-shot MSR-VTT text-to-
video retrieval task, and 55.4% in high-resolution dataset
LSMDC. The learned VL embedding is also effective in gen-
erating visually pleasing and semantically relevant results
in text-to-visual editing and super-resolution tasks.

1. Introduction

Recent years we have witnessed an increasing number
of videos with the popularity of appealing video websites
and mobile apps (e.g., YouTube, TikTok). As the rapid de-
velopment of smartphone cameras, device storage, and 5G

*Equal contribution in alphabetical order. This work was performed
when Hongwei Xue, Tiankai Hang, Yanhong Zeng and Yuchong Sun were
visiting Microsoft Research Asia as research interns. Corresponding au-
thors: Bei Liu, Huan Yang, Jianlong Fu.

networks, high-quality video creation, and diverse content
sharing like travel, sports, and music become a new fash-
ion. Therefore, the capability of video analytic and joint
high-level understanding with language play a key role in
many video tasks, such as video search [3,39], video recom-
mendation [6], and video editing [38,48]. To facilitate video
understanding, we study joint video and language (VL) pre-
training, which is a new paradigm in both natural language
processing [8] and computer vision [19, 52].

Existing video-language understanding models are
highly limited in either scale or scope of video-language
datasets. Early datasets (e.g., MSR-VTT [53], DiDeMo [2])
consist of videos and descriptions that are manually anno-
tated by humans. The heavy and expensive annotation cost
limits the scale of data. Moreover, datasets with only de-
scriptive sentences are limited in complexity and variability
that largely hinders generalization power. Recently, several
datasets [3, 37] are proposed by transcriptions along with
videos using ASR (automatic speech recognition), so that
the data scale can be greatly enlarged. One most represen-
tative work is HowTo100M [37] which consists of million-
scale instructional videos. However, there are still large
gaps between these video datasets and real-scenario videos
in terms of video quality and semantic diversity.

To tackle the above limitations, we propose the HD-
VILA-100M dataset (i.e., High-resolution and Diversified
VIdeo and LAnguage) which covers a wide range of video
categories and benefits a plenty of VL tasks, such as text-
to-video retrieval [39] and video QA [27]. This dataset has
the following key properties: (1) Large: we have collected
one of the largest video-language datasets, which consists of
100M video clip and sentence pairs from 3.3 million videos
with 371.5K hours in total (2.8× video hour and 8× av-
erage sentence length than HowTo100M [37]). (2) High
resolution: all the videos are 720p which is much higher
quality than existing datasets that are mostly 240p or 360p.
(3) Diverse and balanced: we cover a wide range of topics
from the YouTube, with 15 popular categories (e.g., sports,
music, autos). Meanwhile, we ensure a balanced video clip
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Applying the powder with a stippling motion instead of 

a sweeping motion, because I do not want to disturb 

my foundation brushes.

Keep half an inch allowance with filler draw a smaller 

heart on the pattern fabric. Cut it out to make the heart 

sides identical. Fold it in half and trim.

Some of you guys have seen the things I have in here 

are my husky collection and my stuffed animals.

Mexican food is all around us. In Los Angeles, there 

are Taco stands on every corner.

A little slapstick comedy watch. Josh Donaldson hits a 

foul ball to the first base side and AJ Read knocks over 

a police officer.

The gauntlet allows the wearer to wield all of the stones 

powers at once with one snap of his fingers.

Figure 1. Examples of video clips and ASR generated transcriptions in the proposed HD-VILA-100M dataset. We present six samples
(four frames for each), with diverse video categories covering HowTo & Style, People & Blog, Sports, Travel & Event, Pets & Animals,
Film & Animation. Relevant words from auto-generated video transcriptions are manually highlighted in red. [Best viewed in Color]

number in each category to ease underfit problem.
To enable video-language pre-training, effective video

representation is essential. Due to computational limita-
tions (e.g., memory), previous works either 1) adopt simple
frame-based encoders and turn to end-to-end visual encod-
ing and multimodal fusion [27], or 2) choose advanced spa-
tiotemporal encoders [5, 49], while having to do visual en-
coding and multimodal fusion step-by-step. Few works can
learn joint spatiotemporal video representation with end-to-
end video-language pre-training.

In this paper, we propose to utilize hybrid image se-
quence that consists of few high-resolution (HR) frames
and more low-resolution (LR) neighbor frames for multi-
ple video learning tasks. Such a design enables end-to-end
training with high-resolution spatiotemporal video repre-
sentation. To achieve this goal, we tackle two questions:
(1) Which HR and LR frames should be sampled? (2) How
to learn spatiotemporal features with the hybrid image se-
quences? For the first problem, we randomly sample HR
frames from a video clip to ensure the robustness of learned
video features. LR frames are uniformly sampled from its
surroundings considering that neighboring frames contain
similar spatial information and are critical to temporal fea-
ture learning. Second, we propose to encode HR and LR
frames separately while mapping HR feature to a joint em-
bedding space with LR features by a hybrid Transformer.
Such design ensures the spatiotemporal representation of
videos to cover both HR and LR frames in a learnable way.
The learned spatiotemporal feature is further combined with
detailed spatial features, followed by a multimodal Trans-
former that learns to optimize video and language embed-
ding in an end-to-end manner.

Our contributions are summarized as follows: 1) We use
automatic video transcriptions to build to-date the largest
high-resolution and diversified video-language dataset; 2)
We propose a novel pre-training framework to learn spa-
tiotemporal information for video representation from hy-
brid image sequences that consist of HR and LR frames;
3) Extensive experiments verify the effectiveness of the
learned cross-modality embedding in 10 video understand-
ing and 2 text-to-visual generation tasks. The dataset,
model and code are released 1.

2. Related Work
Video Representation Video representation are typically
designed with 2D/3D CNNs [5,46,49] or Transformers [4].
Pioneering works of VL pre-training [39, 44, 63] adopt pre-
extracted video features (e.g., S3D [60], I3D [5]) for video
representation. While in image-language pre-training, re-
searchers find that end-to-end training will decrease the do-
main gap of visual representation and improve the general-
ization for image-text tasks [19]. While for video represen-
tation, it is too heavy to make the video-based encoder (e.g.,
S3D, I3D, ResNet [17], SlowFast [11]) trainable. Thus,
some works [27, 57] utilize the image-based encoder (e.g.,
ResNet [17], ViT [9]) with a sparse sampling mechanism to
make the visual encoder trainable. In this paper, we explore
how to make a video encoder trainable in consideration of
both spatial and temporal features.

Video-Language Pre-Training Vision and language pre-
training has attracted extensive attention in very recent

1https://github.com/microsoft/XPretrain/tree/
main/hd-vila
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Dataset Domain #Video clips #Sentence Avg len(sec) Sent len Duration(h) Resolution
MSR-VTT [53] open 10K 200K 15.0 9.3 40 240p
DideMo [2] Flickr 27K 41K 6.9 8.0 87 -
LSMDC [41] movie 118K 118K 4.8 7.0 158 1080p
YouCook II [62] cooking 14K 14K 19.6 8.8 176 -
How2 [43] instructional 80K 80K 90.0 20.0 2K -
ActivityNet Caption [25] action 100K 100K 36.0 13.5 849 -
WebVid-2M [3] open 2.5M 2.5M 18.0 12.0 13K 360p
HowTo100M [37] instructional 136M 136M 3.6 4.0 134.5K 240p
HD-VILA-100M (Ours) open 103M 103M 13.4 32.5 371.5K 720p

Table 1. Statistics of HD-VILA-100M and its comparison with existing video-language datasets.

years. Aligned with the success of image-language pre-
training [19, 20, 54] and applications [7, 12–14, 18, 30],
video-language pre-training is showing more and more
promising potentials [27, 29, 39, 44, 45, 63]. Among them,
some works concentrate on specific type of downstream
tasks such as video-text retrieval [3, 52] and video ques-
tion answering [57]. In this paper, we explore to pre-train
a generalized model on diversified and large-scale data to
adapt to different video-language tasks. Video-language
pre-training tasks can be mainly categorized into two types:
reconstructive, contrastive. Reconstructive methods [29,44,
45,63] usually adopt an early fusion architecture and aim to
reconstruct a masked part in the visual or textual domain.
Typical pre-training tasks are masked language modeling
(MLM), masked frame modeling (MFM), frame order mod-
eling (FOM). Contrastive methods [35, 57] are inspired by
contrastive learning and target to learn video-text matching.
In this paper, we combine these two types of objectives for
the final target.

3. Dataset
To facilitate the multimodal representation learning, we

collect HD-VILA-100M, a large-scale, high-resolution, and
diversified video-language dataset.

3.1. Video Collection
We choose YouTube as the video resource since it cov-

ers diverse categories of videos uploaded by different users,
ranging from documentary films by professional TV chan-
nels to everyday vlogs by ordinary users. To cover more
topics, we start from several official topics of YouTube
videos. To ensure the high quality of videos as well as bet-
ter alignment of video and transcription, we search on the
YouTube website and a video analysis website 2 to find pop-
ular YouTube channels, such as BBC Earth, National Geog-
raphy, etc. Videos in these channels and videos appeared in
YouTube-8M [1] and YT-Temporal-180M [57] make up a
list of 14 million videos. We only keep videos with subtitles
and 720p resolution. We then limit the time length of each
category to 30K hours to avoid long tail. We only download
videos with English transcripts. Finally, we obtain 3.3 mil-

2https://socialblade.com/youtube/

Figure 2. The distribution of categories in HD-VILA-100M
dataset: (a) video, (b) video clip. [Best viewed in Color]

lion videos in total with high-quality and distributed in 15
categories in balance (as in Figure 2).

3.2. Video Clip Selection and Text Processing
To effectively generate video-text pairs, we use tran-

scriptions along with the videos as the language in HD-
VILA-100M. Different from traditional video-language
datasets [2, 53] that use manual annotated descriptions for
videos, transcriptions are available in large quantities and
involve richer information. However, many subtitles in
YouTube videos are generated by ASR and are usually frag-
mentary and lacking punctuation. To split the subtitles for
complete sentences, we utilize an off-the-shelf tool 3 which
shows 75.7% accuracy on its test set. Then we make video
clips by aligning the sentences to corresponding clips via
Dynamic Time Warping using the timestamp of the origi-
nal subtitles. After processing, each pair in the HD-VILA-
100M consists of a video clip about 13.4 seconds on average
and a sentence with 32.5 words on average.

3.3. Data Statistics
The detailed data statistics of HD-VILA-100M are listed

in Table 1. Compared with other video-language datasets,
HD-VILA-100M is the largest video-language dataset in
terms of duration and word number. More videos indicate
richer visual information contained in HD-VILA-100M and
longer sentences mean that the language includes more de-

3https://github.com/ottokart/punctuator2
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Making pasta needs 
simple ingredients. But 
it's very tricky when 
making the flour a 
mess. Complete time 
is to put together for 
the best pasta.
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Hybrid 
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Figure 3. The framework of HD-VILA. Yellow and green colors
indicate HR- and LR-related input, operation and output, respec-
tively. Hybrid Transformer learns spatiotemporal representation
from HR and LR features. [Best viewed in Color]

tailed and richer semantics. Compared with HowTo100M
[37] which only includes instructional videos, HD-VILA-
100M is derived from a wide range of domains and videos
of each category is relatively balanced as shown in Figure 2.
This merit can improve the generalization power of the pre-
trained model. Moreover, all the videos in HD-VILA-100M
are in 720p and the high quality ensures detailed informa-
tion for video representation learning. In summary, HD-
VILA-100M represents the largest, high-resolution, and di-
versified dataset for video and language learning.

4. Approach
Figure 3 shows the overall framework of High-resolution

and Diversified VIdeo-LAnguage (HD-VILA) model that
consists of three parts: (a) hybrid video encoder, (b) lan-
guage encoder, and (c) multi-modal joint learning.

4.1. Hybrid Video Encoder
Since the video clips in our dataset are long-range with

13.4 seconds on average, we adopt the strategy of sparsely
sampling a sequence of segments from a video clip and then
aggregating their predictions similar to ClipBERT [27]. As
explained in Section 1, for each segment si, we randomly
takes one HR frame at t-th timestep Xsi

t ∈ R3×H×W and
2N surrounding LR frames {Xsi

t+kr ∈ R3×H
4 ×W

4 , k ∈
(−N, . . . ,−1, 1, . . . , N)} to build a hybrid image se-
quence, where r is LR frame sampling rate.

In Figure 3, the hybrid video encoder includes three
parts: an HR encoder for HR frame, an LR encoder for LR

neighbor frames and a Hybrid Transformer Thy that learns
spatiotemporal features by self-attention. HR encoder con-
sists of a 4-stage ResNet Fhr and an adapter Dhr. LR en-
coder is a 3-stage ResNet Flr to encode LR frames. Note
that Fhr and Flr are learnable to ensure both HR and LR
frames can be encoded in the same space before feeding
into Hybrid Transformer. We extract hybrid spatiotemporal
feature Vhy of segment si as the output of Thy. In addition,
we use the HR frame feature extracted by stage 3 of Fhr

(denoting as F 3
hr) as HR input of Thy:

Vhy = Thy(Flr(X
si
t−Nr), ..., ϕ(F

3
hr(X

si
t )), ...), (1)

where ϕ is an interpolate operation to align feature size. In
Thy, we adopt Divided Space-Time Attention to encode spa-
tiotemporal information similar to [4]. We extract detailed
spatial feature Vhr of segment si as the output of Ehr by:

Vhr = Dhr(Fhr(X
si
t )), (2)

To adapt the output of the HR encoder to the hybrid spa-
tiotemporal feature Vhy, Dhr consists of a convolution layer
to adjust the output feature channel, as well as a 2× 2 max-
pooling layer for down-sampling. The segment features is
the fusion of Vhr and Vhy by a linear layer:

V = Linear([Vhr,Vhy]). (3)

4.2. Language Encoder and Multi-Modality Joint
Embedding Learning

For both language encoder and multi-modality joint em-
bedding learning, we use self-attention to model the rela-
tionship of both uni-modality and multi-modality. More
specifically, we adopt a 24-layer, 1024-dimensional Trans-
former, mirroring the BERT-large and initialize it with pre-
trained BERT-large parameters. We use the first 12 layers as
language-only Transformer and the last 12 layers as multi-
modal Transformer. Language-only Transformer extracts
language representation which is concatenated with video
features of a segment as the input of multi-modal Trans-
former. We add learnable 1D and 2D position embedding
to language and vision tokens, respectively. Such a modal-
independent design has two advantages. Firstly, it enables
to provide powerful embedding for a single-modal input in
downstream tasks. For example, the vision-aware language-
only embedding could be used for language-guided video
generation tasks. Secondly, the two-stream architecture im-
proves the calculation efficiency of similarity between video
and language to linear complexity in some specific down-
stream tasks, such as video-language retrieval.

4.3. Pre-Training Tasks
We adopt two pre-training tasks in HD-VILA: video-

language matching to enhance cross-modal matching and
masked language modeling (MLM) to encourage the map-
ping between visual and language tokens in fine-grained
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Method Acc
ST-VQA [21] 30.9
Co-Memory [16] 32.0
AMU [50] 32.5
Heterogeneous Mem [10] 33.0
HCRN [26] 35.6
ClipBERT PT [27] 37.4
Ours 40.0

(a) MRSVTT-QA test set.

Method Acc
CT-SAN [56] 66.4
MLB [24] 76.1
JSFusion [55] 83.4
ActBERT PT [63] 85.7
ClipBERT PT [27] 88.2
VideoClip PT [52] 92.1
Ours 97.1

(b) MRSVTT multiple-choice test.

Method Action Trans Frame
ST-VQA [21] 60.8 67.1 49.3
Co-Memory [16] 68.2 74.3 51.5
PSAC [31] 70.4 76.9 55.7
HCRN [26] 75.0 81.4 55.9
QueST [22] 75.9 81.0 59.7
ClipBERT PT [27] 82.8 87.8 60.3
Ours 84.3 90.0 60.5

(c) TGIF-QA test set.

Table 2. Comparison of HD-VILA with state-of-the-art methods on video question answering tasks. (a) Results of ST-VQA and Co-
Memory are implemented by [10]. (b) Results of CT-SAN and MLB are implemented by [55].

level. In particular, since the matching between video
and language is somewhat weak compared with the video
description dataset, we apply contrastive video-language
matching to take advantage of large data.

Contrastive Video-Language Matching To align the
feature space of video and language, we use a contrastive
loss to maximize the similarity of a video clip and a sen-
tence. Specifically, we treat matched pairs in a batch as
positives, and all other pairwise combinations as negatives:

Lv2t = − 1

B

B∑
i=1

log
exp

(
v⊤i ti/τ

)∑B
j=1 exp

(
v⊤i tj/τ

)
Lt2v = − 1

B

B∑
i=1

log
exp

(
t⊤i vi/τ

)∑B
j=1 exp

(
t⊤i vj/τ

) , (4)

where vi and tj are the normalized embeddings of i-th video
and j-th sentence in a batch of size B and τ is the temper-
ature. Video and sentence features are computed by our
hybrid video encoder and language encoder. The mean of
segment embeddings is used as the video-level embedding.

Masked Language Modeling We adopt Masked Lan-
guage Modeling (MLM) to better build the mapping be-
tween visual and language domain. MLM aims to predict
the ground-truth labels of masked text tokens from the con-
textualized tokens:

LMLM = −E(W,V) log p
(
wi | W\i,V

)
, (5)

where W denotes the text embedding token set, V denotes
the visual token set, and wi denotes the masked token.
(W,V) is sampled from the distribution of text-video pairs.
We adopt the same masking strategy as in BERT and use
an MLP as the MLM head to output logits over vocabulary,
which is then computed as the negative log-likelihood loss
for the masked token. We aggregate the logits of different
segments to derive a consensus, so that MLM is able to be
calculated in video-level as we adopt in the approach.

5. Experiments
In this section, we conduct extensive experiments to

evaluate the proposed HD-VILA pre-training model.

5.1. Pre-training Details
Inspired by the idea of “align before fuse” [28], we

adopt a two-stage fashion for pre-training on HD-VILA-
100M dataset. In the first stage, we perform the contrastive
video-language matching task to learn cross-modality align-
ment. In the second stage, MLM task is performed to facil-
itate cross-modal understanding. For video encoder, we use
ResNet-50 for Fhr and Flr, and a 4-layer Transformer with
16 heads and 1024 hidden size for Thy . We empirically
divide a video clip into two segments and sample seven
frames for each segment. In this setting, the two segments
can cover about 6s video content, which are adequate to
model the video clips in our dataset. Besides, we randomly
crop 640×1024 areas for the middle HR frames, and select
aligned 160 × 256 areas for LR neighboring frames. The
size of resultant feature map before feeding into the mul-
timodal Transformer is 10 × 16. For language, we follow
BERT [8] to adopt the WordPiece tokenizer to split a sen-
tence into word tokens with a max length of 50.

In pre-training, we use AdamW optimizer [34] with an
initial learning rate of 5e-5 and a fixed weight decay of 1e-3.
We also employ a linear decay learning rate schedule with
a warm-up strategy. We train our model with 128 NVIDIA
Tesla V100 GPUs for stage one and 32 for stage two. The
batch size is set to 1024 and the contrastive similarity is
calculated on gathered features from all GPUs. We train 7
epochs for stage one and 4 epochs for stage two empirically.
We freeze the encoders during the second stage and keep the
same batch size for both stages. In downstream tasks, we
keep the same model configuration if not otherwise speci-
fied. We exclude the YouTube Ids in the downstream tasks
from our collected HD-VILA-100M during pre-training.

5.2. Video Question and Answering
Datasets (a) MSRVTT-QA [50] is created based on
video and captions in MSR-VTT [53]. Given a question
in a complete sentence, the model selects an answer from a
pre-defined set. (b) MSRVTT multiple-choice test [55] is
a multiple-choice task with videos as queries, and captions
as answers. Each video contains five candidate captions,
with only one positive match. (c) TGIF-QA [21] is build
on GIF videos. We experiment with three TGIF-QA tasks:
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Method R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
HowTo100M [37] 14.9 40.2 52.8 9.0
CE [32] 20.9 48.8 62.4 6.0
DECEMBERT [45] 17.5 44.3 58.6 9.0
HERO [29] 16.8 43.4 57.7 -
ClipBERT [27] 22.0 46.8 59.9 6.0
VLM [51] 28.1 55.5 67.4 4.0
MMT [15] 26.6 57.1 69.6 4.0
Support Set [39] 30.1 58.5 69.3 3.0
VideoCLIP [52] 32.2 62.6 75.0 -
Ours 35.6 65.3 78.0 3.0
Zero-shot
HT MIL-NCE [35] 9.9 24.0 32.4 29.5
Support Set [39] 8.7 23.0 31.1 31.0
VideoCLIP [52] 10.4 22.2 30.0 -
Ours 14.6 34.4 44.1 15.0

Table 3. Comparison of text-to-video retrieval in MSR-VTT [53].
We gray out some lines to highlight fair comparisons with tradi-
tional retrieval models and general pre-training models. This mark
is also applicable to Table 5, 6.

Action is defined as a multiple-choice task to identify an ac-
tion that has been repeated in a video. Transition aims to
identify the state before or after another state. FrameQA is
about open-ended questions about the given video. The task
objective is identical to MSRVTT-QA. More details are in
the supplementary materials.
Implementation Details For TGIF Action and Transi-
tion, we respectively concatenate five candidate answers
with the question into five sequences. On top of the [CLS]
token of the question, we train a two-layer MLP to pre-
dict the confidence of the five candidates with cross-entropy
loss. For MSRVTT-QA and TGIF Frame, we encode the an-
swers in a one-hot fashion, and train 2-layer MLP classifier
over all answer candidates with a cross-entropy loss on-top
of the [CLS] token of the question. For MSRVTT Multiple-
choice, we directly choose the answer with the highest simi-
larity. We set the max batch size to fine-tune on 8 V100 32G
GPUs. More details are in the supplementary materials.
Results In Table 2, the results of HD-VILA on video
QA show that our model outperforms existing methods on
five tasks in all the three datasets. On MSRVTT-QA and
MSRVTT multiple-choice tests, we achieve 2.6 and 5.0 ab-
solute improvement over SOTA methods. On TGIF-QA
dataset, we have 1.5, 2.2 and 0.2 absolute improvements on
Action, Trans and Frame tasks. The limited gain of Frame is
due to that Frame focuses on single frame while hindering
the advantage of our hybrid image sequence. Among all the
compared methods, ClipBERT [27] and ActBERT [63] are
pre-training models. We can see that pre-training with more
data will marginally improve the performance. Compared
with ClipBERT which is pre-trained on image-language
dataset, videos provide richer information. Note that the
language used in ClipBERT pre-training is more closer to
downstream tasks in both content and length while the lan-

Method R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
HERO [29] 2.1 - 11.4 -
S2VT [47] 11.9 33.6 - 13.0
FSE [59] 13.9 36.0 - 11.0
CE [32] 16.1 41.1 - 8.3
ClipBERT [27] 20.4 48.0 60.8 6.0
Ours 28.8 57.4 69.1 4.0

Table 4. Comparison of text-to-video retrieval on DiDeMo [2].

Method R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
JSFusion [55] 9.1 21.2 34.1 36.0
MEE [36] 9.3 25.1 33.4 27.0
CE [32] 11.2 26.9 34.8 25.3
MMT [15] 12.9 29.9 40.1 19.3
Ours 17.4 34.1 44.1 15.0

Table 5. Comparison of text-to-video retrieval on LSMDC [41].

Method R@1 ↑ R@5 ↑ R@50 ↑ MedR ↓
FSE [59] 18.2 44.8 89.1 7.0
CE [32] 18.2 47.7 91.4 6.0
HSE [59] 20.5 49.3 - -
ClipBERT [27] 21.3 49.0 - 6.0
MMT [15] 28.7 61.4 94.5 3.3
Support Set [39] 29.2 61.6 94.7 3.0
Ours 28.5 57.4 94.0 4.0

Table 6. Comparison of text-to-video retrieval on ActivityNet [25].

guage in HD-VILA-100M has domain gap with TGIF and
MSR-VTT languages. This further indicates the generaliza-
tion of the video representation learned by our HD-VILA.

5.3. Video-Text Retrieval
Datasets We conduct video-text retrieval experiments on
four datasets. (a) MSR-VTT [53] contains 10K YouTube
videos with 200K descriptions. We follow previous
works [32, 55], training models on 9K videos, and report-
ing results on the 1K-A test set. (b) DiDeMo [2] con-
sists of 10K Flickr videos annotated with 40K sentences.
We follow [32, 59] to evaluate paragraph-to-video retrieval,
where all descriptions for a video are concatenated to form
a single query. (c) LSMDC [41] consists of 118,081 video
clips sourced from 202 movies. Each video has a caption.
Evaluation is conducted on a test set of 1,000 videos from
movies disjoint from the train and validation sets. (d) Ac-
tivityNet Captions [25] contains 20K YouTube videos an-
notated with 100K sentences. We follow the paragraph-to-
video retrieval protocols [32,59] training on 10K videos and
reporting results on the val1 set with 4.9K videos.
Implementation Details We adjust the number of sam-
pled segments and frames according to the average time of
videos for each dataset. We adopt stage one model and the
same training methods and objective for fine-tuning. We re-
size HR frame of each segment to 720p and LR frames to
180p. More details are in the supplementary materials.
Results Table 3, 4, 5, 6 show the text-to-video retrieval
results of HD-VILA on four datasets. For MSR-VTT, we
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This man has black bushy eyebrows and bangs.This man has black bushy eyebrows and bangs.

This person is chubby and has rosy cheeks.This person is chubby and has rosy cheeks.

Input Ours StyleCLIP TediGANInput Ours StyleCLIP TediGAN

This man has goatee and he is smiling. 

She has wavy hair and wears red lipstick.

Figure 4. Text-guided manipulation compared with StyleCLIP
[38] and TediGAN [48]. Our model is able to handle complex
descriptions and edit the inputs according to the target attributes
(highlighted in red) better. All the inputs are of 1024× 1024 size.

outperform the previous works by large margins in both
zero-shot and fine-tuning settings. In particular, compared
with VideoCLIP [52], we have 40.4% relatively gains of
R@1 in zero-shot setting, which shows the generalization
ability of our pre-trained feature. In LSMDC, we further
obtain much larger relative gains with 55.4% under fair
comparison. This comes from smaller domain gap between
movie videos in LSMDC and our HD-VILA-100M com-
pared with HowTo100M in two aspects: semantic (both
open domains) and resolution (both high-resolution). On
DiDeMo and ActivityNet, our model also achieves better
performance. The videos in these two datasets are diversi-
fied in both scale and category, and are much longer. The re-
sults shows that our model pre-trained on HD-VILA-100M
with longer videos and richer semantics shows better ca-
pacity for temporal understanding. Note that there are also
pre-training models that are specifically designed for video-
text retrieval task by improving noise contrastive learning
like SupportSet [39], or use more features other than vision
and motion like MMT [15]. To make fair comparison, we
gray them out in tables.

5.4. Text-to-Visual Generation
Recent studies like StyleCLIP [38] and TediGAN [48]

propose to leverage cross-modal pre-training power to facil-
itate language-guided generation tasks, and have obtained

This person has blond hair, arched eyebrows, oval face, and rosy cheeks.

She wears lipstick. She has arched eyebrows, and straight hair.

The man has high cheekbones, big nose, and eyeglasses.

The man has black hair and short beard.

Input Ours pSp SR3Input Ours pSp SR3

Figure 5. Text-guided super-resolution compared with pSp [40]
and SR3 [42]. Our model is able to reconstruct more accurate tar-
get attributes with descriptions (e.g., eyeglasses in the third case).
All inputs are upsampled from 16× 16 to 1024× 1024.

some promising results. As shown in their work, the quality
of visual generation results can reflect the quality of cross-
modality embedding. Hence, in this section, we will specify
how our pre-trained model can achieve this task, and verify
our learned embedding by showing higher-quality visual-
ized results compared with SOTA models.

Datasets To conduct this research, we introduce the first
Face-Description-Video Dateset (FDVD). The dataset con-
sists of 613 high-resolution (1024× 1024) videos, resulting
in 74,803 frames of human faces. The videos are collected
from Ryerson audio-visual dataset [33]. We generate ten
different text descriptions for each video following previ-
ous works [48]. To increase the diversity of human faces,
we also leverage Multi-modal CelebA-HQ [48] for training.

Implementation Details We follow previous works [38,
48] to leverage a well pre-trained StyleGAN [23, 58, 61] as
our generator, due to its superior performance. In prac-
tice, we learn several linear layers to map the vision and
text embedding in HD-VILA to the latent codes w+ used
in StyleGAN. Then, images can be generated by the latent
codes. To ensure the visual quality, identity preservation,
and matching with descriptions of the generated results, we
carefully choose a set of losses for optimization. More de-
tails are in the supplementary materials.

5042



Text-to-Visual Editing We compare our model with the
recent state-of-the-art text-guided editing models, Style-
CLIP [38] and TediGAN [48] in Figure 4. The results show
that our model is able to edit the target attributes of inputs
according to text descriptions. For example, in the first case
in Figure 4, our model turns the hair to wavy hair and also
wears lipstick on the lips, where StyleCLIP and TediGAN
fail to wear lipstick on the face. Some video cases will be
presented in supplementary materials.

Text-to-Visual Super-Resolution We further compare
our model with SOTA super-resolution methods SR3 [42]
and pSp [40]. We generate 1024 × 1024 images from their
16 × 16 LR counterparts. Note that this task is extremely
challenging due to such low-resolution inputs. As shown in
the second case of Figure 5, SR3 [42] and pSp [40] can not
reconstruct high-quality faces by only using visual informa-
tion. Compared with them, our model is able to accurately
reconstruct the lipstick and the straight hair with the help of
text description, thanks to the pre-trained models.

5.5. Ablation Studies
In this section, we conduct ablation studies to further ver-

ify the effectiveness of the new HD-VILA-100M dataset,
and the proposed hybrid video encoder.

(1) Diversity of HD-VILA-100M. We sample two video
subsets from HD-VILA-100M with two million clip-text
pairs for each. One subset only includes “HowTo” type,
while the other consists of diversified and balanced cat-
egories sampled from the full dataset. As shown in Ta-
ble 7, compared with the “HowTo” dataset with limited se-
mantics, our diversified pre-training dataset (indicated as
“Ours-720p”) helps to achieve higher performance in the
MSR-VTT retrieval task, with relative 66.7% R@1 gains.
We choose MSR-VTT zero-shot retrieval task for this abla-
tion study, as it is the most widely-used evaluation task in
video-language pre-training. We also make fair comparison
with HowTo100M [37]. we have tried our best to collect
HowTo100M at 720p, in which 69% videos are originally at
720p, and 31% are at 240p (w/o HR source) and upsampled
to 720p by applying the most commonly used bicubic inter-
polation. We select MSR-VTT retrieval which is the most
widely-used benchmark for pre-training evaluation. We re-
port the comparison in Table 8. We compare pre-training
on two datasets for the same steps (145K) and fine-tuning
with the same setting. HD-VILA-100M pre-trained model
surpasses HowTo100M by a large margin. This shows the
advantage of HD-VILA-100M.

(2) High-resolution of HD-VILA-100M. We downsam-
ple “Ours-720p” subset into lower resolutions (“Ours-
360p”), and observed a significant drop with 29.1% relative
decreases of R@1. Such evaluations demonstrate the supe-
riority of the diversified categories and higher resolution of
the proposed dataset.

Type Size R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
HowTo 720p 3.3 8.2 13.5 113.0
Ours 360p 3.9 11.0 18.3 67.0
Ours 720p* 4.5 13.0 20.2 62.0
Ours 720p 5.5 13.1 20.5 58.0

Table 7. Ablation study on two subsets of pre-training data. We
report results of zero-shot MSR-VTT retrieval. 720p* indicates
bi-cubic upsampled frames (360p to 720p).

Dataset R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
HowTo100M 19.6 49.0 61.9 6.0
Ours 30.0 58.1 72.3 4.0

Table 8. Comparison of pre-training datasets on MSR-VTT re-
trieval with the same steps.

#HR #LR R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓
1 0 16.3 40.0 53.3 9.0
0 10 26.7 57.0 69.5 4.0
1 6 33.0 64.4 76.2 3.0
1 10 35.6 65.3 78.0 3.0
1 14 33.7 64.1 76.2 3.0

Table 9. Ablation study on frame selection. We report re-
sults of MSR-VTT retrieval, where #HR/#LR are the numbers of
high/low-resolution frames.

(3) Numbers of HR/LR frames. As the number of
high/low-resolution frames used for video modeling often
plays a key role in video pre-training, we adjust frame num-
bers and fine-tune the pre-training model in different set-
tings. As shown in Table 9, high-resolution frames lead to
significant increases compared with the setting only using
low-resolution inputs. In particular, the setting of 1-HR &
10-LR achieves the best performance, compared with 0-HR
& 10-LR (“0” indicates that one branch is removed), and
1-HR & 0-LR, which demonstrates the rationality of jointly
modeling spatial and temporal features in our approach.

6. Conclusion
In this paper, we propose to learn high-resolution and

diversified video-language multi-modal representation by
pre-training on large-scale video-language pairs. To em-
power pre-training, we introduce a new dataset HD-VILA-
100M which is the largest high-resolution and diversi-
fied video-language dataset. To more efficiently employ
the richer information in videos, we propose a novel pre-
training model HD-VILA that learns spatiotemporal infor-
mation using HR and LR frames as a hybrid image se-
quence with a hybrid Transformer. Experiments on 12
video-language understanding and text-to-visual generation
tasks show the capability of HD-VILA-100M dataset and
the effectiveness of our model.
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