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Abstract

Continual learning is a longstanding research topic due
to its crucial role in tackling continually arriving tasks. Up
to now, the study of continual learning in computer vision is
mainly restricted to convolutional neural networks (CNNs).
However, recently there is a tendency that the newly emerg-
ing vision transformers (ViTs) are gradually dominating
the field of computer vision, which leaves CNN-based con-
tinual learning lagging behind as they can suffer from se-
vere performance degradation if straightforwardly applied
to ViTs. In this paper, we study ViT-backed continual learn-
ing to strive for higher performance riding on recent ad-
vances of ViTs. Inspired by mask-based continual learn-
ing methods in CNNs, where a mask is learned per task
to adapt the pre-trained ViT to the new task, we propose
MEta-ATtention (MEAT), i.e., attention to self-attention,
to adapt a pre-trained ViT to new tasks without sacrific-
ing performance on already learned tasks. Unlike prior
mask-based methods like Piggyback, where all parameters
are associated with corresponding masks, MEAT leverages
the characteristics of ViTs and only masks a portion of its
parameters. It renders MEAT more efficient and effective
with less overhead and higher accuracy. Extensive experi-
ments demonstrate that MEAT exhibits significant superior-
ity to its state-of-the-art CNN counterparts, with 4.0 ∼ 6.0%
absolute boosts in accuracy. Our code has been released
at https://github.com/zju-vipa/MEAT-TIL.

1. Introduction

Being capable of tackling everchanging tasks is a favor-
able merit in open-world scenarios. Humans excel at solving
constantly emerging tasks by associating them with previ-
ously learned knowledge. Deep neural networks (DNNs),
however, usually suffer from catastrophic forgetting [33] if
simply adapted to new tasks due to the differences between
tasks in data biases.
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Figure 1. The proposed MEAT for task continual learning in the
MHSA block with vision transformers. With the increase of new
tasks, MEAT dynamically assigns attention masks to generate task-
specific self-attention patterns per task.

Over the past years, large pieces of literature have
been devoted to addressing the catastrophic forgetting prob-
lem to enable DNNs to master new-arrived tasks in a se-
quence [23,27,30,36,38,41,43]. Existing continual learning
methods can be broadly categorized into three schools: re-
play methods [3,6,19,36,37], regularization methods [21,23,
26, 27, 34, 50, 52] and mask methods [18, 30–32, 41]. Replay
methods replay previous task samples, which are stored in
raw format or generated with a generative model, to alleviate
forgetting while learning a new task. To avoid storing raw
inputs, prioritize privacy and alleviate memory requirements,
regularization methods introduce a regularization term to
consolidate previous knowledge while learning the new task.
Mask methods learn a mask per task to adapt the pre-trained
model to the new task for preventing any possible forgetting.

Albeit remarkable progress made in computer vision,
most of the aforementioned methods are tailored for CNNs
for their dominant performance in the field over the past
decade. However, the primacy of CNNs in computer vision is

150



recently challenged by vision transformers (ViTs) [10,28,45],
due to the more general-purpose architecture (i.e., bridging
the architecture gap between natural language processing
and computer vision) and superior performance of ViTs. In
contrast to the rapid development of ViTs, prior CNN-based
continual learning methods appear a bit outdated as straight-
forwardly applying them to ViTs does not take full advantage
of the characteristics of transformers.

In this work, we devote ourselves to ViT-backed contin-
ual learning to keep pace with the advancement of ViTs.
Specifically, we ground our proposed method on mask
method [30–32, 41] for the following three main reasons:
(1) mask methods in fact dedicate different parameters to
each task, thus perfectly bypassing the catastrophic forget-
ting problem; (2) mask methods are not sensitive to task
order, which is a very favorable merit in continual learning;
(3) mask methods avoid expensive data storage and exhibit
a larger capacity to handle more tasks, which gives them
a prominent edge over replay and regularization methods.
Motivated by these attractive advantages, we propose our
ViT-backed mask-based continual learning method, dubbed
as MEta-ATtention (MEAT), to further boost the continual
learning performance, as illustrated in Figure 1. MEAT
inherits all the aforementioned merits, and meanwhile in-
troduces the following innovations that distinguish it from
prior mask methods: (1) MEAT fully leverages the archi-
tectural characteristics of ViTs and introduces the attention
to self-attention (where the meta-attention comes) mecha-
nism, which is tailored for transformer-based architectures
and makes MEAT furthermore effective. (2) Prior methods,
like Piggyback [30], require manually setting the threshold
hyper-parameter for binarizing the mask. MEAT adopts
Gumbel-softmax trick [20] to resolve the optimization diffi-
culty of discrete mask values, which relaxes the burden of
the hyper-parameter search. (3) Unlike prior mask-based
methods where all parameters are assigned to masks, MEAT
introduces masks to only a portion of its parameters, which
renders it more efficient than prior methods.

To validate the superiority of the proposed method, ex-
tensive experiments, including benchmark comparison and
ablation study, are conducted on a diverse set of image clas-
sification benchmarks (including ImageNet [8], CUB [47],
Stanford Cars [24], FGVC-Aircraft [29], CIFAR-100 [25],
Sketches [11], WikiArt [40] and Places365 [53]) with vari-
ous ViT variants (including DeiT-Ti [45], DeiT-S [45] and
T2T-ViT-12 [49]). Experimental results demonstrate that
MEAT exhibits significant superiority to its state-of-the-art
CNN counterparts with 4.0 ∼ 6.0% absolute boosts in ac-
curacy, meanwhile consuming much lower storage cost for
saving task-specific masks.

In conclusion, the main contributions of our work are
summarized as follows:

• We propose MEAT, the first ViT-backed continual learn-

ing method to the best of our knowledge, to advance
the development of continual learning with ViTs.

• We introduce three innovations into MEAT, including
masking partial parameters, avoiding manual hyperpa-
rameter setting, and meta-attention mechanism to boost
the performance of MEAT.

• Extensive experiments demonstrate that MEAT exhibits
significant superiority over its state-of-the-art CNN
counterparts, meanwhile consuming much lower stor-
age costs for saving task masks.

2. Related Works

2.1. Vision Transformers

The transformer [46], a prevailing network architecture
in nature language processing (NLP) [1, 9, 35], has received
growing interest and achieved great accomplishment in
the computer vision field, enjoying state-of-the-art perfor-
mance on many visual tasks, including image classifica-
tion [10, 28, 45], object detection [2,5], and object segmenta-
tion [4, 51]. Among these works, Vision Transformer [10],
the pioneering work in this area, first introduces a com-
plete transformer-based architecture into image classification
tasks by splitting an image into 16× 16 patches and embed-
ding them into a sequence of tokens as the model input like
words in NLP. Inspired by the excellent results achieved
by Vision Transformer, many researchers have started to
study and improve transformer-based models in computer
vision. DeiT [45] improves the training efficiency of Vi-
sion Transformer by introducing a new distillation token and
some training strategies. Swin Transformer [28] presents
a new transformer backbone that constructs a hierarchical
representation. Tokens-To-Token Vision Transformer (T2T-
ViT) [49] adopts a tokens-to-token (T2T) process to achieve
great results trained from scratch on ImageNet [8]. In our ex-
periments we employ three representative vision transform-
ers: DeiT-Ti, DeiT-S and T2T-ViT-12 as backbone networks.

2.2. Continual Learning

Continual learning involves incrementally training a
model with a new stream of tasks while preserving its pre-
vious knowledge basis, which has attracted much interest
in recent years [7]. Generally, there are two kinds of set-
tings for continual learning: (1) task continual learning
that extends knowledge with new tasks which have clear
domain boundaries; (2) class continual learning that accu-
mulates knowledge over different sets of categories sepa-
rated from the same dataset. In this work, we mainly fo-
cus on task continual learning. Previous continual learn-
ing methods can be broadly categorized into replay meth-
ods, regularization methods and mask methods. The replay
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methods [3, 6, 19, 36, 37] expect to store a subset of sam-
ples of previous tasks and retrain the model on old sam-
ples to review knowledge of old tasks. The regularization-
based methods [21, 23, 26, 27, 34, 50, 52] utilize the knowl-
edge distillation technique [15], special regularization terms
to avoid catastrophic forgetting. The other mask meth-
ods of continual learning are devoted to expanding the
network capacity via introducing extra masks for each
new task [18, 30–32, 41, 43, 48]. The knowledge of pre-
vious tasks can be preserved by sequentially increasing new
masks (weight masks [18, 30–32, 48] or unit masks [41, 43])
and masking out parameters of old tasks simultaneously. For
example, PackNet [31] iteratively performs pruning a well-
trained base network and maintains binary sparsity masks to
fix necessary parameters for incoming tasks. Piggyback [30]
introduces binary masks on all parameters of a base network
for each task without the forgetting problem. HAT [41] de-
signs unit masks and keeps the feature embeddings of learned
tasks to preserve information of old tasks. Our proposed
MEAT builds upon mask methods: given a well-initialized
transformer, we assign attention masks to the self-attention
mechanism and a portion of parameters to fully leverage the
architectural characteristics of ViTs for continual learning.

Besides incremental learning in computer vision mainly
designed for CNN structures, a growing body of research in
NLP has equipped the transformer with incremental learn-
ing. Adaptor-BERT [16] adds two fully connected layers
as an adaptor in each layer and freezes old parameters (ex-
cept for normalization layers) during training. Inspired by
this work, B-CL [22] adopts capsules and dynamic rout-
ing [39] to transfer old knowledge to new tasks for aspect
sentiment classification tasks. [17] presents an information
disentanglement-based regularization method to further gen-
eralize old task knowledge. We also compare MEAT with
Adaptor-BERT to verify the effectiveness of our methods.

3. Method

3.1. Preliminaries

A typical vision transformer is composed of three key
components, i.e., the trainable linear projection for embed-
ding patch features, the multi-head self-attention (MHSA)
block, and the feed-forward network (FFN) block. An input
image is split into n small patches as image tokens, then
mapped to a sequence of d-dimension vectors. A trainable
class token is concatenated to the image token sequence for
the final classification. The input sequence X ∈ R(n+1)×d

is fed into a stack of identical encoder layers. Each encoder
layer consists of an MHSA block and an FFN block sequen-
tially with residual connections. Specifically, the MHSA
block with H heads can be formulated as

MHSA(Q,K,V) = Concat(head1, . . . , headH)WO, (1)

where Q, K and V are the query, key, value embeddings;
headh ∈ R(n+1)×dk is the output of attention head h that sat-
isfies dk = d/H , and WO

h ∈ Rdk×d is the output projection
matrix. The attention head h is calculated by

headh = ΨhVh = σ (Ah) Vh = σ

(
QhK>h√

dk

)
Vh, (2)

where Qh = XWQ
h , Kh = XWK

h , and Vh = XWV
h are

linear projections of X by WQ
h , WK

h , and WV
h ∈ Rd×dk

respectively; Ah = QhK>h /
√
dk is the dot-production

attention matrix; σ(·) is the softmax activation function;
Ψh ∈ R(n+1)×(n+1) is an asymmetrical matrix, measuring
the similarity between all the pairs of queries and keys by
performing dot-production. For instance, the entry Ψi,j

h of
Ψh denotes the attention score that token i pays to token j.

The FFN block is composed of two linear layers and an
activation function φ(·) (e.g., GELU [14]) and maps the
input sequence X to

FFN(X; W1,W2) = φ(XW1)W2, (3)

where W1 ∈ Rd×d′
, W2 ∈ Rd′×d are projection matrices.

The bias terms of MHSA and FFN are omitted for simplicity.

3.2. Meta-Attention

According to Eqn. 1 and 2, in the MHSA block, the out-
put of each image token is dependent on all the input tokens.
Thus the self-attention mechanism can be generally consid-
ered as a dense relationship within all the image token pairs.
As a result, all image tokens in the same layer are involved
for final classification regardless of the assigned tasks. In
this paper, we refer to the token interaction pattern like Ψh,
which performs attention computation between all image
token pairs equally and densely, as the standard token inter-
action pattern. The proposed MEta-ATtention (MEAT) aims
to dynamically adapt the standard token interaction pattern to
the new tasks via putting attention to self-attention. For sim-
plicity and putting the focus on image token interactions, the
class token is kept activated, and Ψh ∈ Rn×n only measures
the relationship between image tokens. Furthermore, we also
extend the mechanism of MEAT to the trained neurons of
the FFN block by paying attention to each neuron, exploring
a suitable sub-network of the initial trained weights to boost
the continual learning performance.

3.2.1 Attention to Self-attention

For a well-initialization transformer as the base model, each
image token interacts with each other in the standard infor-
mation interaction form in the MHSA block for the initial old
task. MEAT dynamically assigns an attention mask m ∈ Rn

with continuous values to modify the standard information
interaction between all image tokens to learn adaptive com-
munication patterns when sequentially studying new tasks
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Figure 2. Illustration of the working mechanism of MEAT in the
MHSA block of a transformer encoder layer. In the standard token
integration, all the tokens interact with each other without limit.
MEAT proposes attention masks to modify this communication
pattern by dynamically activating and isolating image tokens. X
and Y denote the input and the output sequence. Q, K and, V
represent query, key, and value for the MHSA module.

with domain shifts from old tasks. In particular, for the i-th
input image token, the i-th entry of mask m, mi, is used to
modify the attention values related to the token i in this layer.
Consequently, the MEAT mask m generates the adaptive
token interaction pattern based on the standard information
interaction Ψh in a token-wise manner. In the forward prop-
agation, the softmax function σ in Eqn. 2 can be modified as
an adaptive softmax function σA for calculating task specific
attention, i.e., Ψh = σA (Ah). The i-th row of similarity
Ψh can then be written as

Ψi
h =

[
Ψi,j

h

]n
j=1

=

[
mj exp (Ai,j

h )∑n
s=1 ms exp (Ai,s

h )

]n
j=1

. (4)

Accordingly, Ψi,j
h represents the modified attention that to-

ken i pays to token j via the attention mask m. The task-
specific relationship provides a task-order invariant solution
in modifying token interactions: when inference, each new
task only employs the corresponding set of masks and the
classifier without interference from other tasks.

With the increasing number of incoming tasks, the pro-
posed MEAT mask with continuous values requires a lot of
memory space. As shown in Figure 2, a binary value MEAT
mask is adopted to replace the former continuous value mask.
Specifically, for the token i, a binary variable, the attention
entry mi ∈ {0, 1} modifies its adapted attention state, where
1 and 0 indicate whether token i is activated or not in the
adapted token interaction pattern. With the binarized MEAT

mask, Ψi,j
h in Eqn. 4 can be computed as

Ψ̃i,j
h =


exp (Ai,j

h )∑n
s=1 ms exp (Ai,s

h )
, if mj = 1;

0, otherwise.
(5)

Equipped with the attention masks, image tokens can be
activated dynamically according to new tasks. However, the
binary mask cannot be directly optimized along with the
new task classifier when back-propagation, for it belongs
to the non-differential categorical distribution, leading to
the NP-hard problem [12]. To obtain the binary mi, we
hence introduce a differentiable variable parameterized by
trainable ti ∈ R2, then utilize a novel Gumbel-Softmax esti-
mator [20] to approximate the discrete Binomial distribution
while enabling gradient descent optimization as

mi =
exp((log(ti,1) + g1)/τ)∑2
k=1 exp((log(ti,k) + gk)τ)

, (6)

where τ > 0 is the temperature, gk and g0 are sampled
from Gumbel distribution g = − log(− log(u)) with u ∼
Uniform(0, 1). The initial weights of ti are independently
sampled from distribution Uniform(−γ, γ), where γ > 0 is
a hyperparameter. By employing the Gumbel-Softmax trick,
the proposed binary mask can be smoothly optimized along
with the classifier of the new task via gradient descent.

For inference, updating weights is not required. The
relaxation process is replaced with

mi = arg max ti,j . (7)

In conclusion, MEAT assigns special-designed attention
masks to the self-attention block to create adapted token
interaction patterns in a task-specific manner by dynami-
cally activating and isolating corresponding image tokens
when incrementally learning new tasks. The binary-value
mask substantially reduces additional overheads. The stan-
dard token interaction for the initial old task is a special
adapted token interaction pattern that the values of each mi

are always set to 1.

3.2.2 Attention To Feed-Forward Network

To further boost the performance of task incremental learn-
ing, we extend the mechanism of MEAT to the trained neu-
rons of the FFN block by paying attention to each neuron to
explore a suitable sub-network of the initial trained weights.
An attention mask designed for the FFN block is also pro-
posed to dynamically activate and isolate neurons in each
linear layer in the FFN block. A sub-network of the well-
trained FFN block will be generated automatically on the
data biases of incoming tasks. Let W ∈ Rd1×d2 represent
the weight matrix trained on the initial old task of an arbitrary
inner-layer in the FFN block, where d1 and d2 are the input
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and output feature dimensions, respectively. Note that W
has been optimized on the initial task. Instead of retraining
W for new tasks, we customize an activation map to W to
prevent catastrophic forgetting. Similar to the TI adaptor,
for each neuron wi,j in the weight matrix W , the entry of
the binary MEAT mask, mi,j ∈ {0, 1} stands for its activa-
tion state. When introducing a new task, the binary-valued
adaptor is adopted to multiply with wi,j as

w̃i,j = mi,jwi,j =

{
wi,j , if mi,j = 1;
0, otherwise.

(8)

With the help of the binary adaptor, the weight can be pre-
served or discarded according to the new task. Similar to the
optimization procedure of TI adaptors, the Gumbel-Softmax
trick is also adopted to tackle the non-differential problem
of the attention mask m like Eqn. 6.

3.3. Optimization Objective

The final optimization objective consists of two loss func-
tions. The first one is the conventional cross-entropy loss
Lce(p̂, p), where p̂ and p are the predicted category distri-
bution and the ground-truth label. Isolating image tokens
may cause accuracy drops when isolated token numbers are
beyond normal limits. A new drop-control loss is therefore
introduced to prevent excessive patch dropping as

Ldc(m) =
1

L

L∑
l=1

(
λ− 1

n

n∑
i=1

mi
l

)2

, (9)

where λ is a coefficient to adjust the expected activated token
numbers. Eqn. 9 regulates the mask by λ, avoiding isolating
too many image tokens at the early training stage, which
tends to degrade performance. Let α indicate a weighting
factor, the final optimization objective is summed as

L = Lce(p̂, p) + αLdc(m). (10)

4. Experiments
4.1. Experimental Settings

Datasets ImageNet [8] is set as the initial task. Six
widely-used classification benchmarks are adopted as new
visual tasks to be added on the ImageNet initialized vision
transformers. Three fine-grained classification datasets are
involved in demonstrating the performance of our method
on images with finer granularity than ImageNet, includ-
ing CUB [47], Stanford Cars [24] and FGVC-Aircraft [29].
CIFAR-100 [25], which has a category hierarchy like Ima-
genet, is also adopted. Sketches [11], WikiArt [40] serve as
two art-related datasets which contain pictures of different
domains from initial tasks. Besides, we further introduce a
large-scale dataset, Places365 [53], to investigate the contin-
ually learning ability on large domain shifts data of MEAT.
All input images are resized to 224× 224 pixels.

Backbones In principle, the specially designed meta-
attention mechanism can be applied to any vision transform-
ers. In this paper, three popular transformer-based mod-
els are used as the backbone: DeiT-Ti [45], DeiT-S [45],
T2T-ViT-12 [49]. We follow the official implementations of
adopted three ViTs and insert our proposed attention masks
to self-attention (only added in the MHSA block) and atten-
tion masks to FFN (only added in the FFN block) in each
encoder layer. The official pre-trained weights on ImageNet
serve as the well-initialization weights.

Parameters In the training stage, we basically follow
the training strategies used in the official code of DeiT [45].
The initial learning rates of new classifiers and the binary
MEAT masks are batchsize

1024 × 5e−4 and batchsize
1024 × 0.1. All

ViTs are trained for 30 epochs with a batch size of 256. γ,
α and λ are set to 4, 2, and 0.9. All experimental results are
averaged over 5 runs on 6 random sequences of new tasks.

Competitors We compare our proposed MEAT on three
transformer-based models with the following competitors:
(1) Individual; (2) Classifier; (3) LwF [27]; (4) Piggy-
back [30]; (5) HAT [41]; (6) Adaptor-Bert [16]. Among
these baselines, Individual denotes that an independent ViT
is trained for each task. As this method duplicates the model
by the number of the tasks, its performance can serve as the
upper bound of continual learning. Classifier is the simple
continual learning strategy that finetunes only the classifier
layer, i.e., the last fully connected layer, for the new task.
LwF, Piggyback, HAT and Adaptor-Bert are four representa-
tive existing methods from both computer vision and NLP
for continual learing. For the initial ImageNet task, we di-
rectly utilize the official open-source pre-trained weights.
For more details, please refer to the supplementary material.

4.2. Benchmark Comparison

Table 1 summarizes the main experimental results.
Broadly speaking, our MEAT enjoys superior performance
with the three ViTs on all the tasks compared to every com-
petitor except individual. While Individual is ideal from the
perspective of accuracy, it increases the model parameters by
about 6 times as 6 more independent models are trained for
the new tasks, which actually violates the setting of contin-
ual learning. Compared with other competitors of continual
learning, MEAT adds and retrains only a small number of
parameters (i.e., binary masks). Specifically, Classifier does
not introduce many extra parameters but shows poor results,
especially on data with massive domain shifts from the old
task. LwF and HAT require overall retraining of model pa-
rameters and suffer from the forgetting problem. Similar
to our proposed method, Piggyback and Adaptor-Bert in-
troduce some additional parameters (i.e., masks or layers)
for continual learning. However, Piggyback applies masks
on all parameters. Adaptor-Bert applies two linear layers in
each encoder layer leading to excessive extra parameters af-
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Dataset Method
Individual Classifier LwF [27] Piggyback [30] HAT [41] Adaptor-B [16] MEAT

D
ei

T-
Ti

CUB 75.13 46.05 59.03 60.65 68.34 66.03 71.16
Cars 69.82 16.27 39.39 44.87 50.57 45.50 53.42
FGVC 70.00 14.35 38.87 45.58 46.71 41.28 52.69
WikiArt 72.13 38.64 46.88 62.42 61.84 57.04 64.63
Sketches 73.50 30.64 53.17 69.07 65.49 69.21 70.73
CIFAR-100 83.85 66.05 69.79 71.18 70.67 75.21 78.13

ImageNet 30.82 72.20 26.24 72.20 N/A 72.20 72.20
(0.00) (0.00) (↓ 45.96) (0.00) N/A (0.00) (0.00)

Model Size 149 MB 23 MB 23 MB 26 MB 23 MB 29 MB 25 MB
(6.49x) (0.06x) (1.00x) (0.21x) (1.01x) (0.28x) (0.16x)

D
ei

T-
S

CUB 82.69 49.10 69.34 72.89 79.67 77.20 81.53
Cars 84.74 18.29 74.00 74.72 73.22 67.23 77.20
FGVC 82.69 15.51 55.99 60.04 62.99 57.04 65.69
WikiArt 79.48 43.85 65.64 68.09 70.43 71.33 73.43
Sketches 80.68 39.80 70.74 75.03 74.97 72.87 76.68
CIFAR-100 89.03 72.71 75.67 79.76 79.52 84.00 85.93

ImageNet 49.78 79.84 23.01 79.84 N/A 79.84 79.84
(0.00) (0.00) (↓ 56.83) (0.00) N/A (0.00) (0.00)

Model Size 582 MB 86 MB 86 MB 101 MB 86 MB 99 MB 96 MB
(6.77x) (0.03x) (1.00x) (0.15x) (1.01x) (0.17x) (0.14x)

T
2T

-V
iT

-1
2

CUB 74.47 26.15 45.33 63.57 66.57 64.31 69.90
Cars 72.67 11.52 59.01 58.22 54.63 53.79 61.90
FGVC 64.09 12.46 42.07 51.47 52.69 48.02 53.55
WikiArt 73.51 35.57 51.24 60.34 58.53 59.01 61.20
Sketches 76.60 18.79 61.98 73.07 71.29 74.02 74.75
CIFAR-100 85.03 33.10 66.34 70.98 74.86 73.58 77.42

ImageNet 32.62 55.42 28.54 55.42 N/A 55.42 55.42
(0.00) (0.00) (↓ 26.88) (0.00) N/A (0.00) (0.00)

Model Size 179 MB 27 MB 27 MB 32 MB 28 MB 36 MB 30 MB
(6.63x) (0.07x) (1.00x) (0.20x) (1.02x) (0.30x) (0.14x)

Table 1. Comparison of performance on six new tasks added on the initial ImageNet task with three vision transformers. With new tasks
sequentially fed into the network, the results are averaged over 6 random orders according to 5 preset seeds. Note that Adaptor-B is the used
Adaptor-Bert baseline. Bold fonts and blue fonts represent the best and second-best performance on each new task except Individual (the
ideal setting), respectively. Red values marked with ↓ in parentheses denote the average performance deterioration on the ImageNet task
after continually learning new tasks. Gray values in parentheses refer to the times (×) of retrained model sizes compared to Classifier.

New Task Method DeiT-Ti DeiT-S T2T-ViT-12

Places365
Individual 52.67 55.22 51.53
Classifier 40.36 44.87 37.06

LwF 42.17 45.13 39.77
Piggyback 46.32 50.71 46.38

MEAT 48.15 52.98 47.25

Table 2. Classification results (%) on Places365 dataset, which is
added to the ImageNet pretrained transformers.

ter its average results. In conclusion, our approach balances
well in transferring knowledge from the initial task, avoiding
catastrophic forgetting, and economizing on parameters.

Another large-scale dataset, Places365 [53], is also intro-
duced as a new task with significant domain shifts from the
initial ImageNet task, as shown in Table 2. The experimental
results keep nearly the same as those on small datasets. Our
proposed MEAT boosts the performance by a large margin,
meanwhile averting increasing too many model parameters.

4.3. Ablation Study

4.3.1 Effectiveness of Components

In Figure 3, we demonstrate how our method benefits from
each designed component. Five model variants are listed in
each sub-graph to denote three vision transformers equipped
with different proposed modules or baselines used for com-
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Figure 3. The effectiveness of each component in our method on six
new tasks. In each sub-figure, accuracy (%) of fix model variants
on the same dataset are plotted with three ViTs.

parison. Concretely, (M1) the Classifier baseline, which is
the same as Table 1; (M2) transformers with MEAT masks on
MHSA, without drop-control loss Ldc in Eqn. 9; (M3) trans-
formers with MEAT masks on MHSA, with drop-control loss
Ldc; (M4) transformers with MEAT masks on neurons of the
FFN block; (M5) the proposed MEAT. In three vision trans-
formers, both MEAT masks on tokens and neurons, and the
loss function efficiently improve the classification accuracy
when adding new tasks compared to Classifier baseline (M1).
The MEAT mask on image tokens with the proposed loss
function (M3) achieves 2.67% ∼ 7.02% performance boosts
without modifying the trained weights, demonstrating the
effectiveness of paying attention to the self-attention strategy.
The attention mask on neurons (M4) promotes the results
considerably by dynamically activating and deactivating pre-
trained weights, customizing a sub-network of the complete
transformer for each new task. In conclusion, each adopted
component of our method consistently promotes continual
learning performance.

4.3.2 Comparing to CNNs

As an emerging model used in computer vision, the ViTs
have quite distinct architecture from CNNs. Given that most
existing works on incremental learning are based on CNNs,
we conduct the experiments on the CIFAR-100 dataset com-
paring CNNs (i.e., VGG16-BN [42], ResNet50 [13] and
EfficientNet-B4 [44]) and vision transformers using LwF,
Piggyback, and our proposed MEAT as shown in Figure 4a.
Since the MHSA block only exists in ViTs, in MEAT ex-
periments with CNNs, we only apply the MEAT attention
mask to all parameters pre-trained on ImageNet. It can be ob-
served that CNN-based models and transformer-based mod-
els show better performance using these three approaches.
Nevertheless, due to the absence of the attention mask on
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Figure 4. (a) Comparing results (%) over vision transformers and
CNNs on CIFAR-100. (b) Model size (MB) comparison.

self-attention, CNNs under MEAT only have slightly better
results than the CNNs under Piggyback. Significantly, the
EfficientNet is an excellent network architecture with rela-
tively small model sizes and better performance than DeiT-Ti
and T2T in LwF and Piggyback experiments. Nevertheless,
using the MEAT masks only achieves similar results with
Piggyback. In contrast, three ViTs behave much better using
MEAT than LwF and Piggyback, because MEAT not only
introduces attention masks on a portion of parameters, but
also assigns the special attention masks to self-attention and
generates unique token interaction patterns for new tasks.
We attribute this phenomenon to the fundamental idea of
our work: paying attention to self-attention. And the mecha-
nism of self-attention in ViTs builds dense and long-distance
dependencies between all image patches. Applied with the
MEAT masks to assign different attention values to image
tokens, each new task can construct unique token interaction
pattern with little overhead. However, the masks for CNNs
only modifies the activation state of trained neurons, which
lacks of modeling the long-distance relationship and brings
less performance boosts than MEAT with ViTs. Please refer
to the supplementary material for more ablation experimen-
tal results and analysis.

4.4. Analysis and Discussion

We visualize the trained binary masks of the 2-th layer
and the 11-th encoder layer in Figure 5 on involved six
datasets with three adopted ViTs. It can be observed that
the activated and isolation states of the same token in the
shallow and deep layer present clearly different patterns
between datasets and the backbones . First, all the ViTs tend
to activate more image tokens at shallow layers and isolate
more tokens with the deepening of layers on all new tasks,
which is reasonable that isolating too many tokens at shallow
layers will cause severe information loss. The shallow layer
mainly isolates the edge and the background tokens of input
images, while the deep layer further isolates more central
tokens and focuses on the target object region. For example,
on CUB, only some edge tokens are isolated at the shallow
layer; at the deep layer more background tokens are dropped
and the body tokens of birds are more likely to be activated.
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Figure 5. Visualization of the trained MEAT masks on the example images of the adopted six datasets at the 2-th layer and the 11-th layer of
ViTs. The unchanged and black patches are the corresponding locationsfi of the activated and isolated (1 and 0 in masks) image tokens.

Another observation is that the trained masks reflect the
features of the corresponding datasets. CUB, Car, and FGVC
are fine-grained datasets, prone to isolate the background
tokens and activate the central tokens containing the tar-
get (e.g., the body of the bird, car, and plane). In contrast,
the image of Sketches only contains simple lines and large
blank space and it is prone to isolate more central tokens
where the blank space frequently appears. Finally, the bigger
model, DeiT-S, tends to retain more tokens than two smaller
models at the shallow layer, like on CUB, it only isolates
the tokens at the top right-hand corner. This indicates that
big models preserve more token interaction at the shallow
layers, benefiting the performances on new tasks in Table 1.

We also compare the activated ratios of image tokens and
trained neurons averaged on all continual tasks in Figure 6.
The attention masks on image tokens in Figure 6a tend to
isolate more tokens at 1-th layer, activate more tokens at
mid-layers, and gradually isolate more tokens at deep layers,
which matches with observations of the visualization results.
Moreover, it is noticing that the big model, DeiT-S, acti-
vates more image tokens than two smaller models at shallow
layers, contributing to better results. Figure 6b gives the acti-
vated states of the MEAT masks on FFN neurons. Similar to
the token mask, deep layers favor activating fewer neurons
than shallow layers. Refer to supplementary material for
more visualization results.

5. Conclusion and Future Work

This paper presents MEAT, a novel task-continual learn-
ing method tailored for ViTs, to adapt a pre-trained ViT to
new tasks. MEAT applies attention masks to image tokens in
the MHSA block to adaptively generate unique token inter-
action patterns for new tasks. We further extend the MEAT
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(b) MEAT on neurons

Figure 6. The activated rates of (a) image tokens in the MHSA
block (b) neurons of the FFN block in each layer averaged on six
new tasks of three ViTs using the MEAT attention mask.

mechanism to pay attention to neurons for exploring the suit-
able sub-networks in the FFN block per task. Thus MEAT
fully leverages the architecture characteristics of ViTs with
task-specific attention masks on self-attention and a portion
of parameters without manual hyperparameter setting. Ex-
periment results show that MEAT effectively improves the
performance of continual tasks with little overhead of param-
eter storage and retraining. In future work, we will extend
the proposed MEAT beyond the task-continual learning to
make further improvements of ViTs in continual learning.
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