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Abstract

We present a simple and effective framework, named

Point2Seq, for 3D object detection from point clouds. In

contrast to previous methods that normally predict at-

tributes of 3D objects all at once, we expressively model the

interdependencies between attributes of 3D objects, which

in turn enables a better detection accuracy. Specifically,

we view each 3D object as a sequence of words and re-

formulate the 3D object detection task as decoding words

from 3D scenes in an auto-regressive manner. We further

propose a lightweight scene-to-sequence decoder that can

auto-regressively generate words conditioned on features

from a 3D scene as well as cues from the preceding words.

The predicted words eventually constitute a set of sequences

that completely describe the 3D objects in the scene, and

all the predicted sequences are then automatically assigned

to the respective ground truths through similarity-based se-

quence matching. Our approach is conceptually intuitive

and can be readily plugged upon most existing 3D-detection

backbones without adding too much computational over-

head; the sequential decoding paradigm we proposed, on

the other hand, can better exploit information from com-

plex 3D scenes with the aid of preceding predicted words.

Without bells and whistles, our method significantly out-

performs previous anchor- and center-based 3D object de-

tection frameworks, yielding the new state of the art on

the challenging ONCE dataset as well as the Waymo Open

Dataset. Code is available at https://github.com/

ocNflag/point2seq .

1. Introduction

3D object detection is a critical component of intelligent

perception systems for self-driving, aiming to localize and

recognize cars, pedestrians, and other key objects around

an autonomous vehicle. With the increasing popularity of

LiDAR sensors, 3D object detection from point clouds has
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Figure 1. Point2Seq reformulates the 3D object detection problem

as auto-regressively generating sequences of words that can repre-

sent the 3D objects. The sequential decoding paradigm attains bet-

ter detection performance compared to previous works that predict

all attributes of the 3D objects in parallel, thanks to its competence

in exploring intrinsic dependencies among object attributes.

been receiving much attention owing to the advanced detec-

tion accuracy compared to other input modalities.

In driving scenes, most 3D objects are extremely small

relative to the detection range, and numerous approaches

have been employed to detect those small objects from point

clouds accurately. Anchor-based methods [13, 38] place

predefined anchors on each pixel center of a Bird-Eye-View

(BEV) feature map, while center-based approaches [9, 42]

treat the pixels near object centers as positives and predict

boxes using those pixel features. These methods rely on

complex hand-crafted procedures of label assignments and

post-processing, and quantization errors introduced by the

BEV representations lead to severe misalignment between

the object locations and the pixel features used to predict

those objects. Approaches like [16, 25, 27] rely on a sec-

ond refinement stage to mitigate the misalignment issue,

yet at the cost of adding too much computational overhead.

Therefore, learning more spatially-aligned features to de-

tect the 3D objects accurately while maintaining a high effi-

ciency poses an open challenge to the research community.

To address the challenge, in this paper, we introduce

Point2Seq, a flexible and streamlined framework for 3D ob-

ject detection from point clouds. Unlike prior methods that

typically predict all attributes of a 3D object (e.g., location,

class, size) simultaneously, we represent each object as a

sequence, in which each word corresponds to an object at-

tribute, and we explicitly explore the inherent dependencies

among words alongside their relations with the input 3D

scene to progressively predict each attribute of 3D objects.

Our motivation is quite intuitive: given the fact that each ob-
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ject is represented by sequential words, the existing words

will provide 3D detectors with cues to better exploit spa-

tial features and help detectors predict the following words

more accurately. For instance, 3D detectors can leverage

more spatially-aligned features for an object if the object lo-

cation has been formerly predicted and better recognize the

object class if its size information has already been known.

It is therefore desirable to design a detection framework that

may sequentially predict words of 3D objects conditioned

on the preceding generated words as well as the spatial fea-

tures until all the words form a set of sequences describing

the 3D objects in the scene.

To achieve this goal, we must address two critical chal-

lenges: how to design the sequential object words pre-

diction module and make it compatible with the existing

3D detection pipelines and how to optimize the 3D de-

tector with the ground truth and predicted sequences. To

resolve the first problem, we propose a novel scene-to-

sequence decoder, which takes the BEV feature map and

a set of initial region cues as input and auto-regressively

decodes sequences for all objects in parallel. The scene-to-

sequence decoder is compatible with most grid-based 3D

backbones [13, 19, 35, 38, 44] and can effectively aggregate

features from those backbones based on the information of

the preceding words. By virtue of the highly-parallel deep

learning libraries, the scene-to-sequence decoder can gen-

erate the sequences of all 3D objects in one shot, with little

added time and memory cost.

To handle the second issue, we adopt the set-to-set loss

to match the predicted sequences with the ground truths.

Unlike existing approaches [3,21,36] that utilize the sum of

the classification and regression loss as the cost function for

bipartite matching, in this paper, we propose a novel metric

to measure the similarity between two sequences. Then we

perform bipartite matching by maximizing the global sim-

ilarity of the prediction and the ground truth set using the

proposed metric. In this manner, each predicted sequence

can be automatically assigned to a respective ground truth

without pre-defined anchors or centers. The assignments

are globally optimal and result in better performance com-

pared to previous methods.

With the lightweight scene-to-sequence decoder, our

method can progressively predict the words of 3D ob-

jects, yielding reliable predictions that significantly outper-

form state-of-the-art. In addition, our method is free from

the human-designed procedures of label assignments with

similarity-based sequence matching. Our key contributions

are summarized as follows:

• We present an effective and flexible framework for 3D

object detection from point clouds. We represent each 3D

object as a sequence of words and model the 3D object de-

tection problem as decoding the words from the 3D scenes

in an auto-regressive manner.

• We propose a scene-to-sequence decoder that can auto-

regressively generate sequences representing the detected

3D objects and introduce the similarity-based sequence

matching scheme to enable automatic assignments of the

predicted sequences to the respective ground truths for end-

to-end training.

• Our method significantly outperforms the anchor-

based and center-based 3D detectors with the same back-

bone, attaining 66.16% mAP on the ONCE dataset and

77.52% vehicle L1 mAP on the Waymo Open Dataset.

2. Related Work

Backbones for 3D object detection. 3D detectors rely

on various backbone networks to extract features from input

point clouds. The existing backbones of 3D detectors can be

divided into 3 streams: point-based, range-based, and grid-

based. The point-based backbones [15, 22, 26, 28, 39–41]

operate directly on raw point clouds with the point op-

erators [18, 23] to extract the point-wise features. The

range-based backbones [1, 8, 14, 20, 31] take range images,

which are the raw data from LiDAR sensors, as the input

representation. Customized operators, e.g., range condi-

tional convolutions [1], meta-kernels [8], are applied on the

range images for feature extraction. The grid-based back-

bones [13, 19, 35, 38, 44] firstly rasterize point clouds into

voxels or pillars. Those voxels or pillars are fed into a 3D

network and then projected into a BEV feature map, fol-

lowed by a 2D convolutional neural network to detect 3D

objects. Among the 3 kinds of backbones, the grid-based

backbones can obtain superior detection performance while

maintaining high efficiency. Our Point2Seq is a flexible de-

tection framework and can be applied to most grid-based

backbones.

3D objects prediction mechanisms. 3D detectors adopt

various prediction mechanisms to generate detected 3D ob-

jects from the backbone features. For the point-based back-

bones, PointRCNN [26] directly generates object propos-

als on the key points’ locations. For the range-based back-

bones, RangeDet [8] generates 3D bounding boxes on the

pixels of range images. For the grid-based backbones, SEC-

OND [38] places a set of 3D anchors on every grid cen-

ter of a BEV map. The anchors that have a high overlap

with the ground truth 3D objects are set to positives, and

the objects are then predicted on the positive anchors. SA-

SSD [11] applies the part-sensitive warping scheme to en-

hance the spatial features. CenterPoints [42] treats BEV

pixels near the object centers as positives and generates

predicted bounding boxes near the object centers. Exist-

ing methods usually predict all attributes of the 3D objects

simultaneously without considering the intra-object infor-

mation, while Point2Seq can model the interdependencies

among the object’s attributes with the scene-to-sequence de-

coder.

Set-to-set matching for object detection. The set-to-

set matching mechanism is first introduced in DETR [3] in
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Figure 2. The overall architecture of our framework. Point2Seq contains three major components: the 3D backbone, the scene-to-sequence

decoder, and the similarity-based sequence matching scheme. The 3D backbone takes the rasterized point cloud as input and outputs the

Bird-Eye-View (BEV) feature map for the 3D scene. The scene-to-sequence decoder operates on the BEV feature map and sequentially

predicts the words of 3D objects based on the information from the preceding predicted words. Finally, the predicted sequences are

automatically assigned to the corresponding ground truths by the proposed similarity-based sequence matching scheme.

which a set of object queries are assigned to the respective

ground truths through bipartite matching. This method is

improved by a series of works [29, 32, 34, 45] on image-

based object detection. The set-to-set matching scheme has

also been adopted in 3D object detection. 3DETR [21] uti-

lizes sampled points as object queries. Object DGCNN [36]

leverages a sparse set of object queries to iteratively inter-

act with a BEV feature map to generate 3D objects. Com-

pared to previous methods, Point2Seq does not require the

sparse object queries or the multi-step refinement modules

in [33, 37]. The sequences are generated densely from the

BEV map in parallel and are automatically matched to the

corresponding ground truths by similarity-based sequence

matching, without additional modules or parameters.

3. Detecting 3D Objects as Sequences

3.1. Architecture

For each 3D scene, Point2Seq takes a point cloud as

input and outputs a set of 3D bounding boxes B =
{B1, · · · , BM} ∈ R

M×8 that represent the detected 3D ob-

jects, e.g., vehicles, pedestrians, cyclists, etc. A 3D point

cloud is an N × d matrix, where N denotes the number

of points in the scene and d denotes the initial features of

points, i.e., 3D coordinates, intensity, etc. Each 3D object

Bi ∈ R
8 is a vector: [x, y, z, l, w, h, θ, c], where [x, y, z]

is the location of the object’s center, [l, w, h] is the object’s

size, θ is the object’s orientation, and c is the class of the

object.

As is shown in Figure 2, the architecture of Point2Seq

is composed of 3 parts: the 3D backbone, the scene-

to-sequence decoder, and the similarity-based sequence

matching scheme. The 3D backbone first consumes a point

cloud and generates a BEV feature map from the point

cloud. Then the scene-to-sequence decoder takes both the

BEV feature map and an initial set of region cues as in-

put and decodes sequences of words that describe the de-

tected 3D objects in the scene. Finally, the similarity-based

sequence matching is applied to assign the predicted sen-

tences to the respective ground truths. The choice of 3D

backbones in Point2Seq can be flexible: most grid-based

backbones [13,19,35,38] can be applied in our framework.

The grid-based backbones first transform point clouds into

voxels or pillars, and then 3D features are extracted from

those voxels or pillars by sparse convolutions [10] or set

abstraction [23], respectively. The 3D features are then pro-

jected to Bird-Eye-View (BEV). A 2D convolutional neural

network is applied on the projected features to obtain the

final BEV feature map F ∈ R
H×W×C , where the detection

space is divided into an H × W grid, and C denotes the

number of feature channels.

In the scene-to-sequence decoder, the 3D objects B are

transformed into a set of sequences {S1, · · · , SM}, where

each sequence Si corresponds to a 3D object Bi and con-
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tains K words {W 0
i , · · · ,W

K−1
i } that can represent the

3D object. The scene-to-sequence decoder operates on

the BEV feature map F and can auto-regressively predict

a word W j
i conditioning on F and the preceding words

W 0:j−1
i . We will introduce the detailed design of the

scene-to-sequence decoder in Sec. 3.2 and then illustrate

how to optimize the scene-to-sequence decoder and the 3D

backbone through similarity-based sequence matching in

Sec. 3.3. Finally, we discuss and compare our method with

previous literature in Sec. 3.4.

3.2. Scene­to­Sequence Decoder

Problem formulation. Previous single-stage 3D detec-

tors model the 3D object detection problem as predicting

all attributes of the 3D objects B simultaneously from the

features F . The learning process can be formulated as the

optimization problem:

max

M∑

i=1

logP (Bi|D(F )), (1)

where Bi ∈ B is the attributes [x, y, z, l, w, h, θ, c] of the ith
ground truth 3D object, M = |B|, and D is normally a con-

volutional prediction head applied on the BEV feature map

F . The parallel prediction paradigm is widely adopted for

its efficiency. However, it suffers from the misalignment be-

tween the object’s actual location and the BEV features used

for prediction due to the high quantization errors introduced

by rasterization. Multi-stage refinements can be employed

to mitigate the misalignment problem but will consequently

introduce too much computational overhead.

In this paper, we draw inspirations from Language Mod-

eling (LM) [2, 7] in natural language processing applica-

tions and translate each 3D object B into a sequence S con-

taining K words {W 0, · · · ,WK−1}:

B = T (S) = T (W 0, · · · ,WK−1). (2)

The translation T is parameter-free and bidirectional, so

the 3D objects and their corresponding words can be easily

transformed into each other. Then similar to the language

models, we can reformulate the detection problem as max-

imizing the probability production of all target words W̃i

j

conditioning on the feature F and the preceding predicted

words W 0:j−1
i :

max

M∑

i=1

K−1∑

j=1

logP (W̃i

j
|D(F,W 0

i , · · · ,W
j−1
i )). (3)

The main insight of our approach is that each 3D object is

decomposed into several words, and predicting these words

sequentially, instead of simultaneously in previous meth-

ods, enables more effective exploitation of the BEV features

with the cues from the preceding predicted words.

3D object as a sequence of words. Translating every 3D

object into words is a pivotal step in our method. Different

from those methods that adopt discrete tokens as words in

natural language processing tasks, we represent the words

in a continuous format in our method. The use of contin-

uous representations for object words is preferable in 3D

object detection since most attributes of 3D objects, e.g.,

locations, sizes, orientations, are continuous values, and the

predicted words can be directly transformed back into the

corresponding object’s attributes without loss of accuracy.

In this paper, each 3D object B = [x, y, z, l, w, h, θ, c] is

translated into 5 words:

B = T (S) = T (WR,WL,WO,WS ,WC). (4)

The region word WR = [Rx, Ry] ∈ R
2 indicates the possi-

ble region in which the 3D object is likely to appear, where

[Rx, Ry] is the BEV center coordinate of the region, and ad-

ditional parameters [Rl, Rw] are introduced to describe the

spatial range of the region on the BEV feature map. The

location word WL = [Lx, Ly, z] ∈ R
3 denotes the loca-

tion of the object’s center, where Lx = (x − Rx)/Rl and

Ly = (y − Ry)/Rw denote the relative location in the re-

gion. The orientation word WO = [sin(θ), cos(θ)] ∈ R
2

encodes the object’s orientation θ by trigonometric func-

tions. The size word WS = [log(l), log(w), log(h)] ∈ R
3

applies logarithmic functions to the object’s size. The cat-

egory word WC ∈ R
n+1 indicates the probabilities of n

detected classes and the background class.

Scene-to-sequence prediction. Our proposed scene-to-

sequence decoder takes the BEV features F and a set of

region words WR as the initial inputs and sequentially pre-

dicts WL, WO, WS , WC , i.e., W 1, W 2, W 3, W 4 in 4
steps for each region WR. In each step, the words are pre-

dicted on a hidden state map H ∈ R
H×W×C that encodes

the historical information of the preceding steps. Specifi-

cally, the hidden state H1 is firstly initialized as the input

BEV feature map F :

H1 = F. (5)

Then at the jth step, the word W j will be directly pre-

dicted from the hidden state Hj at the corresponding region

center WR, i.e., Hj [W
R] ∈ R

C , through a single linear

projection layer flinear:

W j = flinear(Hj [W
R]), (6)

where [·] is the indexing operator. The hidden state Hj [W
R]

at WR will then be updated to the next step Hj+1[W
R]

based on the already learned knowledge from the former

predicted words {W 0, · · · ,W j}:

Hj+1[W
R] = Φ(Hj [W

R];W 0, · · · ,W j), (7)

where Φ is the update function. To model the hidden state

update process at the jth step, near each region WR, we
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Figure 3. The sample locations at each step. For each region,

we progressively obtain 1, 4, 4 points from the spatial sampler S,

based on the information from the predicted words.

first sample a sparse set of points {pj1, · · · , p
j
n} ∈ R

n×2 by

a spatial sampler S parameterized by the predicted words:

{pj1, · · · , p
j
n} = S(W 0, · · · ,W j). (8)

The sampling patterns of S are shown in Figure 3, and

the detailed formulations are demonstrated in the appendix.

Then for each region WR, we can update to Hj+1[W
R] by

aggregating hidden vectors at those sampled locations on

Hj , which can be formulated as

Hj+1[W
R] = A(Hj [p

j
1], · · · , Hj [p

j
n]), (9)

where the aggregation function A concatenates the sampled

hidden vectors and projects them into the R
C space.

The initial set of the region words WR indicates where

the 3D objects are likely to appear in the 3D scene. Since

there is no such prior information, we employ a dense pre-

diction strategy in this paper. Namely, we treat each pixel

in the BEV feature map as a region word and predict a se-

quence for each BEV pixel. The category word WC is ex-

pected to predict the highest probability for the background

class if there is no 3D object near the corresponding pixel

region. The dense prediction paradigm benefits from the

highly-parallel characteristics of the modern deep learning

libraries, and the sequences for all pixels can be predicted in

parallel by the scene-to-sequence decoder efficiently using

shared MLPs and sampling operators.

3.3. Similarity­based Sequence Matching

In this section, we will introduce how to optimize our de-

tection framework by similarity-based sequence matching.

Our approach is inspired by the set-to-set loss employed in

the image-based detection frameworks [3]. Our main con-

tribution lies in the design of a new cost function tailored

for 3D object detection in the set-to-set matching prob-

lem. Specifically, we propose a novel metric Sim(S, S̃) to

measure the similarity of two sequences S and S̃ from the

predicted and the ground truth sequence set, respectively.

We match the predicted sequences to the corresponding tar-

get sequences by maximizing the global similarity of the

two sequence sets. Finally, losses can be applied to the

matched sequence pairs for back-propagation. In this man-

ner, we can eliminate the hand-crafted label assignment pro-

cess and make our model end-to-end trainable without non-

maximum suppression.

The scene-to-sequence decoder outputs a set of predicted

sequences {S1, · · · , SHW } containing H × W sequences

for all BEV pixels in total. For the ground truth 3D objects,

we also construct a sequence set {S̃1, · · · , S̃M ,∅, · · · ,∅}
where the size of the ground truth set is equal to that of the

prediction set, and we pad the remaining sequences with

∅ if M < H × W . To measure the similarity between a

predicted sequence S and a ground truth sequence S̃, we

define a new similarity metric that can be formulated as

Sim(S, S̃) = (WCW̃C)α · e−(1−α)
∑

j∈{R,L,O,S} |W j−W̃ j |,
(10)

where the first term (WCW̃C)α measures the class similar-

ity between the predicted and the ground truth objects, and

the second term measures the shape and location similarity.

The hyper-parameter α is utilized to balance the two simi-

larities and set to 0.25 in our experiments. Sim(S,∅) = 0
if a predicted sequence is matched to ∅.

The proposed similarity metric is a more stringent cri-

terion to match the predictions with the ground truths, and

even slight differences between the two sequences can make

the similarity score tend to 0. Given the fact that the 3D

objects are innately small and the mismatch should be com-

pletely avoided, the stringent similarity metric we proposed

is preferable in the task of 3D object detection.

With the similarity metric, we can further establish the

optimal set-to-set matching Π∗ by considering the bipartite

matching problem:

Π∗ = argmax
Π

∑

(i→j)∈Π

Sim(Si, S̃j), (11)

where Π is a bijective function that enables a one-to-one

mapping from the predicted sequence set to the ground truth

set. The bipartite matching problem aims to find the optimal

Π∗ so that the maximum overall similarity of the two sets

can be achieved. With Π∗, every ground truth sequence can

be automatically assigned to the corresponding predicted

sequence that has the highest similarity. The optimal bipar-

tite matching Π∗ can be calculated efficiently by the Hun-

garian algorithm [12].

Once the matched pairs of S and S̃ are established, the

proposed loss function tailored for 3D object detection can

be computed as:

Ldet =
∑

(i→j)∈Π∗

[Lcls(W
C
i , W̃C

j )+

✶{S̃i ̸=∅}λregLreg(W
{R,L,O,S}
i , W̃

{R,L,O,S}
j )],

(12)

where Lcls is the focal loss applied on the predicted and tar-

get category words, and Lreg takes the words W {R,L,O,S}
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and W̃ {R,L,O,S} as input and translates them back to the

respective object’s location and shape [x, y, z, l, w, h, θ] on

which the smooth-L1 loss is then applied. The indicator

function ✶{S̃i ̸=∅} implies that we only apply Lreg on those

sequences that are matched to the ground truths, and λreg is

a coefficient that balances the two losses.

Since each ground truth 3D object is matched with

only one predicted sequence, the scene-to-sequence head

does not produce duplicated boxes for an individual object.

Hence the time-consuming process of non-maximum sup-

pression can be eliminated in our framework. During the

inference stage, we simply filter out those low-quality se-

quences in which the maximum class probability in WC is

below a certain threshold, and we translate the remaining

sequences into 3D objects as the final detection results.

3.4. Discussion

Our proposed Point2Seq shares a similar intuition with

the concurrent work Pix2Seq [5], which is proposed for

image-based object detection, in terms of leveraging objects

as words that can be read out from a feature map. However,

our method is intrinsically different from [5] in 3 aspects:

1) Unlike [5] that merges all objects into an individual se-

quence, we treat each object as a sequence and predict all

objects in parallel, while words in each object are generated

sequentially. In this manner, we can circumvent the object

ordering problem in [5], and our method is much more ef-

ficient at the inference stage compared to [5] in which the

inference latency will be heavily influenced by the total ob-

ject count in an image. 2) We adopt the continuous word

representations instead of discrete tokens in [5]. The use

of continuous representations relieves the need for quanti-

zation and makes our method compatible with the existing

loss functions tailored for 3D object detection. 3) We pro-

pose the scene-to-sequence decoder to generate words for

each object, in lieu of the Transformer architecture in [5].

The scene-to-sequence decoder is lightweight and leverages

a sparse set of features to predict each object, which is more

suitable for 3D object detection where the detected targets

usually are small and sparse.

4. Experiment

In this section, we evaluate Point2Seq on the commonly-

used Waymo Open Dataset [30] and the ONCE dataset [17].

We first introduce the experimental settings in Sec. 4.1.

Then we compare our approach with previous state-of-the-

art methods on the Waymo Open Dataset (Sec. 4.2) and the

ONCE dataset (Sec. 4.3). Finally, we report the inference

speed and the number of parameters, as well as the efficacy

of different components in our model in Sec. 4.4.

4.1. Experimental Setup

Waymo Open Dataset. The Waymo Open Dataset is

composed of 1000 sequences of point clouds, in which 798

sequences (nearly 158k point cloud samples) are used as

the training set, and 202 sequences (nearly 40k point cloud

samples) are utilized as the validation set. The evaluation

metrics on the Waymo Open Dataset are 3D mean Average

Precision (mAP) and mAP weighted by heading accuracy

(mAPH). The IoU threshold used for vehicles is 0.7 and

0.5 for other categories. The detection results are reported

based on the difficulty levels: LEVEL 1 for boxes with more

than 5 points and LEVEL 2 for boxes with at least 1 point.

ONCE Dataset. The ONCE dataset contains one million

point clouds in total, in which 5k, 3k, 8k point clouds are

annotated as the training, validation, testing split, respec-

tively. The remaining point clouds are kept unannotated for

self-/semi-supervised learning. In this paper, we train our

model on the training split and report the detection results

of vehicles, pedestrians, and cyclists on the validation and

testing split, without using the unlabeled data. The official

evaluation metric is mean Average Precision (mAP), and

the detection results are divided according to the objects’

distances to the sensor: 0-30m, 30-50m, and 50m-inf.

Implementation Details. On the Waymo Open Dataset,

we use the same 3D sparse convolutional neural network

and 2D convolutional neural network as [42]. The input

voxel size and the output resolution of the BEV feature map

are also kept the same as [42] for a fair comparison. On the

ONCE dataset, all the voxel-based detectors use the same

type of 3D backbone [38] in their official benchmark im-

plementations. We also follow the setting and use the 3D

backbone in [38]. For other model configurations, we adopt

the same as those on the ONCE benchmark.

Training and Inference Details. We train our model

with the ADAM optimizer and the cosine annealing learn-

ing rate scheduler. On the Waymo Open Dataset, we uni-

formly sample 20% of the point cloud samples for training

and use the full validation set for evaluation following [25].

We train our model with the batch size 32 and the initial

learning rate 0.006 for 180 epochs on 8 V100 GPUs. λreg

in the loss function is set to 2. Data augmentations are kept

the same as [42]. On the ONCE dataset, we follow the train-

ing settings of the respective benchmark and train our model

with the batch size 32 and the initial learning rate 0.003 for

80 epochs on 8 V100 GPUs. λreg in the loss function is set

to 0.5. Data augmentations are kept the same as [17]. On

both two datasets, we filter out those objects with the max-

imum foreground class probability in WC below 0.2 and

keep the remaining objects as the final detection results dur-

ing the inference stage, without any other post-processing.

4.2. Comparisons on the Waymo Open Dataset

Since our contribution focuses on the 3D object predic-

tion mechanism, the fairest way to evaluate our method and

compare it with the anchor-based and center-based methods

is to only replace the center or anchor head with our scene-

to-sequence decoder while maintaining other components
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Method Backbone Head
Vehicle LEVEL 1 Vehicle LEVEL 2

3D mAP(%) 3D mAPH(%) 3D mAP(%) 3D mAPH(%)

LaserNet [20] Range Anchor 52.1 50.1 - -

RCD [1] Range Center 69.0 68.5 - -

RangeDet [8] Range Center 72.85 - - -

RSN [31] Range Center 75.1 74.6 66.0 65.6

PointPillars [13] Pillar Anchor 63.3 62.7 55.2 54.7

Pillar-OD [35] Pillar Anchor 69.8 - - -

MVF [43] Voxel Anchor 62.93 - - -

PV-RCNN [25] Voxel Anchor 77.51 76.89 68.98 68.41

VoTr-TSD [19] Voxel Anchor 74.95 74.25 65.91 65.29

Voxel R-CNN [6] Voxel Anchor 75.59 - 66.59 -

Pyramid-RCNN [16] Voxel Anchor 76.3 75.68 67.23 66.68

CT3D [24] Voxel Anchor 76.3 - 69.04 -

CVCNet [4] Voxel Center 65.20 - - -

AFDet [9] Voxel Center 63.69 - - -

CenterPoints [42] Voxel Center 76.7 76.2 68.8 68.3

SECOND† [38] Voxel Anchor 73.62 73.14 64.86 64.40

CenterPoints† [42] Voxel Center 75.58 75.01 67.00 66.52

Point2Seq (Ours) Voxel Sequence 77.52 77.03 68.80 68.36

Table 1. Performance comparison on the Waymo Open Dataset with 202 validation sequences for vehicle detection. †: re-implemented us-

ing the official code. Point2Seq maintains the same backbone, data augmentations, and training epochs with the re-implemented baselines.

Method mAP(%)
Vehicle mAP(%) Pedestrian mAP(%) Cyclist mAP(%)

overall 0-30m 30-50m 50m-inf overall 0-30m 30-50m 50m-inf overall 0-30m 30-50m 50m-inf

PointRCNN [25] 28.74 52.09 74.45 40.89 16.81 4.28 6.17 2.4 0.91 29.84 46.03 20.94 5.46

PointPillars [13] 44.34 68.57 80.86 62.07 47.04 17.63 19.74 15.15 10.23 46.81 58.33 40.32 25.86

PV-RCNN [25] 53.55 77.77 89.39 72.55 58.64 23.50 25.61 22.84 17.27 59.37 71.66 52.58 36.17

SECOND [38] 51.89 71.19 84.04 63.02 47.25 26.44 29.33 24.05 18.05 58.04 69.96 52.43 34.61

CenterPoints [42] 60.05 66.79 80.10 59.55 43.39 49.90 56.24 42.61 26.27 63.45 74.28 57.94 41.48

Point2Seq (Ours) 66.16 73.43 85.16 66.21 50.76 57.53 68.21 47.15 25.18 67.53 77.95 62.14 46.06

Table 2. Performance comparison on the ONCE dataset validation split. Point2Seq maintains the same backbone architecture and training

configurations with the baselines on the ONCE benchmark.

as the same. We follow this principle and re-implement two

baseline models from their official implementations: SEC-

OND [38] with the anchor head and CenterPoints [42] with

the center head. Our proposed Point2Seq, re-implemented

SECOND, and CenterPoints have the same voxel-based 3D

backbone, data augmentations, and training epochs to en-

sure a completely fair comparison.

Table 1 shows the detection results on the Waymo valida-

tion set. Simply switching from the anchor and center head

to our Point2Seq gives 3.90% and 1.94% LEVEL 1 mAP

improvements, respectively. Our method attains 77.52%
LEVEL 1 mAP and 68.80% LEVEL 2 mAP for vehicle de-

tection, surpassing existing methods by a significant mar-

gin. Our approach even outperforms those time-consuming

two-stage 3D detectors [16, 24, 25], which indicates the ef-

fectiveness of the scene-to-sequence decoder.

4.3. Comparisons on the ONCE dataset

The ONCE dataset benchmarks different voxel-based

detectors using the same backbone network, and we also

follow this rule for a fair comparison. As is shown in Ta-

ble 2, Point2Seq attains the state-of-the-art results on all

classes, with 73.43% mAP for vehicle detection, 57.53%
mAP for pedestrian detection, and 67.53% for cyclist de-

tection. The overall mAP of our approach is 66.16%,

6.11% higher than the center-based 3D object detector [42]

and 14.27% higher than the anchor-based 3D object detec-

tor [38]. The observations on the ONCE dataset are consis-

tent with those on the Waymo Open Dataset.

4.4. Ablation Studies

Inference speed and model parameters. Table 3

demonstrates the inference time and the number of param-

eters of our method. Since the 3D objects in a scene are

predicted in parallel, Point2Seq can obtain high efficiency

with 70.4ms inference latency on average for a single model

on a V100 GPU. The scene-to-sequence head only contains

several linear projection layers, and the sampling operation

is parameter-free, so the model only introduces 0.1M addi-

tional parameters compared to the center-based baseline.
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Method
Vehicle

#Param Latency (ms)
L1/L2 mAP(%)

PV-RCNN [25] 77.51/68.98 13.05M 300

CenterPoints [42] 76.7/68.8 8.74M 77

SECOND† [38] 73.62/64.86 7.28M 66.5

CenterPoints† [42] 75.58/67.00 7.76M 69.5

Point2Seq† (Ours) 77.52/68.80 7.86M 70.4

Table 3. Inference speed and parameters amount. †: tested under

the same environment using a single model on a V100 GPU.

Backbone Head
Veh. LEVEL 1 Veh. LEVEL 2

mAP/mAPH(%) mAP/mAPH(%)

Pillar

Anchor 63.31/62.74 55.24/54.72

Center 65.46/64.66 57.59/56.88

Point2Seq 69.01/68.25 60.72/60.03

Voxel

Anchor 73.62/73.14 64.86/64.40

Center 75.58/75.01 67.00/66.52

Point2Seq 77.52/77.03 68.80/68.36

Table 4. Performances on different backbone networks.

Generalizability on different 3D backbones. To ver-

ify whether Point2Seq can achieve superior performances

upon different backbones, we apply the scene-to-sequence

head on both the voxel-based [42] and pillar-based [13] 3D

backbones and compare the results with the center and an-

chor head, respectively. Table 4 demonstrates that on both

two types of backbone networks, our method consistently

outperforms the anchor-based and center-based detectors.

Effects of different components in Point2Seq. Ta-

ble 5 shows the effectiveness of the scene-to-sequence de-

coder and the similarity-based sequence matching scheme.

Similarity-based sequence matching can be independently

applied on the previously used convolutional head and boost

the detection performance by 3.1% mAP compared to the

anchor-based baseline. Combing the two proposed compo-

nents, we can obtain a performance gain of 3.9% mAP.

The order of words in a sequence. We explored the

influence of changing the predicted word orders in our

method. The results in Table 6 indicate that the order of

words plays a non-negligible role on the detection perfor-

mance. For example, putting WO at the 4th place greatly

reduces the detection accuracy, which may indicate the im-

portance of predicting the object orientation at an earlier

position. Putting WC at the end will exhibit better perfor-

mance compared to putting WC at the beginning.

The choice of different similarity metrics. We eval-

uated different formulas of the similarity metric used in

similarity-based sequence matching. Table 7 exhibits the re-

sults of the 3 formulas we have examined. The formula (3)

is the currently adopted similarity metric. The formula (2)

replaces the term e−(1−α)
∑

j∈{R,O,S,L} |W j−W̃ j |
in Eq. 10

with e−(1−α)3DIoU(B,B̃) where 3DIoU(B, B̃) computes

Assignment Module
Veh. LEVEL 1 Veh. LEVEL 2

mAP/mAPH(%) mAP/mAPH(%)

Anchor C.H 73.62/73.14 64.86/64.40

Center C.H 75.58/75.01 67.00/66.52

S.S.M. C.H 76.72/76.19 68.02/67.54

S.S.M. S.S.D 77.52/77.03 68.80/68.36

Table 5. Effects of different components in Point2Seq. C.H: Con-

volutional Head in previous works. S.S.M.: Similarity-based Se-

quence Matching. S.S.D: Scene-to-Sequence Decoder.

Order
Veh. LEVEL 1 Veh. LEVEL 2

mAP/mAPH(%) mAP/mAPH(%)

WR,WO,WS ,WL,WC 77.40/76.91 68.71/68.27

WR,WO,WL,WS ,WC 77.43/76.94 68.74/68.30

WR,WL,WO,WS ,WC 77.52/77.03 68.80/68.36

WR,WL,WS ,WO,WC 73.82/73.24 66.16/65.61

WR,WC ,WL,WO,WS 75.96/75.41 67.26/66.76

WR,WC ,WS ,WO,WL 74.52/73.99 66.86/66.35

WR,WC ,WO,WL,WS 77.05/76.54 68.37/67.90

WR,WC ,WO,WS ,WL 76.82/76.28 68.11/67.62

Table 6. Effects of different word orders in the sequences.

Metrics
Veh. LEVEL 1 Veh. LEVEL 2

mAP/mAPH(%) mAP/mAPH(%)

(1) 74.31/73.52 65.61/65.04

(2) 75.07/74.43 66.36/65.73

(3) 75.40/74.81 66.76/66.23

Table 7. Comparisons of different similarity metrics.

the 3D IoU score of two bounding boxes. The formula (1)

replaces the same term with e−(1−α)
∑

8

j=1
|Cj−C̃j |, where

we calculate the differences of 8 respective corners C of

two bounding boxes. The results indicate that Eq. 10 is the

best among the 3 formulas as the similarity metric.

5. Conclusion

We present Point2Seq, an effective and general 3D ob-

ject detection framework that can be applied to most grid-

based backbone networks. Point2Seq contains a scene-to-

sequence decoder, which can auto-regressively generate se-

quences describing the detected 3D objects, and similarity-

based sequence matching is proposed to enable end-to-end

training without human-designed label assignments. For

future works, we plan to extend our framework to multi-

modality 3D object detection.
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