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Abstract

As clean ImageNet accuracy nears its ceiling, the re-
search community is increasingly more concerned about ro-
bust accuracy under distributional shifts. While a variety of
methods have been proposed to robustify neural networks,
these techniques often target models trained on ImageNet
classification. At the same time, it is a common practice to
use ImageNet pretrained backbones for downstream tasks
such as object detection, semantic segmentation, and image
classification from different domains. This raises a ques-
tion: Can these robust image classifiers transfer robustness
to downstream tasks? For object detection and semantic
segmentation, we find that a vanilla Swin Transformer, a
variant of Vision Transformer tailored for dense prediction
tasks, transfers robustness better than Convolutional Neu-
ral Networks that are trained to be robust to the corrupted
version of ImageNet. For CIFAR10 classification, we find
that models that are robustified for ImageNet do not re-
tain robustness when fully fine-tuned. These findings sug-
gest that current robustification techniques tend to empha-
size ImageNet evaluations. Moreover, network architecture
is a strong source of robustness when we consider transfer
learning.

1. Introduction
ImageNet [7] serves as an important benchmark in the

field of computer vision. Numerous models and training
techniques have emerged out of this benchmark [11, 17]. A
newly proposed vision architecture, including recent Vision
Transformer [8], is first tested against ImageNet to demon-
strate a good performance before it gains popularity within
the community. While accuracy on ImageNet has been con-
sidered as a surrogate for measuring progress in machine vi-
sion systems, the research community is now aware of the
lack of robustness of vision models towards small input per-
turbations. [33] first reported that imperceptible adversarial
perturbations can easily fool image classifiers. Recent stud-
ies show that even simpler, more natural noises such as blur,
contrast change, and snow can significantly degrade the per-
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Figure 1. It is a common practice to use ImageNet classifiers as
initialization for downstream tasks such as object detection and
semantic segmentation. When we fine-tune robust ImageNet clas-
sifiers for downstream tasks, should we expect that the resulting
vision system still maintains robustness? We tackle this question
in the settings of fixed-feature and full-network transfer learning.

formance of models [13]. A typical strategy to increase
robustness is data augmentation, where a vision model is
trained with additional data, which are artificially corrupted
during training. Examples include ANT [29], AugMix [14],
and DeepAug [12]. However, these techniques often focus
on improving robust accuracy for ImageNet classification.
In fact, there are now a variety of ImageNet-scale robust-
ness benchmarks, and the community is striving to improve
accuracy on these benchmarks [2, 12, 15].

Due to the scale of ImageNet, it is a common prac-
tice to use ImageNet pretrained weights for downstream
tasks such as object detection [16] and image segmentation
[5, 10]. This practice of using pretrained ImageNet weights
for transfer learning raises a fundamental question from a
robustness perspective: When we use pretrained weights
that are made to be robust to ImageNet benchmarks, do
these models necessarily show robustness for downstream
tasks as well? (See Figure 1 for the problem setting we
consider.)

Contributions.
We find that when we freeze the backbone of Ima-

geNet models, robustified Convolutional Neural Networks
(CNNs) maintain robustness for object detection and se-
mantic segmentation. These robustified CNNs continue to
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demonstrate higher robustness than the regular model even
when we fully fine-tune the whole network, which is practi-
cally more relevant. However, perhaps more notably, we
observe that Swin Transformer [23], a variant of Vision
Transformer tailored to dense prediction tasks, transfers ro-
bustness better than robustified CNNs in this fully-finetuned
setting. Moreover, it seems difficult to transfer corruption
robustness from ImageNet to CIFAR10 [21]. In fact, we
find that a non-robustified ImageNet pretrained ResNet per-
forms the best when fine-tuned for CIFAR10. We hope
these findings encourage the community to reconsider how
we evaluate the robustness of vision systems, as existing
data augmentation techniques for robustifying neural net-
works might be overfitting to ImageNet benchmarks. Fur-
thermore, it is noteworthy that, for robustness transfer, the
robustness contribution from Swin Transformer architecture
is more significant than the existing robustification methods.

Scope. While there are various kinds of distributional shifts
and robustness that the vision community studies, we focus
on common corruption robustness in this paper, because we
are interested in robustness transfer from ImageNet classi-
fication to downstream tasks such as object detection and
segmentation. See Section 3.1 for more details about why
we specifically choose common corruptions as a topic of
our study.

2. Background

Ensuring robustness in downstream tasks such as ob-
ject detection and semantic segmentation is equally, if not
more, important than achieving robustness in image classi-
fication. Especially for safety-critical applications such as
self-driving cars, vision systems that are vulnerable to im-
age perturbations can lead to dire consequences. In such
real-world applications, classification is only the first step
of the pipeline, and ensuring robustness through the entire
system of object detection and segmentation needs further
care.

When we consider how to ensure robustness for down-
stream tasks, there are two viable approaches. One is to
transfer robustness effectively from a pretrained, robustified
classifier backbone to each downstream task, which is our
focus of this paper. The other approach is to apply an ex-
isting robust data augmentation technique during transfer
learning. While applying robustification techniques during
finetuning for downstream tasks is an option, a naive ap-
plication of these methods can decrease downstream task
performances 1 and often requires further modifications tai-
lored for downstream tasks to maintain good accuracy while
achieving robustness [6], partly because object detection
and semantic segmentation systems tend to be more com-

1See Table 4 in the Appendix as an example

plex than image classification. Therefore, rather than en-
tirely resorting to data augmentation during fine-tuning, it
is critical to better understand robustness transfer to achieve
both robustness and good clean accuracy in downstream
tasks.

2.1. Vision Transformer for Dense Prediction Tasks

While image classification only requires a single feature
map typically extracted from the last layer, object detection
and semantic segmentation benefits a lot from multiresolu-
tion feature maps. These feature maps provide richer in-
formation that helps object detection at different scales and
pixel-level semantic prediction. Most object detection and
semantic segmentation systems use a CNN as their back-
bone and exploit hierarchical feature maps that are extracted
from different blocks of the model.

Motivated by the success of Transformer architecture in
the Natural Language Processing (NLP) community, Vision
Transformer (ViT) [8] was proposed. While the original
ViT excels at image classification, it is not amenable to
dense prediction tasks such as object detection and semantic
segmentation. This is because the original ViT processes to-
kens at fixed scale, producing single low-resolution feature
maps. Recently, a variant of ViT called Swin Transformer
was proposed to address this limitation [23]. Swin Trans-
former uses a hierarchical architecture to build multiresolu-
tion feature maps, while achieving linear-time complexity
with respect to the image size. Because of this, Swin Trans-
former achieves the state-of-the-art performance in both ob-
ject detection and semantic segmentation. In this work, we
use Swin Transformer for our ViT architecture.

2.2. Source of Robustness: Data augmentation and
Architecture

Vanilla CNNs are vulnerable to image corruptions, as ex-
tensively studied by the vision community in the past. [13]
shows that state-of-the-art ImageNet classifiers fail when
naturally occurring image corruptions are applied to the
ImageNet test set, which are introduced as ImageNet-C.
To tackle this problem, the community develops many ap-
proaches relying on data augmentation [12, 37]. On the
other hand, recent studies show that ViT is more robust to
ImageNet-C than vanilla CNNs [3, 27] without resorting to
data augmentation. These findings suggest that robustness
arises both from data augmentation techniques and archi-
tecture itself. In terms of robustness transfer, it is unclear
which source of robustness is more important. The follow-
ing sections explore this question in depth.

3. Fixed-Feature Transfer Learning
When we consider transfer learning from image classi-

fiers to object detection or segmentation, we can freeze the
backbone, while only training the head of the detection or
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Method Noise Blur Digital Weather

Regular 36.09 44.00 21.17 17.59
ANT 21.90 39.25 17.70 16.22
DeepAug+ 16.39 29.25 15.49 11.27
Swin-T 18.01 38.18 17.90 10.12

Table 1. Performance drops across models and noise types are
presented for fixed-feature transfer learning from ImageNet to
COCO Object Detection. Regular represents a regular ImageNet-
pretrained ResNet50, while DeepAug+ and ANT are ResNet50s
that are robustified during ImageNet pretraining. Swin-T is a Swin
Transformer (Tiny), where the model size is similar to ResNet50.

Method Noise Blur Digital Weather

Regular 48.98 29.42 17.01 25.68
ANT 17.78 23.41 12.99 25.62
DeepAug+ 20.07 19.47 13.01 19.12
Swin-T 13.57 23.50 16.42 14.28

Table 2. Performance drops across models and noise types are
presented for fixed-feature transfer learning from ImageNet to
ADE10K Semantic Segmentation.

segmentation system. We refer to this approach as fixed-
feature transfer learning. On the other hand, we can use pre-
trained image classifiers as initialization to train object de-
tection or segmentation models, which we call full-network
transfer learning.

Fixed-feature transfer learning from ImageNet to object
detection and semantic segmentation is not a common prac-
tice because full-network transfer learning generally per-
forms better [16]. However, for robustness transfer, fixed-
feature transfer learning is an important setup to consider
because it allows us to directly leverage robustified Ima-
geNet backbones and measure how much robustness the
model carries over to downstream tasks after fine-tuning
only the head of the entire model. Full-network transfer
learning, on the other hand, potentially erases the robust-
ness property of backbones during fine-tuning, which can
confound our analysis of robustness transfer.

From earlier work [27] on robustness of image classi-
fiers, a vanilla Swin Transformer is known to perform better
than CNNs on ImageNet-C. At the same time, we can ro-
bustify these CNNs by data augmentation, so that they per-
form well on ImageNet-C. Should we expect that robusti-
fied CNNs transfer their robustness automatically when we
only fine-tune the head while fixing the backbone? More-
over, which source of robustness (architecture vs. data aug-
mentation) is better suited in terms of robustness transfer?

To resolve this question, we prepare two CNNs that
are robustified during ImageNet-1k pretraining using ANT
[29] and DeepAug+AugMix [12] respectively, and a Swin
Transformer, also pretrained on ImageNet-1k but without
applying any robustification technique. To control for the

model size, we use ResNet50 and Swin-T, where the pa-
rameter counts are 25M and 28M, respectively. For object
detection, we use Mask-RCNN [10] and for semantic seg-
mentation, we use UperNet [38] as the head.

3.1. Robustness Transfer Benchmark

To measure how well a model transfers robustness from
ImageNet classification to downstream tasks, we have to
prepare the same set of distributional shifts that can be ap-
plied to both classification and downstream tasks. While
there are a variety of ImageNet-related benchmarks to mea-
sure robustness against distributional shifts (e.g. adversar-
ial [15], viewpoint change [2], and background shift [37]),
most of these distributional shifts are not adoptable to our
setting, because they are specifically designed for ImageNet
classification. To measure the performance of robustness
transfer to downstream tasks, we focus on 15 synthetic im-
age corruption types, grouped into 4 categories: “noise”,
“blur”, “weather”, and “digital”, introduced in ImageNet-
C [13]. They measure corruption robustness of ImageNet
classifiers by computing how much the original accuracy
drops when these models are evaluated on corrupted images
of the ImageNet test set. Since these image corruptions are
algorithmically generated, they can be applied to images in
both classification and downstream tasks such as object de-
tection and segmentation. 2 Therefore, these image corrup-
tions allow us to compare the accuracy drop in classification
with accuracy drop in downstream tasks, which is useful to
measure the degree of robustness transfer across different
models.

Formally, we take ImageNet models and fine-tune the
head of these models for downstream tasks. We calcu-
late model performance on the clean test set in downstream
tasks, and compute the performance drop after we apply im-
age corruptions. We then compare the accuracy drop for
classification and downstream tasks. We report the mean
performance drop across the 15 image corruptions as our
metric. The benchmark performance is computed in terms
of mean performance under corruption:

mPC =
1

Nc

Nc∑
c=1

Pc, (1)

where Nc is 15, and Pc is the task-specific performance
measure evaluated under corruption c on the test set. We
then compute the relative performance under corruption:

rPC =
mPC

Pclean
(2)

where Pclean is the task-specific performance measure eval-
uated on the clean test set. We use 1 − rPC as one of our

2We use the following python library to generate synthetic
image corruptions https : / / github . com / bethgelab /
imagecorruptions introduced by [25].
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main metrics to report and refer to this metric as Accuracy
Drop or Performance Drop depending on the context. rPC
allows us to compare the degree of robustness transfer from
ImageNet to downstream tasks such as object detection and
semantic segmentation.

Dataset. For object detection, we choose MS-COCO [22]
and use the COCO 2017 validation set for COCO as our
test split, following the convention. For semantic segmenta-
tion, we choose ADE20K [41]. ADE20K consists of 20210
train, 2000 validation images, and 150 semantic classes. For
downstream-task specific performance measures, we use
the following metrics:

Object Detection. We use the COCO Average Preci-
sion metric, which averages over Intersection-over-Unions
(IoUs) between 50% and 95%.

Semantic Segmentation. We use the mean IoU, which in-
dicates the intersection-over-union between the predicted
and ground truth pixels, averaged over all the classes.

Table 1 and 2 summarize the results for the fixed feature
transfer learning experiment. While ANT and DeepAug+
transfer robustness well across both downstream tasks, we
also notice that for some noise types, Swin-T outperforms
the robust CNNs (e.g. Noise, Weather in Table 2 and
Weather in Table 1.) This suggests that, to our surprise,
a vanilla Swin Transformer has a potential to transfer ro-
bustness better than robust CNNs. In the next section, we
investigate to what extent these phenomena can be observed
in the full-network transfer learning setting.

4. Full-Network Transfer Learning

A more common practice to perform transfer learn-
ing is to use ImageNet pretrained weights as initializa-
tion and fine-tune the entire network for downstream tasks.
Even though it takes more computational resources than the
fixed-feature case, full-network transfer learning generally
performs better [16].

However, when we take robustness into consideration,
full-network transfer learning can be detrimental, because
gradient updates during fine-tuning can erase robustified
features acquired during ImageNet pretraining. This possi-
bility is especially concerning for robustification techniques
that rely on data augmentation during pretraining such as
DeepAug, AugMix, and ANT. Thus, one may argue that ro-
bustness arising from these data augmentation techniques
might be less effective when we fine-tune the entire net-
work for downstream tasks. On the other hand, robustness
arising from the architecture itself can be more resistant to
full-network fine-tuning, because the robustness property is
not directly encoded into weights, but rather stems from the
topology of architecture. Thus, we do not need to worry

Model #params Pre-train Data Input size window

Tiny 29M IN-1k 224 7
Small 50M IN-1k 224 7
Base” 88M IN-22k 224 7
Base’ 88M IN-22k 384 12
Base 88M IN-1k 224 7

Table 3. Swin Transformer architectures we use to test common
corruption robustness on object detection and semantic segmenta-
tion. The pre-training data is either the ImageNet-1K or ImageNet-
22k training set.

about erasing robustness that arises from architecture during
transfer learning. As we see that a vanilla Swin Transformer
outperforms robustified CNNs for some noise types in the
Section 3, architecture indeed plays some role in transfer-
ring robustness. Therefore, we hypothesize that in the set-
ting of full-network transfer learning, Transformer architec-
tures might be more effective than CNNs that are robustified
via data augmentation.

To test this hypothesis, we repeat the same set of exper-
iments as in the Section 3, but now train all weights for
object detection, semantic segmentation, and image clas-
sification. For downstream image classification tasks, we
choose CIFAR10. The results are shown in Figure 2. As
a reference, we also plot the original ImageNet accuracy as
well as the Top-1 Accuracy Drop on ImageNet-C for all Im-
ageNet models we use. We can confirm that the two robust
CNNs (DeepAug+ and ANT) indeed demonstrate higher ro-
bustness than Regular. It is noteworthy that a vanilla Swin-
T shows slightly higher robustness than ANT (represented
as a lower accuracy drop in the blue bar). More surpris-
ingly, Swin-T performs best in object detection and seman-
tic segmentation. This shows that DeepAug+ and ANT are
less successful to transfer their ImageNet-C robustness to
downstream tasks than Swin-T, supporting our hypothesis.
Moreover, when we test robust transfer from ImageNet-C to
CIFAR10, we find that these robust models fail to outper-
form Regular. This shows that robustness from ImageNet
for downstream image classification seems to be harder to
transfer than object detection and semantic segmentation.

5. Do Larger Models Transfer Robustness Bet-
ter?

Having established that the Swin Transformer architec-
ture is a strong source of robustness transfer for object
detection and semantic segmentation, especially in full-
network transfer learning, we now explore whether or not
the size of Transformer architecture affects the performance
of model robustness for downstream tasks. In this section,
we compare Tiny, Small, and Base Swin Transformers in
full-network transfer learning, where the detailed configu-
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Figure 2. Robust models vs. mean performance drop under 15 corruption types in full-network fine-tuning. The lower the performance
drop, the more robust models are to these image corruptions. Regular is a vanilla ResNet50. DeepAug+ and ANT refer to ResNet50
models robustified via DeepAug+AugMix and ANT, which are all data augmentation techniques to increase robustness against common
corruptions [12, 29]. Swin-T is a vanilla Tiny Swin Transformer, where the parameter counts are similar to ResNet50. If robustness
on ImageNet is transferable to other downstream tasks, we would see a similar pattern of ImageNet-C in object detection and semantic
segmentation as well. However, we see that Swin-T performs much better than DeepAug+, the most robust model against ImageNet-C.
This shows that the Swin Transformer as architecture is a stronger source of robustness transfer than robustification techniques that are
used (e.g. DeepAug, AugMix, or ANT). Moreover, for CIFAR-10, Regular appears to be the most robust model, highlighting the difficulty
of transferring ImageNet robustness effectively.

rations are shown in Table 3.

Figure 3 shows the mean performance drop after we ap-
ply image corruptions as well as the original performance
of each model for ADE20K semantic segmentation, COCO
object detection, and COCO instance segmentation. We see
that in general the larger the model size is, the smaller the
performance drop becomes. This suggests that larger mod-
els tend to have more robustness. However, we also ob-
serve that there are a few exceptions to this general trend.
For instance, Base in ADE20K Semantic Segmentation and
Base in COCO Object Detection and Instance Segmentation
demonstrate larger performance drop compared to Small.
Here we note that the original performances of these large
models are similar to Small. We hypothesize that the fail-
ure of these large models can be attributed to the pretrained
Swin Transformer models, which only use ImageNet-1k for

pretraining. Indeed, when Base is pretrained on ImageNet-
22k instead of ImageNet-1k, we see that the IoU Perfor-
mance Drop is smaller than Small. Similar phenomena are
also reported in [3], where large models tend to require
more training data to outperform smaller models on clean
test sets.

6. Adversarially-trained Networks do not
Transfer Robustness to Downstream Tasks

Recent studies [30,35] find that adversarial robustness is
a good prior for transfer learning. Adversarial robustness
refers to a model’s stability against small worst-case input
perturbations, called adversarial examples [33]. Robustness
is typically induced by training a model on adversarial ex-
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Figure 3. Swin Transformers varying model size vs. performance drop for downstream tasks under image corruptions. Tiny, Small, and
Base are all pretrained on ImageNet-1k while Base’ and Base” are pretrained on ImageNet-22k. See Table 3 for more details about the
difference in configurations of models. We see that the larger the models, the more robust in general. However, when we compare Small
and Base, it is clear that Base underperforms Small in terms of both robustness to corruption and clean performance. This can be attributed
to the pretraining dataset size, where Base requires larger training data to regularize the model than Small.

amples via the following robust optimization objective [24]:

min
θ

Ex,y∼D
[
max
||δ||2≤ε

L(x+ δ, y; θ)

]
,

where θ is the model parameter, the expectation is taken
over the data distribution D, and ε controls the magnitude
of adversarial perturbation vector δ. Therefore, the larger
the ε is, the more robust the adversarially-trained models
become. Their hypothesis was that adversarially-trained
networks maintain better-behaved gradients [34, 40], which
might help transfer learning.

While [30, 35] demonstrate that adversarially-trained
networks can transfer better than standard models for down-
stream image classification tasks (without any image cor-
ruption), it is unclear how these networks perform in terms
of robustness transfer when we consider the performance
under image corruptions. In this section, we investigate if
adversarial prior is helpful for robustness transfer from im-
age classification to object detection and semantic segmen-
tation. A limitation is that preparing adversarially-trained

models from scratch is difficult since adversarial training is
resource intensive. Fortunately, ResNet50 models that are
adversarially-trained on ImageNet are made publicly avail-
able by [30]. Here, we focus our study on these ResNet50
pretrained models, and will leave for future work how ad-
versarial prior affects Swin Transformer’s robustness trans-
fer.

We use four `2-robust models that are trained using ε =
0.1, 1.0, 3.0, and 5.0, respectively, and fine-tune the whole
network for COCO object detection and ADE20K seman-
tic segmentation. The original ImageNet clean accuracy as
well as mean accuracy drop on ImageNet-C are shown in
the top-left panel of Figure 4. We see a clear trend that more
robust models tend to perform worse on both clean Ima-
geNet and ImageNet-C. Therefore, the model with ε = 0.1
is optimal in terms of both clean accuracy and corruption
robustness. For downstream tasks, we see that more robust
models perform worse on clean data, but the performance
drop is less severe. In fact, for all downstream tasks we
consider, the ε = 0.1 model performs worst in terms of per-
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Figure 4. Adversarial robustness of ImageNet classifiers vs. performance drop for downstream tasks under image corruptions. We vary the
`2-robustness budget ε that is used for adversarial training. The higher the ε, the more robust the trained models are towards adversarial
attacks in image classification. We can see that the model with ε = 0.1 shows the strongest robustness on ImageNet-C, while the same
model reveals the worst robustness when fine-tuned for downstream tasks. This shows that adversarial prior is not helpful for robustness
transfer as opposed to the findings in [30, 35], where they show adversarial prior is important for transfer learning of image classification.

formance drop on both COCO and ADE20K. This suggests
that adversarial prior of ImageNet classifiers is not help-
ful for robustness transfer to downstream tasks, as opposed
to the regular transfer learning setting, where they evalu-
ate clean performance on downstream image classification
tasks.

7. Related Works and Discussions

Transfer learning to image classification tasks. [20] per-
forms a large-scale study of transfer learning from Ima-
geNet to other image classification tasks. While they only
test CNN architectures, they demonstrate that architectures
that perform better on ImageNet are capable of learning
better features that are transferable across different classi-
fication tasks. On the other hand, they also show that Ima-
geNet pretrained weights do not necessarily transfer well to
small fine-grained classification datasets. Our findings add
to their results in that architecture is not only beneficial for
regular transfer learning but also can be a good source of

robustness transfer.

[5, 16] demonstrate that ImageNet models with higher
accuracy transfer better to object detection and semantic
segmentation. While these works offer important insights
regarding regular transfer learning, our study is orthogo-
nal to these works, because we are specifically interested in
how well ImageNet pretrained classifiers can transfer their
robustness, instead of clean performance transfer.

Robustness of Vision Transformer. Our work is inspired
by recent findings that Vision Transformers show more ro-
bustness than CNNs to common image corruptions [27]. [3]
shows that larger Vision Transformers require more train-
ing data to be robust to ImageNet-C. This is in line with our
finding that larger Swin Transformers need ImageNet-21K
pretraining to increase robustness in object detection and se-
mantic segmentation. It is hypothesized that Vision Trans-
formers generally require more training data than CNNs
since they do not have the inductive bias like convolutions
that are useful for image domains [8].
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Robust object detection and segmentation. There are
several studies that attempt to increase adversarial robust-
ness of object detection systems. [39] relies on adversarial
training. However, adversarial perturbations are artificially
crafted examples. A more natural situation is object detec-
tion under occlusion. [36] addresses such an issue by devel-
oping specifically designed architectures to handle occlu-
sion. There are several works that attempt to increase ro-
bustness for semantic segmentation. [1] proposes a special-
ized student-teacher architecture for robust semantic seg-
mentation. [18] relies on increasing shape bias of networks
to build the robust semantic segmentation system, inspired
by the success of image classification using a similar shape-
bias approach [9]. Instead of inducing robustness directly
in object detection or semantic segmentation, we study ro-
bustness transfer from ImageNet-pretrained models to these
downstream tasks. While developing robust detection or
segmentation systems is important, we think it is also ben-
eficial to tackle building robust systems from the point of
view of transfer learning from robust image classifiers.

[19] benchmarks the robustness of various CNN models
for semantic segmentation under image corruptions similar
to ImageNet-C. They find that, within the CNN models they
tested, models with higher accuracy show stronger robust-
ness on semantic segmentation. Our work is orthogonal to
their finding as we start from robust models, and how much
robust transfer occurs via fine-tuning.

Robustness Transfer. While there exist prior works on
robustness transfer, they focus on transferring adversarial
robustness from source models to target models in image
classification settings. For instance, [31] proposes lifelong
learning strategies to transfer adversarial robustness effec-
tively. [4] shows that adversarial robustness transfer can
be achieved by input gradient adversarial matching in the
form of student-teacher framework. While these works are
important, more practically relevant is the task of robust-
ness transfer for common image corruptions such as noise,
blur, and weather change. Furthermore, as opposed to these
works, we focus on robustness transfer from image classifi-
cation to object detection and semantic segmentation.

Overfitting to ImageNet. Our results from fixed-feature
transfer learning suggest that robustness of ImageNet-
pretrained backbones can be maintained if we freeze the
weights of the backbones, but this sacrifices the valida-
tion accuracy on downstream tasks. A more ideal sce-
nario would be to preserve robustness even in full-network
fine-tuning. However, as Section 4 shows, robustness from
weights of CNNs were less effective than robustness of the
Swin Transfromer architecture. That is, the robustness per-
formance on ImageNet-C is not perfectly transferable to
downstream tasks. This result is reminiscent of several re-

ports regarding overfitting to ImageNet. For instance, [28]
studies that ImageNet models do not generalize well to ad-
ditional test data generated using a data collection process
similar to that of ImageNet. Another work [32] shows that
ImageNet pretrained models do not generalize to videos.
Our robustness transfer results add to these works, suggest-
ing again that over-reliance on ImageNet benchmarks can
be misleading.

8. Limitations
While we claim that the architecture is a strong source

of robustness for transfer learning, this statement is limited
in a sense that we only compare ResNet and Swin Trans-
former. We encourage future work to study broader types
of architectures and what properties of models can be well-
preserved during transfer learning. We also note that our
goal is to study the effect of robust transfer, and therefore
we did not necessarily aim for achieving the state-of-the art
performance on downstream tasks. Developing a general
recipe for achieving good clean accuracy while maintain-
ing robustness on downstream tasks remains an important
future work.

9. Conclusions
In this work, we study the problem of robustness transfer

from ImageNet pretrained classifiers to downstream tasks
such as object detection and semantic segmentation. Our
study is motivated by the two observations: 1. Even though
there are many proposals to robustify neural networks, these
methods target ImageNet classifiers. 2. It is common to
use ImageNet pretrained weights for object detection and
semantic segmentation. This leads to our central question
of this paper: Do robustified ImageNet classifiers necessar-
ily transfer robustness to downstream tasks? In the fixed-
feature transfer learning setting, we find that robustness of
ImageNet backbones is partially preserved on downstream
tasks. However, in full-network transfer learning, which is
more practically relevant, we see that the contribution from
the Transformer architecture is more significant than the
specific robustification techniques that are applied to CNNs.
We also test if the adversarial prior, which is shown to be
important for regular transfer learning, is also important
for robustness transfer. We find that, as opposed to previ-
ous findings, the adversarial prior does not help robustness
transfer. We hope that our findings encourage the commu-
nity to reconsider how we evaluate corruption robustness of
vision systems.
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