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Abstract

The construction of 3D point cloud datasets requires a
great deal of human effort. Therefore, constructing a large-
scale 3D point clouds dataset is difficult. In order to rem-
edy this issue, we propose a newly developed point cloud
fractal database (PC-FractalDB), which is a novel family
of formula-driven supervised learning inspired by fractal
geometry encountered in natural 3D structures. QOur re-
search is based on the hypothesis that we could learn rep-
resentations from more real-world 3D patterns than con-
ventional 3D datasets by learning fractal geometry. We
show how the PC-FractalDB facilitates solving several re-
cent dataset-related problems in 3D scene understanding,
such as 3D model collection and labor-intensive annota-
tion. The experimental section shows how we achieved the
performance rate of up to 61.9% and 59.0% for the Scan-
NetV2 and SUN RGB-D datasets, respectively, over the cur-
rent highest scores obtained with the PointContrast, con-
trastive scene contexts (CSC), and RandomRooms. More-
over, the PC-FractalDB pre-trained model is especially ef-
fective in training with limited data. For example, in 10% of
training data on ScanNetV2, the PC-FractalDB pre-trained
VoteNet performs at 38.3%, which is +14.8% higher accu-
racy than CSC. Of particular note, we found that the pro-
posed method achieves the highest results for 3D object de-
tection pre-training in limited point cloud data. '

1. Introduction

Recently, 3D object recognition with 3D point clouds is
expected to become increasingly helpful in real-world ap-
plications, such as mobile robots and self-driving cars. In
particular, 3D object detection estimates the location and
category of an object from 3D scenes. Compared with
image-based detection models, 3D point clouds enable ro-
bust detection of real-world objects without relying on ap-
pearance. However, a limitation of constructing 3D datasets
is that this requires a significant workforce to create and an-
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(b) Fine-tuning results for a limited ScanNet data.

Figure 1. Pre-training effects on the PC-FractalDB as a family
of formula-driven supervised learning. Although the proposed
method does not use real data, it is a better pre-training approach
to understand a 3D scene, especially in a limited data scenario.

notate the 3D model, and such 3D models cannot usually
be collected in large quantities via the Internet. For this rea-
son, it is necessary to either create 3D models via computer-
aided design (CAD) software or scan 3D scenes from the
real environment using sensors such as LiDAR scans. In
addition, constructing a point cloud dataset based on a 3D
scene will result in human annotators and cross-validators.
Training with limited data or annotation tends to cause over-
fitting of the detection model. Therefore, the present study
focuses on pre-training with the point cloud dataset to solve
the abovementioned problems.

We have already witnessed the effectiveness of pre-
training in point cloud processing. In order to address the
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human annotation problem for point cloud datasets, self-
supervised learning (SSL) has been proposed [1, 27, 35,
52,54, 59, 63, 67,70]. In particular, PointContrast [67]
demonstrates the possibility of pre-training for the first time
higher-level scene understanding tasks, namely 3D object
detection and 3D object segmentation. After the advent
of PointContrast, self-supervised learning using contrastive
learning has been proven the best performance on point
cloud datasets such as ScanNetV2 [17] and SUN RGB-
D [58] in 3D object detection. A limitation of these meth-
ods, since pre-training is restricted to a backbone network
only, and training data depend on the scale of a point cloud
dataset. Therefore, to achieve accurate detection of 3D ob-
jects, we need to develop approaches to reduce the annota-
tion effort on datasets and effective pre-training methods.

The present paper describes a point cloud pre-training
method that automatically constructs a point cloud dataset
under the laws governing natural 3D structures. More
specifically, we implement the concept of formula-driven
supervised learning (FDSL) to 3D vision that generates in-
finite training data based on a mathematical formula pro-
posed by Kataoka ef al. in 2D vision [32]. The present
study uses a mathematical formula based on fractal geom-
etry [41], which is assumed to be highly applicable to nat-
ural and artificial objects in real-world 3D scenes. Since
fractal geometry has two essential properties, self-similarity
and non-integer dimensions, we believe it can generate fine-
grained 3D structures that CAD models cannot represent.

Our proposed point cloud fractal database (PCFrac-
talDB) enables users to significantly improve the represen-
tation learning for 3D object detection. By focusing on frac-
tal geometry, a piece of background knowledge in the real-
world, it is possible to automatically generate 3D models
and 3D scenes that resemble real-world nature. Thus, we
do not require human labor to auto-construct a point cloud
dataset by following natural law.

We summarize the contributions in the present study as
follows: (i) We propose the PC-FractalDB automatically
generated by natural 3D structures with fractals. Notably,
this framework does not require data collection and anno-
tation. The PC-FractalDB directly enables the acquisition
of feature representation for 3D object detection in the pre-
training phase, shown in Fig. 1(a). (ii) By creating the PC-
FractalDB pre-trained detector, we have improved perfor-
mance rates in 3D object detection tasks on representative
point cloud datasets, such as ScanNetV2 and SUN RGB-D.
(iii) Our proposed PC-FractalDB pre-training assists when
fine-tuning for the dataset limited to the number of training
data and annotation, shown in Fig. 1(b).

2. Related work

3D point cloud datasets. 3D scene understanding with
point clouds has been rapidly progressing with the increase

of public point cloud datasets [3,10,20,29,57,61,62,65,66]
with rich annotations. However, the most frequently used
datasets, ScanNetV2 and SUN RGB-D, consist of scanned
models, for which significant human efforts have been spent
creating scanned models and annotations. Therefore, we
can easily assume that current point cloud datasets con-
tain a more limited number of data and annotations for
training, validation, and test sets as compared to 2D vision
datasets [18,33,53,72].

On the other hand, deep learning relies on a large quan-
tity of training data, the restrict of learning with limited data
and annotations. Pre-training is one of the most promis-
ing methods by which to tackle this problem [5]. This
concept has been validated successfully in video recogni-
tion [23] and 2D image recognition [19]. However, in order
to succeed in pre-training, we need large-scale datasets in
each domain, such as Kinetics-700 [9] and JFT-300M [60].
Namely, we believe that the performance level of 3D object
recognition with point cloud would be improved if it were
possible to construct a million-order-instance dataset.
3D object detection. In 3D object detection, there are
two main types of approaches: architectures based on 2D-
CNN or 3D-CNN [14, 34,38, 43,49, 55, 68, 73] and archi-
tectures that directly input 3D scenes consisting of 3D point
clouds [11, 16,22, 24,39,42,46-48, 56, 71]. The present
study focuses on architectures that directly input 3D scenes.
In particular, VoteNet [48] uses Hough voting for sparse
point cloud input to perform 3D bounding box detection
via feature sampling, clustering, and voting operations de-
signed for 3D scene data.

Self-supervised learning. Self-supervised learning has
made significant progress and received great attention in 2D
vision [6-8, 12, 13,21,25,45,69]. As such, there have been
attempts to adapt the pre-text task proposed for 2D vision
to 3D vision in order to address the human annotation prob-
lem on 3D datasets [1, 2, 26, 27, 30, 36, 37, 40, 64, 67, 70].
The most well-known method of self-supervised learning
is PointContrast. PointContrast uses contrastive learning to
learn geometric features by registering point cloud pairs on
a 3D scene. The advantage provided is that optimizations
contrastive loss between paired corresponding points in fea-
ture space from two different viewpoints.

Formula-driven supervised learning. Formula-driven
supervised learning [28, 31, 32, 44] automatically gener-
ates large-scale datasets based on mathematical formulas
and does not require human image collection and man-
ual annotation. Kataoka et al. [32] showed that the 2D-
FractalDataBase pre-trained model performs and performs
as an ImageNet pre-trained model in a part of the image
classification task. Remarkably, these methods achieve re-
sults by pre-training synthetic images rendered fractal with-
out natural images.

We speculate that these results may come from pre-
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Figure 2. Overview of the formula-driven supervised learning framework for 3D object detection with 3D point clouds. We generate a
3D fractal model using the 3D iterated function system [4] (see Sec. 3.1). The proposed PC-FractalDB is automatically constructed by
difiniting a fractal category using variance threshold and instance augmentation with FractalNoiseMix (see Sec. 3.2 and 3.3). A 3D fractal
scene is generated by randomly selecting 3D fractal models and translating these from the origin on the z-plane (see Sec. 3.4).

training based on fractal, which is common in the real-
world, and thus covers more real-world patterns than large-
scale datasets such as ImageNet. In addition, the present
study focuses on fractal because we consider that succeed-
ing pre-train with natural 3D structure is the assisted under-
standing of 3D scenes in the real-world.

3. Point cloud fractal database (PC-FractalDB)

We introduce the PC-FractalDB in terms of auto-
generated 3D fractal models and 3D fractal scenes. We
construct the PC-FractalDB through four procedures. First,
we provide a method for automatic 3D generation based on
a 3D iterated function system (3D IFS) [4] (see Sec. 3.1).
Second, we define the categories based on the data distribu-
tion of the 3D fractal model (see Sec. 3.2). Third, we gen-
erate instances for each category using a novel augmenta-
tion method, which we call FractalNoiseMix (see Sec. 3.3).
Finally, we automatically generate a 3D fractal scene us-
ing 3D fractal models (see Sec. 3.4). The overview of our
framework is presented in Fig. 2.

3.1. Automatic 3D fractal model generation

The PC-FractalDB which is generated 3D fractal scenes
from infinite pairs of 3D fractal models and their fractal cat-
egories using the 3D IFS. By exploiting fractal geometry,
common in the real-world, we hypothesize that we can eas-
ily represent complex patterns in 3D scenes using the 3D
IFS and can assist in 3D scene understanding in the real-
world. A 3D fractal model is automatically generated using

the following five steps. (1) Multiple affine transforms and
select probabilities are randomly set. (2) The initial point
cloud is indicated by the origin coordinates and is set as the
current point cloud. (3) One of the affine transforms is se-
lected based on select probabilities. (4) The current point
cloud is affine transformed for the next point cloud using
the selected affine transformation. (5) Steps 3 and 4 are re-
cursively performed up to the set IV iterations.

A 3D fractal model is generated by iteratively applying
a 3D affine transform T to an initial point. In the present
study, for the sake of simplicity, we introduce homogeneous
coordinates to handle affine transforms. In homogeneous
coordinates, a 3D pointcloudx = [z y z] T € R3is de-

scribedasx = [z y z 1] T € R*, where the notation *
indicates that the point is considered in homogeneous coor-
dinates. Note that a 3D affine transform includes rotations,
translations, scaling, and skewing. In order to generate a
3D fractal model automatically, we make affine transforms
randomly. In order to construct a 3D IFS set, an affine trans-
forms {T}; € R**4|]1 < j < N} are generated, where the
elements of affine transform matrices are sampled by a uni-
form distribution in the range of [—1.0,1.0]. When an ini-
tial point z is given, a 3D affine transform 7% makes a 3D
fractal model P = {x¢, X1, -+ ,X,} by

)fi = T’L)A(i_l

ey

for ¢ from O to n, where n is the number of iterations. The
probability of selecting 7T} is denoted as Pr,. Here, p; =
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Figure 3. Difference of 3D fractal models on with and without
variance threshold. Depending on the set parameter as a property
of 3D IFS, a part of a 3D fractal model is biased and aggregated,
resulting in a significant sparse. By binning a category with a vari-
ance threshold, the shape of a 3D fractal model can be distinct.

| det T}/ Z;V:() | det T}|. Note that the scaling factor of an
affine transform T is given by | det T;|. Next, we set the
original coordinate as the initial point cloud P, and select an
affine transform from 3D IFS by following the probabilities
p;. A 3D fractal model is generated of 4,000 iterations.

3.2. Binning by variance to assign category

After generating the 3D fractal model, it is necessary to
define a category for it. By using a framework with 3D IFS,
we can create an infinite number of categories with ran-
domly generated affine transform parameters T} for each
fractal category. However, simply setting a category defi-
nition without performing a quality check may establish a
wrong category. In contrast, the proposed method includes
quality checks for 3D fractal models by using a variance.
The point cloud distribution gives the shape features corre-
sponding to a 3D fractal model (see Fig. 3). When the 3D
fractal model’s calculated variance is above the threshold,
it is registered as a new fractal category. By setting this
variance threshold, we expect to create a clear natural 3D
structure in 3D space and expand the differences between
fractal categories. The variance threshold are formulated as
follows:

min(Var(z], Varly], Var(z]) > o (2)

where the present paper set the bins of variance by thresh-
olding o from 0.0 to 0.2 with 0.05 increments per step be-
cause of taking a longer time to define a fractal category
if the variance threshold is greater than 0.20. In addition,
all point clouds of the 3D fractal model are translated with
the center set as the origin. Furthermore, depending on the
affine transformation parameters, the scale of the 3D fractal
model may become divergent. Therefore, we normalized
the 3D fractal model scale to [-1.0, 1.0].

3.3. Instance augmentation by mixing fractal noise

The variance binning defines the fractal category, and
each fractal category has only one 3D fractal model. In
order to assist the increase of in the 3D fractal model, we
propose the FractalNoiseMix (FNM) for instance augmen-
tation inspired by PointMixup [15] as shown in Fig. 4. Dif-
ferent from PointMixup, where the instance augmentation

FractalNoiseMix
Point number: 4,000

Main Category
Point number: 3,200

Noise Category
Point number: 800

Figure 4. FractalNoiseMix: Intra-category augmentation. We
mix two different 3D fractal models. One is the main fractal cate-
gory, whereas the other is a fractal category used as fractal noise.

is interpolating between training samples to crate middle
category, our approach attempts to augment intra-category
and improve effectiveness for PC-FractalDB pre-training.

The FNM of the proposed method involves mixing ma-
jor and minor fractal categories. For example, once a major
fractal category is fixed, we set this category as 80% of the
full 3D fractal model and randomly select and add 20% of
the minor point cloud in the 3D fractal model to fill in the
major point cloud the 3D fractal model. Note that let a ma-
jor fractal category be a fractal category when classifying
3D fractal models. Random point cloud could be given to
augment, but we consider that the important fractal shape
feature will be lost in that case, so the present paper uses
FNM.

3.4. Automatic 3D fractal scene generation

To generate a 3D fractal scene, we first need to sam-
ple multiple objects from 3D fractal models randomly—the
number of objects per 3D fractal scene by Poisson distribu-
tion. Next, we generate 3D bounding boxes and rotate the
3D fractal model around the z-axis. We begin by randomly
setting the scale factor at the z-axis from 0.75 to 1.25, and
we multiply by a coefficient set as the aspect ratio from
0.9 to 1.1 in the y-axis and z-axis based on the set x-axis
scale factor. The reason why 3D indoor datasets tend to be
a small variance in each object scale. At the same time,
the orientation of each 3D fractal model can be randomly
rotated around the z-axis to gain training variations. How-
ever, since the 3D fractal model does not have a front, the
rotation angle is set randomly between [-180, 180] degrees.
Finally, the 3D fractal models should be translated onto the
z-plane to align the structure with the existing datasets such
as ScanNetV2 [17] and SUN RGB-D [58]. In order to ac-
complish this, we randomly set the = and y coordinates of
an instance generated by the 3D fractal models as the cen-
troid of the 3D fractal model and redefine the centroid. In
this case, the x and y positions to be redefined should be
within the range of [-7.5, 7.5].

Note that the minimum z coordinates for each 3D fractal
model are aligned in the same z-plane. Because in the real
world, objects cannot be floating in the air due to gravity.
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Additionally, note that the 3D fractal models are placed in
the 3D fractal scene in non-overlapping positions. Visual-
ization of 3D fractal scenes is provided in the appendix.

4. Experiments

In this section, we firstly introduce how to pre-train our
PC-FractalDB and fine-tune it for downstream datasets (see
Sec. 4.1). We then provide analysis experiments to under-
stand the importance of pre-training by object detection,
the effects of 3D fractal model variations, and show our
method’s advantages over a 3D scene consisting of CAD
models (see Sec. 4.2). We then explore the optimal param-
eters of PC-FractalDB from exploratory experiments (see
Sec. 4.3). From these results, we compare PC-FractalDB
on the best parameter with previous methods on two 3D in-
door object detection benchmarks (see Sec. 4.3). Finally,
we experiment with the effectiveness of our method when
only limited training data and annotation is available (see
Sec. 4.5). More analysis explored PC-FractaDB parameters
and visualizations are provided in the appendix.

4.1. Experimental setting

Pre-training on PC-FractalDB. In the present paper, we
employ VoteNet, an end-to-end 3D object detection net-
work based on a synergy of deep point set networks and
Hough voting [48]. In experiments, we use both Point-
Net++ [50] and Sparse Res-UNet (SRU-Net) [67] as the
backbone network. Unlike previous work, our proposed
method enables the acquisition of feature representation for
object detection in the pre-training phase. In order to con-
struct the PC-FractalDB pre-trained VoteNet, the following
training parameters are assigned. Pre-training is carried out
with 1.8M iterations at minimum, a batch size of 64, and
a learning rate of 0.004 as the hyperparameters. The input
point clouds are randomly sampled at 40,000.

For example, the construction of the PC-FractalDB (Cat-
egory: 1k, Instance: 500, Scene; 10k) can be completed in
two days, and the pre-training can be completed in six days
using four NVIDIA Tesla V100 GPUs. Given that Scan-

Table 1. Pre-training the PC-FractalDB and the fine-tuning SUN
RGB-D and ScanNetV2 in our experiments.

Dataset Supervision ‘ Category #Scene #Model
ScanNetV2 [17] Human 18 1.5k -
SUN RGB-D [58] Human 37 10.2k 65k
PC-FractalDB Formula 1k 100k IM

NetV2 (Category: 18, Scene; 1.5k) takes approximately 23
days ((22 [min] * 1,500 [scene]) / (60 [min] * 24 [hour]))
to generate due to the fact that the generation process takes
22 [min] per 3D scene [17], we found the construction and
pre-training of the PC-FractalDB to be very fast.
Fine-tuning on downstream datasets. Next, we evalu-
ated the PC-FractalDB pre-trained model using fine-tuning
datasets. Fine-tuning datasets are used ScanNetV2 [17] and
SUN RGB-D [58], and these datasets’ details are summa-
rized in Table 1. These datasets, which captured indoor
scenes, are frequently used in 3D object detection. The fine-
tuning is carried out with 180 epochs, a batch size of 64, and
a learning rate of 0.01 as the hyperparameters. The learning
rate is 0.01 for each interval of 40, 80, 120, and 160 epochs.
The input point clouds were randomly sampled at 40,000
(ScanNetV2) and 20,000 (SUN RGB-D).

4.2. Preliminary study

In this subsection, in order to understand the effects of

pre-training tasks, 3D fractal model variations, and show
our method’s advantages over a 3D scene consisting of
CAD models, we performed three preliminary experiments.
Specifically, we experimentally investigated the answers to
the following three questions. (i) Which pre-training task
is better: 3D object classification or 3D object detection as
pre-train?, (ii) How vital are 3D pattern variations in pre-
training for 3D object detection?, (iii) Which is more effec-
tive of pre-training, 3D fractal models or CAD models?
(i) Which pre-training task is better: 3D object classifi-
cation or 3D object detection as pre-train? (see Table 2).
This preliminary experiment (i) attempts to clarify which is
more effective as pre-training 3D object classification or 3D
object detection tasks. We executed by pre-training on PC-
FractalDB (w/ and w/o 3D bounding box /3D fractal scene)
and fine-tuning on the SUN RGB-D / ScanNetV2 dataset.

In the case of the 3D object classification task, it allows
pre-training a backbone network (PointNet++) by classify-
ing 3D fractal models. The hough voting module and object
candidate proposal module are optimized in the fine-tuning
phase. On the other hand, the pre-training on the 3D object
detection task can optimize the whole network including
hough voting module and object candidate proposal mod-
ule in VoteNet. The number of input points for a single 3D
fractal model to 2,048, and for a 3D fractal scene that con-
sists was randomly sampled to 40,000.
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Table 2. The comparison for pre-training Table 3. Effects of 3D fractal model variations. Table 4. The comparison for our proposed

part of classification and detection tasks. ScanNetV2  SUN RGB-D PC-FractalDB and ModelNet.
ScanNetV2  SUN RGB-D #model #cat. #ins | mAP@0.25 mAP@0.25 ScanNetV2  SUN RGB-D
mAP@0.25 mAP@0.25 1 1 1 572 56.4 mAP@0.25 mAP@0.25
- 1k 1k 1 60.3 57.5
PointNet++ 48.8 49.8 1k 1 1k 59.3 56.6 ModelNet 59.9 55.0
VoteNet 61.1 57.6 M 1k 1k 61.6 59.2 PC-FractalDB 60.4 58.0

As shown in Table 2, the detection pre-training showed
on ScanNetV2 was +12.3% more accurate than the classifi-
cation pre-training on the same dataset. The same tendency
was observed for SUN RGB-D, the detection pre-training
was +7.8% better than classification pre-training. These re-
sults consider that detection pre-training is more effective
than classification pre-training because the 3D object de-
tection task can also pre-train the Hough voting and object
candidate proposal module.

(i) How vital are 3D pattern variations in pre-training
for 3D object detection? (see Table 3). This preliminary
study (ii) attempts to reveal how vital 3D pattern variations
are in pre-training for 3D object detection. Preliminary
study (ii) compares using the PC-FractalDB consisting of
10,000 3D scenes using only one 3D fractal model, the PC-
FractalDB consisting of 10,000 3D scenes using 1,000 3D
fractal models, and the PC-FractalDB consisting of 10,000
3D scenes using 100,000 3D fractal models. Here, concern-
ing 1,000 3D fractal models, it is with 1,000 categories and
one instance and one category and 1,000 instances.

As shown in Table 3, the performance is confirmed that
the PC-FractalDB (Category: 1k, Instance: 1k) pre-trained
model is the best score of other PC-FractalDB pre-trained
models. In particular, we observed +4.4% and +2.8% per-
formance improvement compared to PC-FractalDB (only
one 3D fractal model) for ScanNetV2 and SUN RGB-D.

(iii) Which is more effective of pre-training, 3D fractal
models or CAD models? (see Table 4). This preliminary
study (iii) aims to evaluate 3D fractal scene generation ef-
fectiveness in 3D fractal models. We compare pre-training
performance in both 3D fractal scenes and 3D scenes by the
CAD models included in ModelNet [65].

As can be seen in Table 4, the PC-FractalDB pre-trained
VoteNet outperformed the 3D scenes produced with Mod-
elNet. The performance gaps were +0.5% and +3.0% on
ScanNetV2 and SUN RGB-D, respectively. Note that the
3D scenes with ModelNet (Category: 40, Instance: aver-
age 243, Scene; 10k) are larger than PC-FractalDB (Cat-
egory: 40, Instance: 243, Scene; 10k) used in this exper-
iment. Consequently, we can confirm that generated 3D
fractal scenes based on fractal geometry are more effective
than 3D scenes generated by CAD model well-organized
surface data such as the ModelNet.

4.3. Exploration study

In this subsection, to explore optimized parameters of
the PC-FractalDB, we performed six exploration studies.
Specifically, we explore how to construct a PC-FractalDB
for variance threshold, FNM, #instance, #category, #scene,
and #object.

Effects of variance threshold (see Table 5). This exper-
iment clarifies whether or not a variance threshold o was
needed (w/ and w/o variance) in the fractal category defini-
tion under the PC-FractalDB (Category: 1k, Instance: 500,
Scene; 10k) condition. Table 5 shows that the w/ variance
threshold o is better than the w/o setting. In addition, we
found that 0.15 is better than 0.10 for variance threshold o,
and the variance threshold of 0.20 requires a larger amount
of time to search the fractal category. The exploration ex-
periment details compare the performance on each variance
threshold are in supplement.

Effects of FractalNoiseMix (see Table 6). This experi-
ment clarifies whether or not the FNM was needed (w/ and
w/o variance) in the intra-category augmentation under the
PC-FractalDB (Category: 1k, Instance: 500, Scene; 10k)
condition. Table 6 shows that the w/ FNM is better than
the w/o FNM. Moreover, we explored that the fractal noise
ratio of 20 % gave the best effective parameter. The explo-
ration experiment details of the ratio of fractal noise are in
supplement.

Effects of #instance (see Table 7). This experiment ex-
plored the best effective #instance in PC-FractalDB pre-
training under the PC-FractalDB (Category: 1k, Scene;
10k) condition. Table 7 shows that 1,000 instances provide
the best results.

Effects of #category (see Table 8). This experiment ex-
plored the best effective #category in PC-FractalDB pre-
training under the PC-FractalDB (Instance: 500, Scene;
10k) condition. Table 8 shows that 1,000 categories provide
the best results.

Effects of #scene (see Table 9). This experiment explored
the best effective #scene in PC-FractalDB pre-training un-
der the PC-FractalDB (Category: 1k, Instance: 500) con-
dition. Table 9 shows that 10,000 scenes provide the best
results.

Effect of #object per scene (see Table 9). This experi-
ment explored the best effective #object per scene in PC-
FractalDB pre-training under the PC-FractalDB (Category:
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Table 5. The comparisons for with (w/ ) and Table 6. The comparisons for with (w/ ) and
without (w / 0) FractalNoiseMix (FNM).

without (w / 0) variance threshold.

Table 7. Effects of #instance.

‘ ScanNetV2  SUN RGB-D

ScanNetV2 SUN RGB-D ScanNetV2 SUN RGB-D mAP@0.25 mAP@0.25
mAP@0.25 mAP@0.25 mAP@0.25 mAP@0.25 10 60.8 582
w / o variance 58.9 554 w /o FNM 60.3 57.5 100 60.6 57.7
w / variance 61.9 59.0 w /FNM 61.9 59.0 1,000 61.6 59.2

Table 8. Effects of #category.

Table 9. Effects of #scene.

Table 10. Effects of #object.

ScanNetV2 SUN RGB-D ScanNetV2  SUN RGB-D ScanNetV2  SUN RGB-D
mAP@0.25 mAP@0.25 mAP@0.25 mAP@0.25 mAP@0.25 mAP@0.25
10 60.8 57.8 1k 55.3 5 59.4 57.9
100 61.0 58.3 10k 59.0 15 61.9 59.0
1,000 61.9 59.0 100k 58.3 25 58.3 56.8

1k, Instance: 500, Scene; 10k) condition. The number of
3D fractal models to be placed in a 3D fractal scene is de-
termined according to the Poisson distribution. In this ex-
periment, we set {5, 10, 15}, which is assumed to be a real-
istic number of objects in indoor scenes, as the mean value
of the Poisson distribution. Table 10 shows that 15 objects
provide the best results.

4.4. Comparison with other pre-training methods

Based on the exploration study in Sec. 4.3, we list
the 3D object detection scores in Table 11. Here, we
compared the proposed PC-FractalDB with self-supervised
learning methods (PointContrast [67], CSC [26], and Ran-
domRooms [51]) in terms of pre-training. This experiment
used backbone networks such as PointNet++ and SR-UNet.

As shown in Table 11, when the backbone network
is PointNet++, pre-training with the PC-FractalDB im-
proved the score by +4.0% on ScanNetV2 and +2.0% on
SUN RGB-D at mAP@0.25 as compared to training from
scratch. In addition, when the backbone network is SR-
UNet, pre-training with the PC-FractalDB improved the
score by +2.4% on ScanNetV?2 and +1.0% on SUN RGB-D
at mAP@0.25 as compared to training from scratch.

Next, we confirmed that the performance of PC-
FractalDB is relatively higher than that of previous state-
of-the-art self-supervised learning methods. The perfor-
mance rate with PC-FractalDB (PointNet++) is +0.6% and
+0.2%, which is better than RandomRooms on ScanNetV?2
and SUN RGB-D. We also confirmed that PC-FractalDB
(SR-UNet) is approximately equivalent to CSC and Point-
Contrast.  The performance rate with PC-FractalDB
(PointNet++x2) is +2.1% and +3.7%, which is better than
PointContrast on ScanNetV2 and SUN RGB-D. On the
other hand, when comparing PointNet++ and SRUNet with
equal parameters, PC-FractalDB (PointNet++x2) showed
the highest accuracy in all evaluations except SUN RGBD
at mAP@0.50.

4.5. Additional experiments

We performed three additional experiments, including (i)
limited training data with {10% , 20%, 40%, 80%} subsets,
(ii) limited 3D bounding box annotations with {1, 2, 4, 7}
objects, and (iii) Effects of supervisor label in pre-training.
Limited fine-tuning data (see Fig. 1). We verified the
effectiveness of the PC-FractalDB pre-trained model on
smaller fine-tuning datasets. We sample {10% , 20%, 40%,
80%} from ScanNetV2 training data and use the official
ScanNetV2 validation set for evaluation (for details, refer
to [26]). As seen in Fig. 1, the PC-FractalDB pre-trained
model produced higher scores than the PointContrast pre-
trained model and CSC pre-trained model on all limited
training subsets. The results show that the proposed method
can acquire effective features compared to previous self-
supervised learning methods for limited training data on
fine-tuning datasets.

Limited 3D bounding box annotations (see Fig. 1). In
addition, we also evaluated the effectiveness of the PC-
FractalDB pre-trained model on limited 3D bounding box
annotations. We randomly sample {1, 2, 4, 7} 3D bound-
ing boxes per scene from ScanNetV?2 training data and use
the official ScanNetV?2 validation set for evaluation (for de-
tails, refer to [26]). As seen in Fig. 1, the PC-FractalDB
pre-trained model produced higher scores than the Point-
Contrast pre-trained model and CSC pre-trained model on
all limited annotation subsets.

Effects of supervisor label in pre-training. (see Ta-
ble 12). We investigated the pre-training task regarding
which formula-driven and self-supervised learning are more
effective in the PC-FractalDB. For self-supervised learning,
the PC-FractalDB is given pseudo-labels from two different
viewpoints based on the implementation of PointContrast.
Table 12 shows that the formula-driven score improved by
+1.8% on ScanNetV2 and +2.8% on SUN RGB-D com-
pared to self-supervised learning.
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Table 11. 3D object detection comparisons on representative datasets. We employed architecture with the basic VoteNet model and used
them to compare network pre-training methods, including training from scratch, PointContrast [67], CSC [26], RandomRooms [51], and
the PC-FractalDB. The Underlined bold and bold scores indicate the best and second best values, respectively.

Pre-training Backbone Parameter Input ScanNetV2 SUN RGB-D
mAP@0.25 mAP@0.50 | mAP@0.25 mAP@0.50

Scratch PointNet++ 0.95M Geo + Height 579 32.1 574 32.8
Scratch SR-UNet 38.2M Geo 57.0 35.8 56.1 342
RandomRooms [51] PointNet++ 0.95M Geo + Height 61.3 36.2 59.2 354
PointContrast [67] SR-UNet 38.2M Geo 59.2 38.0 57.5 34.8
CSC [26] SR-UNet 38.2M Geo - 39.3 - 36.4
PC-FractalDB PointNet++ 0.95M Geo + Height 61.9 383 59.4 33.9
PC-FractalDB PointNet++ x2 38.2M Geo + Height 63.4 399 60.2 35.2
PC-FractalDB SR-UNet 38.2M Geo 59.4 37.0 57.1 35.9

Table 12. Effects of supervisor label in pre-training.
ScanNetV2 SUN RGB-D

Supervisor label

mAP@0.25 mAP@0.25
PointContrast (SSL) 57.6 54.3
3D IFS (FDSL) 59.4 57.1

5. Discussion

The fractal geometric feature is essential. Table 4 and
Table 11 shows that the PC-FractalDB is more effective
than 3D scenes constructed by a single-object CAD model
such as RandomRooms in pre-training. The proposed PC-
FractalDB can pre-train complex geometric shapes than
a CAD model. This leads us to consider that the PC-
FractalDB can learn relatively more diverse variations and
common 3D patterns in real-world than conventional 3D
datasets because of constructing based on fractal geometry,
it is important for effective pre-training.

Pre-training with 3D object detection task is effective.
Table 2 shows that pre-training considering the entire 3D
object detection task is more effective than pre-training the
backbone network only. This leads us to consider that
the previous self-supervised learning approach enabled only
the backbone network to be initialized with the pre-trained
model, but our proposed method enabled the entire network
to be initialized with the PC-FractalDB pre-trained model
is contributing importance to effective pre-training. Fur-
thermore, Fig. 1 shows that the PC-FractalDB is more ef-
fective for limited data and annotation than the previous
self-supervised learning. This leads us to consider that pre-
training with a large quantity of 3D scenes is important for
limited datasets. The concept of constructing 3D datasets
with FDSL, which does not require manual data collection
and annotation, is up-and-coming for 3D vision.

How to assign a supervisor label is essential. Table 12
shows the PC-FractalDB recorded better scores by 3D frac-
tal data and supervisor labeled pair from the mathemati-

cal formula than an external label with PointContrast. This
leads us to consider that the object-label relationship is es-
sential to acquiring better feature representations in pre-
training. Furthermore, our method can assign consistent su-
pervisor labels to a great quantitive of auto-generated 3D
fractal data based on the mathematical formula.

6. Conclusion

In order to address the challenging problem of pre-
training in 3D point clouds, we proposed a method de-
signed to simplify the construction of 3D datasets under
the formula-driven supervised learning framework. We de-
signed PC-FractalDB, a novel FDSL family inspired by
fractal geometry encountered in natural 3D structures. The
most important is 3D dataset automatically construction so
as not to require scanned data and human annotation dif-
fer from previous self-supervised learning. We showed that
our proposed PC-FractalDB significantly improved the per-
formance of 3D object detection. In addition, we discovered
important parameters for use in the pre-training dataset con-
struction by comprehensively investigating the categories,
instances, scenes, efc., of 3D datasets. In particular, the PC-
FractalDB pre-trained model indicates more effectiveness
for limited training data and annotation than previous self-
supervised learning since the entire network is available to
pre-train. As a result, we discovered construct conception
for the effective pre-training dataset for 3D detection, and
we believe that our PC-FractalDB will provide an essential
key to increasing understanding of 3D scenes in the future.
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New Energy and Industrial Technology Development Or-
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