
Fast Algorithm for Low-rank Tensor Completion in Delay-embedded Space

Ryuki Yamamoto∗, Hidekata Hontani∗, Akira Imakura†, and Tatsuya Yokota∗,⋆
∗ Nagoya Institute of Technology, Aichi, Japan,

r.yamamoto.496@stn.nitech.ac.jp, {hontani, t.yokota}@nitech.ac.jp
⋆ RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

† University of Tsukuba, Ibaraki, Japan, imakura@cs.tsukuba.ac.jp

Abstract

Tensor completion using multiway delay-embedding
transform (MDT) (or Hankelization) suffers from the large
memory requirement and high computational cost in spite
of its high potentiality for the image modeling. Recent stud-
ies have shown high completion performance with a rela-
tively small window size, but experiments with large window
sizes require huge amount of memory and cannot be easily
calculated. In this study, we address this serious compu-
tational issue, and propose its fast and efficient algorithm.
Key techniques of the proposed method are based on two
properties: (1) the signal after MDT can be diagonalized
by Fourier transform, (2) an inverse MDT can be repre-
sented as a convolutional form. To use the properties, we
modify MDT-Tucker [26], a method using Tucker decom-
position with MDT, and introducing the fast and efficient
algorithm. Our experiments show more than 100 times ac-
celeration while maintaining high accuracy, and to realize
the computation with large window size.

1. Introduction
Tensor/matrix completion using a Multiway Delay-

embedding Transform (MDT) (or multiway Hankelization)
has become a very important framework in recent years
[12,16–19,21,22,25,26,28]. The MDT constructs a Hankel
(structured) tensor from an original tensor, and it is known
that the Hankel tensor has low-rank structure in many cases
such as images and videos [3, 9]. Then, various low-rank
tensor completion methods [1, 6, 8, 10, 11, 20, 30] can be di-
rectly applied into the Hankel tensor, and return the com-
pleted tensor by inverse MDT of it (see Fig. 1).

Although tensor processing using MDT has been ac-
tively studied in recent years, there is a bottleneck of high

This work was supported in part by Japan Science and Technology
Agency (JST) ACT-I under Grant JPMJPR18UU, and in part by JSPS
KAKENHI under Grant 20H04208.

MDT-Tucker

Proposed

(1) MDT (2) Low-rank
tensor completion

Incomplete
 tensor

Completed
 tensor

Incomplete
 tensor

Completed
 tensor

Direct, fast, and efficient completion

(3) Inverse MDT

Figure 1. Conceptual illustrations of MDT-Tucker [26] and the
proposed method. MDT-Tucker consists of three steps of MDT,
low-rank tensor completion, and inverse MDT. By contrast, the
proposed method directly obtains the completed tensor.

Table 1. Memory requirements (double precision) for a Hankel
structured tensor obtained by MDT with delay window size τ .

Input tensor size τ = 1 τ = 16 τ = 32

256 2.04KB 30.8KB 57.6MB
256× 256 524KB 118MB 414MB

256× 256× 256 134MB 458GB 2.99TB

memory requirements and expensive computations. For ex-
ample, Tab. 1 shows the memory requirements for MDT,
where τ is a delay window size. In a rough calculation, the
number of entries will be τN times that of the original in
case of an N -th order tensor. In a case of MDT-Tucker [26]
(Tucker decomposition (TKD) with MDT), many iterations
of singular value decomposition (SVD) in alternating least
squares (ALS) algorithm are applied to such a huge tensor,
and it is highly expensive for large τ .

In this study, we address this issue, and propose a fast
alternative method for MDT-Tucker. First, we focus on the
redundant circulant structure of Hankel tensor. There are
prior studies on fast processing of Hankel matrices/tensors
[4, 13, 14, 24], and these results are very useful. The key
ideas in these studies are the Fourier diagonalization of
a circulant matrix and the fast convolutional operation in
Fourier space, and we also use these results in our study.

2058

However, these algorithms [4, 13, 14, 24] cannot be di-
rectly applied to MDT-Tucker [26]. To apply these acceler-
ation techniques to tensor completion problem, we propose
to modify MDT-Tucker as follow:

• MDT is replaced with circulant MDT.
• Three steps in MDT-Tucker are combined to one.
• Half of factor matrices are reduced from TKD.

Then, we formulate a new optimization problem and derive
a solution algorithm. Finally, we show that the proposed
algorithm can be efficiently computed by using Fast Fourier
Transform (FFT) [5].

1.1. Mathematical notations
We follow basic mathematical notations in [26], except

with ⊙ for Hadamard product. In addition, let us consider
N matrices Un ∈ RIn×Rn and an N -th order tensor G ∈
RR1×···×RN , then all-mode product is defined as

G × {U} := G ×1 U1 · · · ×N UN . (1)

All-mode product excluding the n-th mode is defined as

G ×−n {U} := G ×1 U1 · · · ×n−1 Un−1

×n+1 Un+1 · · · ×N UN . (2)

In contrast that above product is for all-mode, next
we consider all-odd-mode. Let us consider N matri-
ces Un ∈ RIn×Rn and a 2N -th order tensor G ∈
RR1×J1×···×RN×JN , then all-odd-mode product is

G ×odd {U} := G ×1 U1 ×3 U2 · · · ×2N−1 UN . (3)

Moreover, all-odd-mode product excluding the (2n− 1)-th
mode (i.e., the n-th odd mode) is defined as

G ×odd
−n {U} := G ×1 U1 · · · ×2n−3 Un−1

×2n+1 Un+1 · · · ×2N−1 UN . (4)

2. Review of MDT-Tucker
First, the MDT-Tucker [26] consists of following three

steps: (1) MDT is applied to an observed incomplete tensor
and a mask tensor. (2) Low-rank tensor completion based
on Tucker decomposition (TKD) is applied to the incom-
plete Hankel tensor. Finally (3) the inverse MDT is applied
to the complete Hankel tensor.

Step 1: Let T ∈ RT1×···×TN , Q ∈ {0, 1}T1×···×TN be
an incomplete input tensor and its mask tensor respectively.
The first step is given by

T H = H̃(T) ∈ RJ1×···×J2N , (5)

QH = H̃(Q) ∈ {0, 1}J1×···×J2N , (6)

where H̃(·) is an operator of MDT (see Sec. 2.1 for the def-
inition). Note that T H is a 2N -th order Hankel tensor in
contrast that the original tensor T is an N -th order tensor.

Step 2: Low rank tensor completion based on TKD is
performed for T H . This TKD consists of 2N factor ma-
trices {Un ∈ RJn×Rn}2Nn=1 and a 2N -th order core tensor
G ∈ RR1×···×R2N . With Rn = 1 for all n as the initial val-
ues, the optimum Rn are obtained by gradually increasing
each Rn until the error becomes smaller than the threshold
value. As the results, the TKD (Û1, ..., Û2N , Ĝ) are ob-
tained.

Step 3: Finally, the resultant tensor is obtained by in-
verse MDT as follow:

X̂ = H̃†(Ĝ × {Û}), (7)

where H̃†(·) is an operator of inverse MDT.

2.1. MDT
2.1.1 Delay embedding for a vector
First, we define a delay embedding of a 1-dimensional
signal (i.e., Hankelization). The operator of the MDT is
denoted by H̃(·), and the delay embedding for a vector
x =

(
x1, x2, . . . , xT

)⊤ ∈ RT with delay window size τ
is defined as

H̃τ (x) :=


x1 x2 . . . xT−τ+1

x2 x3 . . . xT−τ+2

...
...

. . .
...

xτ xτ+1 . . . xT

 ∈ Rτ×(T−τ+1).

(8)
Note that anti-diagonal entries are the same, and such a ma-
trix is called as Hankel matrix. There exists a duplication
matrix S̃ ∈ {0, 1}τ(T−τ+1)×T that satisfies vec(H̃τ (x)) =

S̃x. Then, the delay embedding can also be expressed by

H̃τ (x) = fold(τ,T−τ+1)(S̃x), (9)

where fold(v,V) : RvV → Rv×V is a folding operator from
a vector to a matrix (see Fig. 2).

Since the delay embedding is essentially a duplication
operation, its inverse is essentially a mean operation. Let be
X̃H ∈ Rτ×(T−τ+1), the inverse MDT of X̃H is defined as

H̃†
τ (X̃H) := S̃†vec(X̃H) ∈ RT , (10)

where S̃† = (S̃⊤S̃)−1S̃⊤ is a Moore-Penrose pseudo-
inverse of S̃. A matrix S̃⊤S̃ is diagonal, and its diagonal
entries are the number of duplications of individual entries.

2.1.2 Tensor extension (Step1 and Step3)
Delay embedding can be naturally extended for an N -th
order tensor X ∈ RT1×···×TN . Let us consider N dupli-
cation matrices S̃n ∈ {0, 1}τn(Tn−τn+1)×Tn with window
size τ = (τ1, . . . , τN) ∈ RN , Multiway Delay-embedding

2059

(a) Delay embedding

MDT-Tucker Proposed (circulant)

averages of anti-diagonal elements

(b) Inverse delay embedding

(a) Circulant delay embedding

averages of anti-diagonal elements

(b) Inverse circulant delay embedding

Figure 2. A MDT used by MDT-Tucker and a circulant MDT used by the proposed method.

Transform (MDT) is defined using all-mode product and
folding as

H̃τ (X) := fold(τ ,T−τ+1)(X × {S̃}), (11)

where fold(v,V) : Rv1V1×···×vNVN → Rv1×V1×···×vN×VN

is a folding operator from an N -th order tensor to the
2N -th order tensor. For a 2N -th order tensor X̃H ∈
Rτ1×(T1−τ1+1)×···×τN×(TN−τN+1), the inverse MDT is de-
fined as

H̃†
τ (X̃H) := unfold(τ ,T−τ+1)(X̃H)× {S̃†} (12)

where unfold(v,V) is an inverse transformation of
fold(v,V).

2.2. Tucker-based tensor completion (Step 2)
Here, we briefly explain how to obtain Tucker-

decomposition at the Step 2 in MDT-Tucker. In this step,
the following optimization problem is considered,

minimize
G,{Un}2N

n=1

∥QH ⊙ (T H − G × {U})∥2F , (13)

s.t. G ∈ RR1×···×R2N ,

Un ∈ RJn×Rn , U⊤
n Un = IJn ,

Rn ≤ Jn (∀n ∈ {1, . . . , 2N}).

It can be solved by a combination of alternating
least squares (ALS) algorithm [2] and majorization-
minimization (MM) algorithm [7,15]. In addition, we solve
(13) iteratively while increasing Rn until the cost function
becomes sufficiently small. All processes are summarized
in Algorithm 1. How to increase the rank of each mode
(e.g., Rn ← Rn + 1) can be set by using a vector Ln.

2.3. Hint for improvements
In MDT, an N -th order tensor X ∈ RT×···×T is trans-

formed to a Hankel tensor and it can also be represented
as a multilevel Hankel matrix HX by reshaping. A fast
SVD for (multilevel) Hankel matrix is studied to exploit
the Hankel structure [13, 24], and a fast product between of
the Hankel tensor and the vector is studied in [4]. The key
idea of these studies is from a fact that any multilevel anti-
circulant matrix CX ∈ RTN×TN

can be diagonalized by
N -dimensional Fourier basis W ∈ CTN×TN

. Then, a ma-
trix WCXW is diagonal, and its diagonal entries can be
obtained by N -dimensional Fourier transform of the orig-
inal tensor X . In addition, the multilevel Hankel matrix
HX is completely included as a part of the multilevel anti-
circulant matrix CX .

The above results show that the Hankel tensor can be
represented by the Fourier transform of the original tensor
without explicit calculation. It also shows that the multipli-
cation of a Hankel tensor and a vector (or matrix) can be
efficiently calculated by using the Fourier transform of the
original tensor without using the Hankel tensor explicitly.

3. Proposed method
3.1. Overview of fast MDT-Tucker

MDT-Tucker [26] is computationally expensive due to
the explicit calculation of the Hankel tensor by MDT. We
propose to apply the results shown in Sec. 2.3 to the MDT-
Tucker for fast and efficient implementation. However, it
cannot be directly applied as is. Then, we propose to refor-
mulate the MDT-Tucker in this study.

The reformulation of MDT-Tucker is as follow:

• To exploit the property of a circulant matrix, we define
a circulant MDT and replace it with a normal MDT.

2060

• To avoid the explicit calculation of the Hankel tensor,
we skip Step 1 in MDT-Tucker, and combine all three
steps into one optimization problem.

• For the efficient update of (odd-number) factor matri-
ces U2n−1 ∈ Rτn×Rn , we do not consider even-mode
factor matrices (i.e., even-mode factor matrices are as-
sumed as identity matrices U2n = ITn) in TKD.

In the following sections, we explain details of the proposed
method step by step. First, we define circulant MDT in
Sec. 3.2. Second, we show the reformulated optimization
problem in Sec. 3.3, and derive its solution algorithm in
Sec. 3.4. Note that solution algorithm in Sec. 3.4 is not
fast and efficient as is, but fast and efficient by using spe-
cific implementation with FFT. Finally, we show the tech-
niques of implementation for fast and efficient computation
in Sec. 3.5.

3.2. Circulant MDT
First, a circulant delay embedding of x ∈ RT with delay

window size τ is defined as

Hτ (x) :=


x1 x2 . . . xT

x2 x3 . . . x1

...
...

. . .
...

xτ xτ+1 . . . xτ−1

 ∈ Rτ×T , (14)

where Hτ (·) is a circulant delay-embedding operator. Note
that the first row is the same as the input vector and the k-th
row is constructed by circulant shift of x with width k − 1.
In similar way to MDT (see Sec. 2.1), a duplication matrix
S can be considered. Fig. 2 shows an example of a circulant
delay embedding and its inverse with T = 7 and τ = 3.

A circulant MDT for an N -th order tensor X ∈
RT1×···×TN with delay window sizes τ = (τ1, . . . , τN) ∈
RN can be defined as

Hτ (X) := fold(τ ,T)(X × {S}), (15)

where Sn ∈ {0, 1}τnTn×Tn are duplication matrices.
For a 2N -th order tensor XH ∈ Rτ1×T1×···×τN×TN , the

inverse circulant MDT is defined as

H†
τ (XH) := unfold(τ ,T)(XH)× {S†}. (16)

3.3. Reformulated optimization problem
In this section, we reformulate (13) by using the circu-

lant MDT while avoiding the explicit use of T H . Then,
the proposed low rank tensor completion using a circulant
MDT is given by

minimize
G,{Fn}N

n=1

∥∥Q⊙ (
T −H†

τ

(
G ×odd {F }

))∥∥2
F
, (17)

s.t. G ∈ RR1×T1×···×RN×TN ,

Fn ∈ Rτn×Rn , F⊤
n Fn = IRn

,

Rn ≤ τn (∀n ∈ {1, . . . , N}),

Table 2. Difference between MDT-Tucker and the proposed
method (Tn = T, τn = τ ≤ T/2 (∀n) are assumed)

.

MDT-Tucker Proposed

Delay embedding MDT circulant MDT
Formulated steps 3 1
Factor matrices all-modes only odd-modes
Memory size O(τNTN) O(TN)
Computational cost O(τN+1TN) O(NTN log T)

where T ∈ RT1×···×TN and Q ∈ {0, 1}T1×···×TN are an
input incomplete tensor and a mask tensor, respectively.
Note that these are not T H and QH obtained by MDT.
A resultant tensor is given by X̂ = H†

τ

(
Ĝ ×odd {F̂ }

)
,

and it is efficiently calculated (see Sec. 3.5). Although
the size of a core tensor G ∈ RR1×T1×···×RN×TN is still
large, it is not necessary to be explicitly calculated. In fact,
H†

τ

(
G ×odd {F }

)
∈ RT1×···×TN can be obtained from a

tensor Z ∈ RT1×···×TN with a much smaller size in opti-
mization (see Algorithm 2 and Sec. 3.5). Since the circulant
MDT Hτ and its inverse H†

τ used in our algorithm can be
implemented using FFT, we do not need to perform them
explicitly.

3.4. Derivation of optimization algorithm
In this section, we explain the proposed algorithm for

the reformulated problem (17). The basic strategy is the
same as Tucker-based tensor completion in Sec. 2.2. It
is summarized in Algorithm 2 and combining the follow-
ing three techniques: rank-increment, MM-algorithm, and
ALS-algorithm. Input and output in Algorithm 1 and Al-
gorithm 2 are almost same. Note that we consider MDT,
inverse MDT, and a core tensor G in algorithm derivation,
and a naive implementation of the derived algorithm is not
fast and efficient. However, expensive process at the 8th,
10th, and 14th lines in Algorithm 2 can be implemented in
fast and efficient way with FFT.

To solve the reformulated optimization (17), we consider
the minimization of two auxiliary functions: h and g. The
cost function f and its auxiliary function h are

f(θ) :=∥Q⊙ (T −X θ)∥2F , (18)

h(θ|θ′) :=∥Q⊙ (T −X θ)∥2F + ∥Q⊙ (X θ′ −X θ)∥2F ,
(19)

where θ = {G,F1, . . . ,FN} is a set of parameters, X θ =
H†

τ (G ×odd {F }) is an inverse MDT of Tucker decompo-
sition, and Q := 1−Q. Based on the theory of MM algo-
rithm [7,15], an update rule of θk+1 = argminθh(θ|θk) has
monotonically non-increasing property for the cost function
f(θk+1) ≤ f(θk).

Next, we consider the minimization of h. The auxiliary

2061

Algorithm 1 Tucker-based tensor completion with rank in-
crement in MDT-Tucker [26]

1: input: T ∈ RT1×···×TN , Q ∈ {0, 1}T1×···×TN , τ =
(τ1, . . . , τN), {L1, . . . ,L2N}, tol, ϵ

2: initialize: kn ← 1, Rn ← Ln(kn) (∀n), and XH ∈
RJ1×···×J2N , {Un ∈ RJn×Rn}2Nn=1, randomly

3: T H ← H̃τ (T), and QH ← H̃τ (Q) // (Step 1)
4: f1 ← ∥QH ⊙ (T H −XH)∥2F
5: repeat // (Step 2)
6: ZH ←QH ⊙ T H +QH ⊙XH

7: for n = 1, . . . , 2N do
8: Un ← Rn leading singular vectors of[

ZH ×−n {U⊤}
]
(n)

9: end for
10: XH ← ZH × {UU⊤}
11: f2 ← ∥QH ⊙ (T H −XH)∥2F
12: if |f2 − f1| ≤ tol then
13: X ′

H ←QH ⊙ (T H −XH)
14: n′ ← argmaxn∥X ′

H ×−n {U⊤}∥2F
15: kn′ ← kn′ + 1, and Rn′ ← Ln(kn′)
16: else
17: f1 ← f2
18: end if
19: until f2 ≤ ϵ
20: X̂ ← H̃†

τ (XH) // (Step 3)
21: output: X̂ ,U1, . . . ,U2N

function h can be transformed as follows:

h(θ|θk) = ∥Q⊙ (T −X θ)∥2F + ∥Q⊙ (X θk −X θ)∥2F
= ∥Zθk −H†

τ (Yθ)∥2F , (20)

where Zθk = Q⊙T +Q⊙X θk and Yθ = G×odd {F }.
It is difficult to minimize h directly using the ALS.

Moreover, we consider another auxiliary function g to
minimize h, which is defined as

g(θ|θk) := ∥Hτ (Zθk)−Yθ∥2F . (21)

When we regard Hτ (Zθk) as an input tensor, the auxiliary
function g is the same form of Tucker decomposition which
can be directly minimized by ALS [2]. The necessary opti-
mality conditions of h and g with respect to Yθ are

Hτ (H†
τ (Yθ)) = Hτ (Zθk), (22)

Yθ = Hτ (Zθk). (23)

If the condition of g (23) satisfies, then the condition of h
(22) satisfies. Note that Hτ is essentially duplication, and
H†

τ is essentially mean. The function g enforce the Tucker
decomposition Yθ to be Hankel structured, but the function
h does not. Therefore, it is expected that the use of g im-
proves the uniqueness of the solution than h.

Algorithm 2 Proposed Tucker-based tensor completion
with rank increment

1: input: T ∈ RT1×···×TN , Q ∈ {0, 1}T1×···×TN , τ =
(τ1, . . . , τN), {L1, . . . ,LN}, tol, ϵ

2: initialize: kn ← 1, Rn ← Ln(kn) (∀n), and X ∈
RT1×···×TN , {Fn ∈ Rτn×Rn}Nn=1 randomly

3:
4: f1 ← ∥Q⊙ (T −X)∥2F
5: repeat
6: Z ←Q⊙ T +Q⊙X
7: for n = 1, . . . , N do
8: Fn ← Rn leading singular vectors of[
Hτ (Z)×odd

−n {F⊤}
]
(2n−1)

// (Sec. 3.5.1)
9: end for

10: X ← H†
τ

(
Hτ (Z)×odd {FF⊤}

)
// (Sec. 3.5.2)

11: f2 ← ∥Q⊙ (T −X)∥2F
12: if |f2 − f1| ≤ tol then
13: X ′ ←Q⊙ (T −X)
14: n′ ← Eq. (24) // (Sec. 3.5.3)
15: kn′ ← kn′ + 1, and Rn′ ← Ln(kn′)
16: else
17: f1 ← f2
18: end if
19: until f2 ≤ ϵ
20:
21: output: X ,F1, . . . ,FN

Finally, we explain how to increment rank of each mode.
We also employ the strategy “rank increment” used in [26]
to optimize appropriate rank. First, we select the mode n′

whose mode residual is the maximum of all modes corre-
sponding to the odd number. The n-th mode residual is de-
fined as a residual on the multi-linear subspace spanned by
all the factor matrices excluding the n-th mode factor ma-
trix. Thus, the selected mode is given by:

n′ = argmax
n

∥Hτ

(
X ′)×odd

−n {F⊤}∥2F , (24)

where X ′ = Q⊙(T −X θ). It is interpreted as meaning that
the selected n′-th mode expects to reduce the cost function
f highly when Rn′ increases while the other-mode ranks
remain fix. How to increment the rank of each mode can
be freely designed by Ln. For example, the setting like
Ln = (1, 2, 4, 8, . . . , τn) would be efficient than one by
one increment Ln = (1, 2, 3, 4, . . . , τn).

3.5. Fast and efficient computations
The naive implementation of this algorithm is still slow

and inefficient because it calculates the circulant MDT ex-
plicitly. In Algorithm 2, the parts where the (inverse) cir-
culant MDT is calculated are lines 8, 10, and 14, and these
can be efficiently computed by using FFT. As a result, the

2062

Toeplitz
matrix

Figure 3. An example of Dn for making a Toeplitz matrix.

proposed process does not require the circulant MDT, ex-
plicitly, but equivalent results can be obtained in theory. In
the remaining section, we explain the proposed implemen-
tation at each bottleneck in Algorithm 2. The MATLAB
code is available via our GitHub repository1.

3.5.1 The 8-th line: Updating factor matrices
First, we propose processes for the 8-th line in Algorithm 2.
The naive implementation at the 8-th line comprises as fol-
lowing processes:

1. Hn ←
[
Hτ (Z)×odd

−n {F⊤}
]
(2n−1)

;

2. An ←HnH
⊤
n ∈ Rτn×τn ;

3. Fn ← Rn leading left singular vectors of An;

The size of Hn is τn
∏

i̸=n Ri times the size of the original
input signal. On the other hand, the size of the resultant
autocorrelation matrix An is τn× τn, which is very smaller
than the Hn. Exploiting that the signal after a circulant
MDT can be diagonalized, An can be computed without
calculating Hn explicitly. The fast implementation for An

is the following processes:

Proc. 1 : ZF ← FFTN

(
IFFTN (Z)⊙ IFFTN (Z)

)
;

Proc. 2 : ZP ← ZF × {P } ∈ R(2τ1−1)×···×(2τN−1);

Proc. 3 : fk ← vec(FkF
⊤
k) ∈ Rτ2

k for all k ̸= n;

Proc. 4 : an ← ZP ×−n {f⊤D} ∈ R2τn−1;

Proc. 5 : An ← unfold(Dnan) ∈ Rτn×τn ;

where FFTN (·) and IFFTN (·) are operators of N -
dimensional FFT and N -dimensional inverse FFT, Pn ∈
{0, 1}(2τn−1)×Tn is a cropping matrix, and Dn ∈
{0, 1}τ2

n×(2τn−1) is a duplication matrix for Toeplitz struc-
ture. A matrix Pn can be constructed as:

Pn =

(
Iτn 0 0
0 0 Iτn−1

)
∈ R(2τn−1)×Tn . (25)

Fig. 3 shows an example of a duplication matrix Dn.

1https://github.com/yama30120/fast-MDT-Tucker

3.5.2 The 10-th line: Inverse circulant MDT
We show the 10-th line in Algorithm 2. An inverse circulant
MDT can be represented as a convolution form and has a
linearity. Therefore, an inverse circulant MDT can be com-
puted in Fourier space.

For example, let us consider two vectors a ∈ Rτ and
b ∈ RT (τ ≤ T), the elements ofH†

τ (ab
⊤) ∈ RT is

(
H†

τ (ab
⊤)

)
(t) =

1

τ

τ∑
m=1

a(m)b(t−m+ 1), (26)

and it is convolution. Note that the inverse circulant de-
lay embedding is the same as averages of the anti-diagonal
elements (see Fig. 2). We next consider a linearity of
an inverse circulant delay embedding. For two matrices
A = (a1, ...,aR) ∈ Rτ×R and B = (b1, ..., bR) ∈ RT×R,
the elements ofH†

τ (AB⊤) ∈ RT is

(
H†

τ (AB⊤)
)
(t) =

R∑
r=1

H†
τ (arb

⊤
r)(t). (27)

It can be extended to the inverse circulant MDT because
the Hankel tensor after a circulant MDT is represented as a
multilevel Hankel matrix by unfolding. Exploiting a convo-
lution form, the computation of an inverse circulant MDT
can be efficiently computed by using FFT. The processes
can be summarized as follows:
Proc. 1 : F ′

n ← (F⊤
n ,0)⊤ ∈ RTn×Rn ;

Proc. 2 : f (n)
power ←

(
FFT1(F

′
n)⊙ FFT1(F ′

n)
)
1 (∀n);

Proc. 3 : F ← 1× {fpower} ∈ RT1×···×TN ;
Proc. 4 : X ← 1∏N

n=1 τn
FFTN (F ⊙ IFFTN (Z));

3.5.3 The 14-th line: Selecting the mode whose rank to
be increased

Finally, we show fast and efficient implementation of the
14th line in Algorithm 2. The bottleneck can be accelerated
by using previous technique explained in Sec. 3.5.1. Us-
ing Hn =

[
Hτ (X ′)×odd

−n {F⊤}
]
−(2n−1)

, the n-th mode
residual is transformed as

∥Hτ (X ′)×odd
−n {F⊤}∥2F = tr(HnH

⊤
n), (28)

where tr(·) is an operator calculating a trace of a matrix.
In other words, the n-th mode residual can be computed by
the autocorrelation matrix of Hn and its size is τn × τn.
Therefore, fast and efficient computation of HnH

⊤
n can be

done by inputting X ′ instead of Z in Sec. 3.5.1.

4. Experiments
The experiment in Sec. 4.2.1 was conducted in the fol-

lowing environments: CPU: Intel(R) Core(TM) i7-6900K
CPU @ 3.20GHz, 8 cores /16 threads, Memory: 128GByte,

2063

https://github.com/yama30120/fast-MDT-Tucker

0 50 100 150
0

0.02

0.04

0.06
increased

0 50 100 150
0

10

20

30

40
1st mode rank
3rd mode rank

R
an

k
C
os

t
fu

n
ct

io
n

Iteration

Original 95% missing Recovered

Figure 4. Cost function and ranks when recovering the 95% miss-
ing Lena image using the proposed method.

8-th line 10-th line 14-th line10-3

10-2

10-1

100

101
naive
fast

C
om

p
u
ti
n
g
 t

im
e

(s
ec

)

Figure 5. Comparison computing time (sec) of the naive imple-
mentation and fast one of the Algorithm 2. The red bars or left
ones represent the naive implementation and the blue bars or right
ones represent the accelerated implementation.

Software: Matlab R2019a. The other experiments were
conducted in the following environments: 2CPUs: Intel(R)
Xeon(R) Gold 6238 CPU @ 2.10GHz, 22 cores/44 threads,
Memory: 755GByte, Software: Matlab R2017b.

4.1. Verificatation of the proposed method
4.1.1 Decreasing a cost function monotonically

We verified that the cost function f decreases monotoni-
cally in various data (e.g., images, videos, and MRI). In
this section, we show the experiment that the 95% random
voxel missing of Lena image (256 × 256 × 3) is recov-
ered by the proposed Algorithm 2. We set the parameters:
τ = (32, 32, 1), L1 = L2 = (1, 2, 3, 4, 8, 16, 24, 32), and
L3 = 1. Fig. 4 shows the recovered image and the be-
haviors of the cost function f and the ranks (R1, R2). Al-
though our algorithm derivated in Sec. 3.4 is not guaranteed
to monotonically decrease the cost function exactly, our ex-
periment shows decreasing monotonically the cost function.

missing 7 slices

Figure 6. Missing MRI: 7 consecutive slices (t = 92, 93, . . . , 98)
missing in MRI images and the other slices is 90% random voxel
missing. Missing voxels are represented by black.

4.1.2 Comparison of computing time
We compared the computing time of the naive algorithm
and the fast one of the proposed method at 8-th, 10-th
and 14-th lines in Algorithm 2 where the circulant MDT
is calculated explicitly. We set the parameters: T =
(256, 256, 3), τ = (32, 32, 1), and R = τ . Fig. 5 shows
the results of the computing time of the individual lines.
Note that the vertical axis of this graph is the logarithmic
axis. The accelerated implementation is more than 100
times faster than the naive one in all the lines.

4.2. Comparison of recovery performance
4.2.1 Videos recovery using various methods
We compared the performance of the proposed method
and the other tensor completion algorithms2: nuclear-norm
and TV regularization (LR&TV) [27], SPCQV (constrained
PARAFAC tensor decomposition) [29], MDT-Tucker [26].
We prepared three video data3 whose size are (112× 160×
3 × 32), (90 × 160 × 3 × 64), and (90 × 160 × 3 × 100)
respectively. We created missing videos in each of three
ways: slice missing (several frames, horizontal and ver-
tical slices) and random voxel missing (70% and 95%).
We applied the proposed method with τ = (8, 8, 1, 8),
L1 = L2 = L4 = (1, 2, 3, 4, 5, 6, 7, 8), and L3 = 1.

Tab. 3 shows the peak signal-to-noise ratio (PSNR), the
frame average of structural similarity (SSIM) [23], and
computing times for these comparisons, where the best
PSNR, SSIM, and computing time values are emphasized
in bold font. SPCQV and MDT-Tucker are almost the best
PSNR and SSIM, and the proposed method is the next or
third best. However, computing time of the proposed one is
hundreds of times faster than the others.

4.2.2 MRI images recovery using MDT-Tucker and the
proposed method

We recovered the MRI images using MDT-Tucker and the
proposed method with various delay window sizes. We pre-
pared the MRI images whose size is (217× 181× 181) and

2The source codes of LR&TV, SPCQV, and MDT-Tucker are obtained
from https://sites.google.com/site/yokotatsuya/
home/software.

3smoke1 and smoke2 are obtained from NHK CREATIVE LIBRARY
https://www.nhk.or.jp/archives/creative/, and these
were down-sampled for the experiments.

2064

https://sites.google.com/site/yokotatsuya/home/software
https://sites.google.com/site/yokotatsuya/home/software
https://www.nhk.or.jp/archives/creative/

Table 3. Comparison of the peak signal-to-noise ratio (PSNR), the frame average of structural similarity (SSIM) and the computing time
(sec) of recovery videos. The entries represent (PSNR, SSIM, computing time).

LR&TV SPCQV MDT-Tucker Proposed

ocean, slice missing (30.1, 0.931, 529) (25.9, 0.929, 457) (30.8, 0.953, 3160) (30.1, 0.946, 4.27)
ocean, 70% voxel missing (26.2, 0.820, 528) (33.3, 0.961, 684) (30.4, 0.930, 3789) (26.0, 0.846, 6.52)
ocean, 95% voxel missing (20.6, 0.469, 973) (24.1, 0.702, 588) (24.0, 0.721, 4346) (22.0, 0.605, 9.48)
smoke1, slice missing (40.6, 0.990, 1040) (37.6, 0.977, 197) (41.7, 0.992, 964) (40.1, 0.990, 5.39)
smoke1, 70% voxel missing (35.1, 0.967, 1193) (34.7, 0.941, 380) (38.6, 0.975, 1038) (34.8, 0.962, 7.71)
smoke1, 95% voxel missing (27.7, 0.877, 1810) (31.7, 0.914, 515) (28.3, 0.875, 1197) (28.7, 0.885, 12.87)
smoke2, slice missing (32.9, 0.979, 1389) (33.2, 0.977, 399) (40.6, 0.992, 1851) (39.2, 0.993, 11.19)
smoke2, 70% voxel missing (26.2, 0.925, 1504) (35.1, 0.964, 801) (41.3, 0.992, 2007) (31.6, 0.966, 17.21)
smoke2, 95% voxel missing (19.6, 0.741, 2088) (31.6, 0.935, 1055) (26.3, 0.877, 2255) (23.7, 0.831, 33.40)

M
D
T-
Tu
ck
er

Pr
op
os
ed

Original

Figure 7. Results recovered the missing MRI using MDT-tucker
and the proposed method with various τ values. The X in the
box is indicated that the missing MRI cannot be recovered due to
memory limitations.

Table 4. Comparison of PSNR, the average of SSIM of all the
slices and computing time (sec) of recovery the MRI images. The
entries represent (PSNR, SSIM, computing time). “N.A.” means
not applicable due to memory limitations.

τ MDT-Tucker Proposed

8 (26.39, 0.859, 10542) (27.87, 0.896, 49.4)
16 N.A. (28.62, 0.909, 77.2)
32 N.A. (28.97, 0.914, 120.6)
48 N.A. (29.04, 0.913, 157.4)
64 N.A. (29.00, 0.911, 219.5)

created the missing MRI in a way of 7 consecutive slices
(t = 92, 93, . . . , 98) missing and 90% random voxel miss-
ing (see Fig. 6).

Fig. 7 shows the recovery results by MDT-Tucker
and the proposed method with delay window size τ =
(τ, τ, τ) (∀τ ∈ {8, 16, 32, 48, 64}). In all the τ , the ranks
increment one by one: Ln = (1, 2, 3, 4, . . . , τ) (∀n). The
recovery using MDT-Tucker with τ ≥ 16 cannot be com-
puted because of the huge memory requirements and we
cannot obtain the results. Tab. 4 shows the PSNR, the av-
erage of SSIM of all the slices, and the computing time of
recovery MRI by the two methods. When τ = 8, the pro-
posed method is better recovery than MDT-Tucker. As it
τ is increased, the recovery accuracy also improves. How-

ever, the accuracy does not improve with τ ≥ 48.

5. Limitations and Conclusions
In this study, we proposed a fast and efficient algorithm

for MDT-Tucker. For this purpose, we modify MDT-Tucker
by introducing a circulant version of MDT, one step opti-
mization with inverse MDT, and reduction of half of factor
matrices. As the results, optimization algorithm can be ef-
ficiently computed by using FFT, and it is almost 100 times
faster than original MDT-Tucker while maintaining high ac-
curacy. Furthermore, the proposed method allows us to
compute MDT-Tucker with larger τ which is not applica-
ble in the original algorithm.

The differences of results come from the modifications
of MDT-Tucker in this study.

The first modification is normal MDT to circulant MDT.
The introduction of circulant MDT means assuming the tar-
get signal as a periodic signal. In other words, this is a
method of image modeling for some image such that the left
and right edges are connected. This change directly con-
tributes to the speedup using the Fourier transform, but it
will produce errors for the image restoration of signals that
are not inherently periodic. In contrast, it has little effect on
images of which the background is zero, such as MRI.

The second important modification is the reduction of
half of factor matrices. This modification makes a dif-
ference of the image model. In contrast that the MDT-
Tucker captures low-rank structure for all-modes, the pro-
posed method captures low-rank structure for only odd-
modes. Odd and even modes in a Hankel tensor are re-
spectively corresponding to local and global patterns in an
original tensor. Thus, the proposed method well captures
the similarity of only local patterns in an image, but not for
global patterns. From experimental results, the effect of the
lack of a global low-rank structure was significant under ex-
tremely ill-posed setting (e.g., 95% missing).

Our experiments show the proposed method performs
good image reconstruction with appropriate τ . However,
the value of τ should be manually tuned depending on the
input signal. Automatic selection of τ is very important for
real world applications, and it is included in future works.

2065

References
[1] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and

Morten Mørup. Scalable tensor factorizations for incom-
plete data. Chemometrics and Intelligent Laboratory Sys-
tems, 106(1):41–56, 2011. 1

[2] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle.
On the best rank-1 and rank-(r 1, r 2,..., rn) approximation of
higher-order tensors. SIAM Journal on Matrix Analysis and
Applications, 21(4):1324–1342, 2000. 3, 5

[3] Tao Ding, Mario Sznaier, and Octavia I Camps. A rank min-
imization approach to video inpainting. In Proceedings of
ICCV, pages 1–8. IEEE, 2007. 1

[4] Weiyang Ding, Liqun Qi, and Yimin Wei. Fast Han-
kel tensor–vector product and its application to exponential
data fitting. Numerical Linear Algebra with Applications,
22(5):814–832, 2015. 1, 2, 3

[5] Matteo Frigo and Steven G Johnson. FFTW: An adaptive
software architecture for the FFT. In Proceedings of ICASSP,
volume 3, pages 1381–1384. IEEE, 1998. 2

[6] Silvia Gandy, Benjamin Recht, and Isao Yamada. Tensor
completion and low-n-rank tensor recovery via convex opti-
mization. Inverse Problems, 27(2), 2011. 1

[7] David R Hunter and Kenneth Lange. A tutorial on MM al-
gorithms. The American Statistician, 58(1):30–37, 2004. 3,
4

[8] Daniel Kressner, Michael Steinlechner, and Bart Vanderey-
cken. Low-rank tensor completion by Riemannian optimiza-
tion. BIT Numerical Mathematics, 54(2):447–468, 2014. 1

[9] Ye Li, KJ Ray Liu, and Javad Razavilar. A parameter esti-
mation scheme for damped sinusoidal signals based on low-
rank Hankel approximation. IEEE Transactions on Signal
Processing, 45(2):481–486, 1997. 1

[10] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye.
Tensor completion for estimating missing values in visual
data. In Proceedings of ICCV, pages 2114–2121. IEEE,
2009. 1

[11] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye.
Tensor completion for estimating missing values in visual
data. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1):208–220, 2013. 1

[12] Zhen Long, Yipeng Liu, Longxi Chen, and Ce Zhu. Low
rank tensor completion for multiway visual data. Signal Pro-
cessing, 155:301–316, 2019. 1

[13] Ling Lu, Wei Xu, and Sanzheng Qiao. A fast SVD for mul-
tilevel block Hankel matrices with minimal memory storage.
Numerical Algorithms, 69(4):875–891, 2015. 1, 2, 3

[14] Ivan Markovsky. Structured low-rank approximation and its
applications. Automatica, 44(4):891–909, 2008. 1, 2

[15] JM Ortega and WC Rheinboldt. Iterative Solution of Nonlin-
ear Equations in Several Variables, volume 30. SIAM, 1970.
3, 4

[16] Farnaz Sedighin and Andrzej Cichocki. Image completion in
embedded space using multistage tensor ring decomposition.
Frontiers in Artificial Intelligence, 4, 2021. 1

[17] Farnaz Sedighin, Andrzej Cichocki, Tatsuya Yokota, and Qi-
quan Shi. Matrix and tensor completion in multiway delay

embedded space using tensor train, with application to sig-
nal reconstruction. IEEE Signal Processing Letters, 27:810–
814, 2020. 1

[18] Qiquan Shi, Jiaming Yin, Jiajun Cai, Andrzej Cichocki, Tat-
suya Yokota, Lei Chen, Mingxuan Yuan, and Jia Zeng. Block
Hankel tensor ARIMA for multiple short time series fore-
casting. In Proceedings of AAAI, pages 5758–5766, 2020.
1

[19] Qingquan Song, Hancheng Ge, James Caverlee, and Xia Hu.
Tensor completion algorithms in big data analytics. ACM
Transactions on Knowledge Discovery from Data, 13(1):1–
48, 2019. 1

[20] Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron. Effi-
cient low rank tensor ring completion. In Proceedings of
ICCV, pages 5697–5705, 2017. 1

[21] Xudong Wang, Luis Miranda-Moreno, and Lijun Sun.
Hankel-structured tensor robust PCA for multivariate traf-
fic time series anomaly detection. arXiv preprint
arXiv:2110.04352, 2021. 1

[22] Xudong Wang, Yuankai Wu, Dingyi Zhuang, and Lijun Sun.
Low-rank Hankel tensor completion for traffic speed estima-
tion. arXiv preprint arXiv:2105.11335, 2021. 1

[23] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Process-
ing, 13(4):600–612, 2004. 7

[24] Wei Xu and Sanzheng Qiao. A fast symmetric SVD algo-
rithm for square Hankel matrices. Linear Algebra and its
Applications, 428(2-3):550–563, 2008. 1, 2, 3

[25] Tatsuya Yokota, Cesar F. Caiafa, and Qibin Zhao. Tensor
methods for low-level vision. In Yipeng Liu, editor, Ten-
sors for Data Processing: Theory, Methods, and Applica-
tions, chapter 11, pages 371–425. Academic Press Inc Else-
vier Science, 2021. 1

[26] Tatsuya Yokota, Burak Erem, Seyhmus Guler, Simon K
Warfield, and Hidekata Hontani. Missing slice recovery for
tensors using a low-rank model in embedded space. In Pro-
ceedings of CVPR, pages 8251–8259, 2018. 1, 2, 3, 5, 7

[27] Tatsuya Yokota and Hidekata Hontani. Simultaneous visual
data completion and denoising based on tensor rank and to-
tal variation minimization and its primal-dual splitting algo-
rithm. In Proceedings of CVPR, pages 3732–3740, 2017. 7

[28] Tatsuya Yokota and Hidekata Hontani. Tensor comple-
tion with shift-invariant cosine bases. In Proceedings of
Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference, pages 1325–1333. IEEE,
2018. 1

[29] Tatsuya Yokota, Qibin Zhao, and Andrzej Cichocki. Smooth
PARAFAC decomposition for tensor completion. IEEE
Transactions on Signal Processing, 64(20):5423–5436,
2016. 7

[30] Longhao Yuan, Chao Li, Jianting Cao, and Qibin Zhao.
Rank minimization on tensor ring: an efficient approach for
tensor decomposition and completion. Machine Learning,
109(3):603–622, 2020. 1

2066

