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Abstract

Estimating keypoint scale and orientation is crucial to
extracting invariant features under significant geometric
changes. Recently, the estimators based on self-supervised
learning have been designed to adapt to complex imaging
conditions. Such learning-based estimators generally pre-
dict a single scalar for the keypoint scale or orientation,
called hard estimators. However, hard estimators are dif-
ficult to handle the local patches containing structures of
different objects or multiple edges. In this paper, a Soft Self-
Supervised Estimator (S3Esti) is proposed to overcome this
problem by learning to predict multiple scales and orien-
tations. S3Esti involves three core factors. First, the esti-
mator is constructed to predict the discrete distributions of
scales and orientations. The elements with high confidence
will be kept as the final scales and orientations. Second, a
probabilistic covariant loss is proposed to improve the con-
sistency of the scale and orientation distributions under dif-
ferent transformations. Third, an optimization algorithm is
designed to minimize the loss function, whose convergence
is proved in theory. When combined with different keypoint
extraction models, S3Esti generally improves over 50% ac-
curacy in image matching tasks under significant viewpoint
changes. In the 3D reconstruction task, S3Esti decreases
more than 10% reprojection error and improves the number
of registered images. [code release]

1. Introduction
Keypoint-based image matching is one of the fundamen-

tal problems in many applications such as image mosaic
[13], camera pose estimation [6], 3D reconstruction [15]
and visual localization [14]. High matching accuracy re-
quires the keypoint feature invariant to different imaging

*Yihua Tan and Yansheng Li are corresponding authors.
The code is available at https://github.com/elvintanhust/S3Esti.

conditions [24]. However, it is challenging to maintain the
invariance under significant geometric changes [21, 35].

An intuitive solution is to estimate the geometric change
parameters and rectify the local image patches. Many ex-
isting works [3, 30, 41] demonstrate that keypoint scale
and orientation can effectively represent the local geomet-
ric changes because the scaling and rotation transformations
generally dominate the geometric changes in a local region.
Moreover, more accurate scales and orientations generally
induce higher keypoint matching accuracy [28, 38]1. The
hand-crafted methods typically estimate the scale and orien-
tation with the analyses of gradients in the local region [5].
Some predict only one scale/orientation for a patch [32],
termed as hard estimators in this paper.

The existing works [8, 22] demonstrate that predicting a
single scale/orientation is not robust for some patches. Such
patches generally contain structures of different objects or
multiple edges, termed as composite-pattern patches in this
paper. Fig. 1 shows the example patches containing differ-
ent objects (a solar panel and a wall), involving at least two
significant edges. A hard estimator is difficult to provide
robust results for the composite-pattern patch because the
most significant orientation (or scale) may be switched after
an image transformation. Concerning this problem, some
hand-crafted models [1, 3, 22] are constructed to predict
multiple scales or orientations, which are termed as soft es-
timators. For example, SIFT first measures the confidences
of different orientations based on the histogram of oriented
gradients, and then keeps at most two orientations with high
confidences. Experiments demonstrate that soft estimators
can generally provide more robust predictions [4, 22].

However, the existing hand-crafted estimators are not ro-
bust to the complex scenes involving illumination changes
or inessential patterns because the image gradients are sen-
sitive to these interferences [41]. A failed result is shown
in Fig. 1 (a). Recently, some learning-based models have

1The experimental evidence is shown in Supplementary Section 8.
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Figure 1. Rectify image patches with the scales and orientations predicted by different estimators. In this example, each estimator predicts
one or two pairs of scale and orientation. Every scale&orientation pair is used to resize and rotate the original patch, and the obtained patch
is termed as a rectified patch. A good estimator should make the rectified patches as similar as possible if the original patches are centered
at the same scene point. (a) The scales and orientations of SIFT are sensitive to illumination changes. Even though multiple predictions
are kept, the rectified patches are not similar enough. (b) The learning-based CovDet can predict only one scale and orientation. It is
difficult to provide robust predictions for the composite-pattern patch, making the rectified patches dissimilar. (c) The proposed S3Esti is
a soft learning-based estimator that can predict multiple scales&orientations robust to illumination changes. S3Esti is more likely to get
consistent scales and orientations. So it can still provide similar rectified patches under significant geometric changes.

been constructed to improve the adaptiveness for complex
scenes. The existing learning-based estimators [18] are gen-
erally regression models that output one scalar prediction
for a keypoint scale or orientation. The scalar formula-
tion can hardly provide the confidences for multiple po-
tential scales/orientations [11, 27], making the soft estima-
tion strategy hard to be applied. Therefore, the existing
learning-based models are hard estimators that are not ro-
bust to composite-pattern patches. The failed result in Fig. 1
(b) also demonstrates this problem.

This paper is motivated to design a soft learning-based
estimator to integrate twofold advantages: the ability to pre-
dict multiple scales/orientations, and the data-driven adap-
tiveness for complex scenes. The proposed Soft Self-
Supervised Estimator (S3Esti) is implemented as a convo-
lutional neural network (CNN) [36] that is fed a local patch
and outputs two confidence vectors. Each element of the
vectors represents the confidence of a discretized scale or
orientation. Some outputs of S3Esti are shown in Fig. 1 (c).
The existing loss functions are not suitable for such vector-
ized outputs because they are designed for scalar prediction.

There are two difficulties in designing the loss function
and optimization algorithm for S3Esti. First, S3Esti is a
classification model for the discretized scales/orientations,
but the scale/orientation labels are hard to be determined
[18, 41]. Therefore, this paper formulates the labels as la-

tent discrete distributions and integrates them into a novel
probabilistic covariant loss. This loss can be considered as
a probabilistic variant of the loss in [18].

Second, it is inefficient to update the latent scale and ori-
entation labels with a pure gradient descent (GD) algorithm.
Intuitively, there will be M independent scale and orienta-
tion labels for a training set containing M patches. As la-
bels are unknown, GD algorithms initialize them randomly
and update them with gradients. Every latent label is up-
dated only once per epoch because each patch appears in
only one mini-batch. This update frequency is low because
the randomly initialized labels are inaccurate and the mini-
batch gradients are noise. This paper designs an alternate
optimization algorithm to search the optimal latent labels
for the current parameters of CNN estimators.

Overall, the contributions of this paper are threefold:
(1) A soft self-supervised estimator is proposed to pre-
dict multiple scales and orientations for composite-pattern
patches. Experiments demonstrate that S3Esti can provide
more accurate results than the existing estimators.
(2) A loss function named probabilistic covariant loss is de-
signed for S3Esti, making the scale/orientation predictions
consistent under different geometric changes.
(3) An alternate optimization algorithm is designed by it-
eratively searching the latent scale&orientation labels and
updating the neural network parameters.
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2. Related Works
Keypoint scale and orientation estimation approaches

can be divided into hand-crafted and learning-based meth-
ods. The former defines computation criteria to determine
the scale and orientation. The latter designs optimization
models to maximize the matching accuracy or minimize the
covariant loss.
Hand-crafted estimators. Hand-crafted estimators typi-
cally determine the keypoint scale by locating the point at a
scale space. SIFT [22] constructs scale space by performing
multiple difference-of-Gaussian functions. Then the scale is
determined by which layer this point locates on. SURF [3]
and KAZE [1] design different scale spaces. Harris-Affine
[25] approximately extends the space to an affine Gaussian
scale space. To determine the orientation, the hand-crafted
estimators generally analyze the gradient directions in a lo-
cal region. SIFT [22] selects the orientation correspond-
ing to high frequency in the histogram of oriented gradients
(HOG). SURF [3] obtains the orientation according to the
distribution of Haar-wavelet responses. ORB [32] defines
the orientation as the direction from the keypoint location
to the intensity centroid in the local region.
Learning-based estimators. The existing learning-based
methods can be divided into descriptor-guiding and covari-
ant estimators. Descriptor-guiding estimators learn to adapt
to some specific keypoint descriptors. The orientation as-
signment model [41] is trained to maximize the matching
accuracy of a descriptor. The approximate numerical gradi-
ent is used to update the model. LIFT [40], LFNet [30] and
HesAffNet [27] predict scale and orientation with CNNs
and rectify the patch with Spatial Transformer Networks
(STNs) [16]. Then the gradients are calculated from the de-
scriptor to the estimator. The metric-learning losses [7, 34]
are used in such models. ASLFeat [23] improves the in-
variance of dense features by estimating the transformation
with a deformable convolutional network (DCN) [9].

Covariant estimators are optimized with the covariant
losses, which are independent of keypoint descriptors. Cov-
Det [18] introduces the covariant loss function and learns
an orientation detector to adapt to image translation and ro-
tation. The subsequent work [42] introduces the standard
patches into the covariant loss to improve the robustness of
optimization. Another more strict covariant loss [11] is de-
fined on a triplet of patches and an affine warped patch.
Existing learning-based methods are hard estimators.
The existing learning-based estimators generally predict a
scalar to represent the scale or orientation. So they are hard
estimators. It is not straightforward to extend them as soft
estimators. Specifically, the optimizations of descriptor-
guiding estimators typically rely on the STN or DCN mod-
ule [23,40], which is difficult to be conducted with multiple
scales and orientations. The loss functions of covariant es-
timators are defined on continuous scalar variables [18,42],
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Figure 2. The architecture of S3Esti. The notations are consistent
with the definitions in Sec. 3.

which cannot be directly defined on multiple scales and
orientations. Another related work named AEU [8] uses
a classification CNN to predict the relative rotation an-
gle between two patches. However, this method relies on
the ground-truth label, which is inapplicable to learn the
scale/orientation whose ground-truth labels are unknown.

3. S3Esti: Optimize Probabilistic Covariant
Loss of Keypoint Scale and Orientation

Discretization of scale and orientation. As a soft estima-
tor, S3Esti first predicts the discrete distributions of scale
and orientation, and then keep the scale(s) and orientation(s)
with high confidence. Therefore, the discrete formulations
of scale and orientation are first introduced.

The keypoint scale is a value indicating the scaling factor
to rectify (resize) the local image patch around the keypoint
(shown as circles in Fig. 1). In this paper, only the scale in
[A−1, A] is concerned, where A ≥ 1 is a hyperparameter.
Then the scale is discretized as Ns values:{

si = A−1 · δsi−1
∣∣i = 1, ..., Ns

}
, δs = A

2
Ns−1 . (1)

Here δs is the interval to discretize the scale.
The keypoint orientation is a value indicating the angle

to rectify (rotate) the local image patch around the keypoint
(shown as arrows in Fig. 1). Its range is [−π, π). The ori-
entation is discretized as No values:{

oi = −π + (i− 1) · δo
∣∣i = 1, ..., No

}
, δo =

2π

No
. (2)

Here δo is the interval to discretize the orientation.
Model structure. Fig. 2 shows the structure of S3Esti. The
scale and orientation estimators are implemented as two in-
dependent fully convolutional networks (FCN). Their net-
work parameters are denoted as ωs and ωo. Every FCN
follows a Soft-max layer. Taking the patch around a key-
point as input, S3Esti outputs the scale confidence vector S̃
and orientation confidence vector Õ. The lengths of S̃ and
Õ are Ns and No respectively. The i-th element of S̃ is
denoted as S̃[i]. The meaning of S̃[i] is stated as:

S̃[i] is the confidence that the scale is si. (3)
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Figure 3. Visualization of the variables related to the probabilis-
tic covariant loss. S, O are the true distributions of the scale and
orientation of the original patch X . “?” represents that they are
unknown latent variables. S̃m, Õm are the predicting confidences
for the transformed patch Xm. The green arrows represent the cor-
respondence between S, Õm and S̃m, Õm. Another transformed
patch is shown with the notation “′” and purple arrows.

Similarly, the i-th element of Õ is denoted as Õ[i]:

Õ[i] is the confidence that the orientation is oi. (4)

As shown in Fig. 2, both S̃ and Õ maintain the probability
property with the Soft-max operation, namely,

S̃[i] ≥ 0, i = 1, 2, ..., Ns,

Ns∑
i

S̃[i] = 1,

Õ[i] ≥ 0, i = 1, 2, ..., No,

No∑
i

Õ[i] = 1.

(5)

Probabilistic covariant loss. To mitigate the impact of ge-
ometric changes, the loss function of S3Esti should make
the predicting scale and orientation confidences consistent
for different transformations. Therefore, an original patch
X is transformed into multiple patches to construct the loss
function. Some related notations are defined as below.

As shown in Fig. 3, a set of transformed patches
{Xm|m = 1, 2, ...,M} are obtained by randomly scaling
and rotating X , in which Xm is obtained with the scaling
factor △Sm and rotation angle △Om. Every Xm is fed into
S3Esti, and the predicting scale and orientation confidence
vectors are denoted as S̃m and Õm.

Then two auxiliary variables S and O are introduced to
complete the loss function. S and O are the true values of S̃
and Õ, representing the ideal distributions of the scale and
orientation of X . Both S and O are unknown. They are
considered as latent variables that will be jointly optimized
with the network parameters ωs and ωo. In the ideal situa-
tion, every S̃m, Õm should be consistent with S, O.

As shown in Fig. 3, there may be a shift between S̃m and
S because of the transformation △Sm. Such a shift can be
directly computed with a function:

ISm(i) =

{
i+△im, 1 ≤ i+△im ≤ Ns

NaN, otherwise

where △im = round
(
logδs△Sm

)
, i = 1, 2, ..., Ns.

(6)

Namely, the i-th index in S corresponds to the ISm(i)-th
index in S̃m. NaN (Not a Number) indicates there is no cor-
responding index in S̃m. Eq. (6) is derived from Eq. (1).
With the definition of Eq. (1), the increase of scale index
is 1 when the scale value increases by δs times. There-
fore, the index increase will be approximately equal to
round

(
logδs

△Sm

)
when the scale increases by △S times.

Similarly, the shift between Õm and O can also be di-
rectly computed with a function:

IOm(i) =


i+△im +No, i+△im < 1

i+△im, 1 ≤ i+△im ≤ No

i+△im −No, i+△im > No

where △im = round
(
△Om

δo

)
, i = 1, 2, ..., Ns.

(7)

Here the orientation index IOm(i) is restricted in [1, No]
based on its periodicity. Eq. (7) is derived from Eq. (2), and
the explanation is similar to that of Eq. (6).

The probabilistic covariant loss can be formulated with
the above definitions. This loss aims to maximize the con-
sistency between the predicting confidences S̃m, Õm and
the true distributions S, O. Such consistency between two
discrete distributions can be measured with their cross en-
tropy. Therefore, the loss function of scale is:

min
ωs,S

−
∑
i

S[i]
Zi

·
∑

m|ISm(i)̸=NaN

log
(
S̃m [ISm(i)]

)
s.t. S[i] ≥ 0, i = 1, 2, ..., Ns,

Ns∑
i

S[i] = 1.

(8)

Zi =
∑

m I(ISm(i) ̸= NaN) where I(·) is the indicator
function. Zi is used to normalize the cross entropy because
the number of legal ISm(i) may be varied for different i.
The network parameter ωs determines the scale confidence
S̃m. S̃m requires no constraint because it naturally main-
tains the probability property with the Soft-max layer.

Similarly, the loss function of orientation is:

min
ωo,O

−
∑
i

(
O[i] ·

∑
m

log
(
Õm [IOm(i)]

))

s.t. O[i] ≥ 0, i = 1, 2, ..., No,

No∑
i

O[i] = 1.

(9)

This formulation is slightly different from Eq. (8) because
no IOm(i) is illegal.

Discussion for probabilistic covariant loss. In Eqs. (8)
and (9), the true distributions S, O are hard to be labelled
with human supervision. So they are latent variables jointly
optimized with ωs, ωo. Taking Eq. (8) as an example, mini-
mizing such a loss leads to twofold effects:
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(1) After the mapping of ISm(·), the aligned S̃m will be
as similar as possible to S because the minimum of cross
entropy corresponds to two identical distributions [29].
(2) S̃m will be as sparse as possible. Namely, most elements
of S̃m will be close to 0. Based on effect (1), the cross
entropy between S̃m and S is approximately equal to the
entropy of S̃m, which is smaller with a sparser S̃m [29].

The above two effects make S̃m, m = 1, 2, ...,M con-
sistent with each other while maintaining sparse. Benefiting
from this, only a few scales/orientations need to be kept for
keypoint matching, as shown in Fig. 1 (c).
Optimization algorithm. This section only introduces the
optimization of Eq. (8). A similar algorithm for Eq. (9) is in
Supplementary Section 1. As discussed in Sec. 1, it is inef-
ficient to update the latent scale and orientation labels with
the pure gradient descent algorithm. Therefore, an alternate
optimization algorithm (Tab. 1) is designed to divide Eq. (8)
into two subproblems that can be optimized efficiently.

In the first subproblem, the optimal scale labels are
searched by fixing the current network parameter ωs. In
the second subproblem, ωs is updated to decrease the loss
with the fixed scale labels. The convergence is proved in
Supplementary Section 2.

Table 1. Alternate Optimization Algorithm for Scale Estimator.
That for orientation estimator is in Supplementary Section 1.

Input: image dataset D, maximum iterations T ,
initial value of network parameters ω0

s , the number of
transformed patches M , the largest concerned scale A.
Output: optimized parameter ωs.
Process:

for t from 1 to T :
1 Randomly sample a training image I from D;

2 Randomly sample a coordinate c from I as the keypoint;

3 Randomly sample the scaling factors△Sm ∈ [A−1, A]
and rotation angles△Om ∈ [−π, π], m = 1, 2, ...,M ;

4 Taking c as the center, crop transformed patches Xm

with parameters△Sm and△Om, m = 1, 2, ...,M ;

5 Feed Xm into the estimator whose parameter is ωt−1
s ,

and obtain confidence vectors S̃m, m = 1, 2, ...,M ;

6 // fix ωt−1
s and optimize S, getting the solution S∗

i∗ = argmini− 1
Zi

∑
m|ISm(i)̸=NaN log

(
S̃m [ISm(i)]

)
,

and then S∗[i] =

{
1, i = i∗

0, otherwise
;

7 // set S = S∗, and optimize ωs with the gradient ∂L
∂ωs

∂L
∂ωs

= ∂
∂ωs
−
∑

i
S∗[i]
Zi
·
∑

m|ISm(i)̸=NaN log
(
S̃m [ISm(i)]

)
and update ωt−1

s to ωt
s with a gradient descent algorithm;

end for
ωs ← ωT

s ;

4. Experiments

4.1. Model Implementation

Architecture details. As shown in Fig. 2, S3Esti imple-
ment the scale and orientation estimators as two indepen-
dent FCNs. The FCN uses the VGG-A block [36] as the
backbone. Then two 1× 1 convolutional layers and a Soft-
max operation map the backbone feature to the confidence
vector. The largest concerned scale A = 9, and therefore
the range of keypoint scale is [ 19 , 9]. With the definitions in
Eq. (1) and Eq. (2), scale and orientation are discretized into
300 and 360 values respectively (Ns = 300, No = 360).

A variant named S3Esti Joint is also implemented,
whose scale and orientation estimators share the backbone.
The overall accuracy of S3Esti Joint and S3Esti is simi-
lar. However, S3Esti Joint usually converges to a poor local
minimum, requiring a carefully designed training strategy.
The details are introduced in Supplementary Section 8.
Training details. S3Esti is trained on MS COCO 2014
training set [20]. In every mini-batch, 512 original patches
are randomly cropped2. Every original patch is obtained
with two steps. First, the 16×16, 32×32, and 64×64 local
images are cropped around the same random center point.
Second, all three local images are resized to 32 × 32 and
concatenated as a tensor. This multi-scale cropping strategy
aims to provide more information for a patch. Then ev-
ery original patch is randomly transformed into two patches
(M = 2). The transformations consist of scaling, rotation
and the gray-scale augmentations used in [39]. In the op-
timization step 7 of Tab. 1, the stochastic gradient descent
(SGD) algorithm is performed by fixing the learning rate
and momentum factor as 0.001 and 0.9 respectively. The
training is stopped after 30 epochs.
Inference of S3Esti. In inference, each patch centered at a
keypoint is fed into S3Esti. The outputs are the confidences
of different scales and orientations. The results are first fil-
tered with a non-Maximum suppression (NMS). The NMS
windows of the scale and orientation are set as A

1
5 and 45◦

respectively. Then each patch keeps at most K = 3 signif-
icant scales and orientations whose confidences are larger
than Confthre = 0.001. Every patch is rectified with the
pairs of scale and orientation3, and then the similarities be-
tween different keypoints are computed based on both the
original and rectified patches. Finally, the matching result is

2The training patches for S3Esti are randomly cropped rather than cen-
tered at some kinds of keypoints. This is different from most of the existing
methods (like LFNet, CovDet) that are trained for the specific detectors.

3For a keypoint keeping three scales S1, S2, S3 and three orientations
O1, O2, O3, the original patch will be rectified to five new patches. Sup-
posing S1 and O1 correspond to the largest confidences, the parameter
pairs are (S1, O1), (S1, O2), (S1, O3), (S2, O1), (S3, O1) respectively.
Therefore, any original patch is rectified to at most 2K − 1 patches. Fi-
nally, the original patch and at most 2K − 1 rectified patches are used to
represent the keypoint when computing the similarity.
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determined as the keypoint inducing the highest similarity.
Moreover, a variable estimator named S3Esti-S is also

evaluated. S3Esti-S sets K = 1 and ignore the restriction
of Confthre. All other configurations are the same as S3Esti.
Therefore, S3Esti-S is a hard estimator. The variant model
with K = 2 is slightly inferior to the original S3Esti. This
ablation experiment is in Supplementary Section 8.

4.2. Evaluation Dataset

HPatches dataset [2]. HPatches is used to evaluate the esti-
mation error of scale/orientation and the matching accuracy
between image pairs. HPatches has 116 sequences. Every
sequence contains 6 images. Any two images in the same
sequence have enough overlap, while the true homography
matrix between them is known. Therefore, there are C2

6 =
15 image pairs in every sequence, and HPatches consists of
a total of 1740 image pairs. In this paper, HPatches is di-
vided into three subsets, namely, HPatches-illu, HPatches-
view-small, and HPatches-view-large. HPatches-illu has
855 pairs containing only illumination changes. HPatches-
view-small has 770 image pairs containing relatively slight
viewpoint changes. Between each pair of images, the rel-
ative global scaling factor is in [0.5, 2] and the rotation an-
gle is in [−20◦, 20◦]4. HPatches-view-large has 115 image
pairs containing significant viewpoint changes, namely, the
relative global scaling factor is out of [0.5, 2], or the rotation
angle is out of [−20◦, 20◦].

Following the evaluation configurations in [10,39], every
image is resized to 640 × 480 before extracting keypoints.
All keypoint extraction methods use their recommended hy-
perparameters, and then keep at most 1000 keypoints with
highest detection score for an image.
ETH dataset [33]. ETH is a dataset containing non-planar
scenes and illumination&viewpoint changes. In Tab. 3,
three sequences are used to evaluate the performance on 3D
reconstruction tasks. Following the implementation [33],
keypoints are extracted from the original resolution and the
number of keypoints has no additional restriction.
MegaDepth dataset [19]. MegaDepth is a relative pose es-
timation dataset containing significant viewpoint changes.
Following the existing work [37], the “Sacre Coeur” and
“St. Peter’s Square” scenes containing 1500 selected image
pairs are used to evaluate the pose estimation accuracy. As
discussed in Sec. 4.6, the results of this dataset can explain
the superiority of S3Esti on the 3D reconstruction task.

4Generally, the image pair in HPatches contains homography transfor-
mations that cannot be precisely represented with the scaling factor and
rotation angle. Therefore, the relative scaling factor and rotation angle be-
tween two images are approximately derived according to the central circle
deformation caused by homography transformation. The details are intro-
duced in Supplementary Section 4.

4.3. Estimation Error of Scale and Orientation

Evaluation process and metrics. Our S3Esti is compared
with two hand-crafted and three learning-based estimators,
namely SURF [3], SIFT [22], LFNet [30], HesAffNet [27]
and CovDet [18]5. The evaluation for every estimator con-
tains four steps. First, the combined keypoint set con-
taining more than 1.9M points is extracted from HP-view-
small and HP-view-large datasets with six keypoint mod-
els, namely, HAN HN (HesAffNet+HardNet [26]), Super-
Point [10], Key.Net HN (Key.Net [17]+HardNet), R2D2
[31], POP [39] and LFNet [30]6. Second, the corresponding
keypoint pairs are recovered according to the ground-truth
homography matrices. Third, for any two keypoints in a
pair, the scales and orientations are predicted with an esti-
mator. Then the estimation error is measured by comparing
the ground-truth relative scale/orientation with the predict-
ing value7. Fourth, the estimation errors of scale and ori-
entation are averaged over the combined keypoint set. The
obtained mean values are denoted as Scale Error (S. Err.)
and Orientation Error (O. Err.) respectively.

In the third step, the soft estimators perform a scale and
orientation selection strategy to guarantee fairness. Taking
Fig. 1 (c) as the example, the patch X1 in the first image will
keep only one scale and orientation that induce the highest
similarity to the patches in the second image, even though
the soft estimator predicts multiple orientations for X1. The
intuitive visualization of this strategy is shown in Supple-
mentary Section 4. With the above strategy, the estimation
error is evaluated for the scales and orientations paired by
the nearest keypoint matching.

Moreover, some extra configurations are performed for
different estimators. First, HesAffNet and LFNet origi-
nally contain keypoint detectors and scale/orientation es-
timators. Therefore, their estimators are evaluated on the
keypoints extracted by their own detectors rather than the
combined keypoint set. Second, the scale is computed on
scale-pyramids rather than local patches when we estimate
the scale of any keypoint with the SIFT and SURF estima-
tors. Specifically, all local extrema in the scale pyramid are
first obtained, and then every keypoint is assigned with the
scale of its spatial nearest local extremum.
Results. The overall estimation errors of different estima-
tors are shown in Tab. 2. “No-esti” represents that no esti-
mator is performed. Namely, the scale and orientation are
assigned as 1.0 and 0◦ respectively. The notation † indicates
that the estimator is evaluated on the keypoint set extracted

5The official CovDet does not estimate scale. We re-implement CovDet
to predict scale and orientation. The backbone and training configurations
are identical to those of S3Esti. Details are in Supplementary Section 7.

6It is not straightforward to combine S3Esti with SuperPoint and other
models taking a full image as input. The strategy of Patch-R2D2 [8] is
used to achieve that.

7This evaluation step is detailed in Supplementary Section 4.
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Table 2. Estimation Error of Keypoint Scale and Orientation.

HP-view-small HP-view-large
S. Err. O. Err. (◦) S. Err. O. Err. (◦)

No-esti 0.237 2.687 0.382 36.884

SURF 0.260 17.985 0.482 43.894
SIFT 0.254 17.640 0.431 42.203

LFNet† 0.221 22.246 0.365 33.716
HesAffNet† 0.229 3.376 0.288 40.559

CovDet 0.325 19.019 0.491 33.738
S3Esti-S 0.283 17.638 0.440 36.209
S3Esti 0.214 19.763 0.282 26.794

by its own detector rather than the combined keypoint set.
The proposed S3Esti outperforms other estimators on

HP-view-large containing large viewpoint changes, while
being competitive on HP-view-small. The error of S3Esti-S
is higher than S3Esti. Therefore, it is crucial to keep multi-
ple significant scales/orientations with soft prediction. Sup-
plementary Section 5 gives the cumulative frequency his-
tograms of the estimation errors, demonstrating that S3Esti
provides a larger number of accurate estimations.

4.4. Results on Image Matching Task

Metrics. Image matching accuracy is evaluated with
Matching Score (MScore)8 and Homography Accuracy
(HA) [10]. MScore is the average ratio between the cor-
rectly recovered matches and the total number of keypoints
in the overlapping area. A match is correct if its reprojection
error is smaller than the threshold ϵ. HA is the ratio of the
image corner points whose homography estimation errors
(H-error) are smaller than the threshold γ. H-error indicates
the average reprojection error of the four image corners.
Results. Fig. 4 shows that S3Esti leads to better match-
ing results than the original methods. In Fig. 5, three
methods, LIFT [40], D2Net [12] and LoFTR [37]9, are
added as comparison methods. The results demonstrate that
HAN HN+S3Esti and POP+S3Esti outperform the state-of-
the-art methods on HP-view-large while maintaining the ac-
curacy on the other two image sets.

Fig. 6 visualizes several patch rectification results based
on the scales and orientations provided by S3Esti. The orig-
inal patches are cropped from the HPatches dataset. With
multiple predictions, S3Esti provides robust rectification re-
sults even for the composite-pattern patches.

The evaluation results of more combinations of S3Esti
and the existing keypoint extraction models are shown in
Supplementary Section 6, further verifying that S3Esti is

8As introduced in [31], MScore and MMA are similar but different
metrics. Here MScore is used following the configurations in [10, 39].

9LoFTR is a recent detector-free method. At present, it is inefficient to
combine the proposed S3Esti with this kind of method.

POP+S3Esti POP

MScore:0.094, H-error:38.915 MScore:0.032, H-error:328.665

MScore:0.156, H-error:6.231 MScore:0.000, H-error:404.273

MScore:0.302, H-error:2.459 MScore:0.005, H-error:537.597

Figure 4. The visualization for the keypoint matching results with
or without S3Esti. The green lines represent the matched points
kept by the RANSAC process. MScore denotes the matching score
with the error threshold ϵ = 3, while H-error indicates the ho-
mography estimation error. The two metrics are introduced in
Sec. 4.4. The results in the third row indicate that S3Esti also
benefits the matching under more complex homography transfor-
mations. More results are in Supplementary Section 11.
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HPatches-illu HPatches-view-small HPatches-view-large

Error threshold 𝜸𝜸 (px) Error threshold 𝜸𝜸 (px) Error threshold 𝜸𝜸 (px)

Figure 5. Homography Accuracy of different methods. The mod-
els integrated with S3Esti outperform the state-of-the-art methods
under significant viewpoint changes. Moreover, S3Esti maintains
the matching accuracy under small viewpoint changes.

Figure 6. Patch rectification results of S3Esti. The patches on the
left and right of an arrow are the original and rectified patches,
respectively. Here the rectified patches with top-3 confidences are
kept. The final matched patches are linked with a green line.

more effective than the existing estimators. The ablation
experiments and more visualization results are introduced
in Supplementary Section 8 and 11. In Supplementary Sec-
tion 9, S3Esti is compared with AEU [8] that estimates the
relative transformation between two images.
Inference speed. Taking HAN HN+S3Esti as an exam-
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ple, the extra time consumption caused by S3Esti is about
0.2 seconds for 1000 keypoints. The extra time involves
scale&orientation estimation, patch rectifying and keypoint
description. More details are in Supplementary Section 10.

4.5. Results on 3D Reconstruction Task

Metrics. Three metrics of 3D reconstruction are evaluated
in this section. #Dense Points10 is the number of recon-
structed 3D points. The large number indicates a successful
reconstruction and an appropriately dense point cloud. Reg-
istered Images (#Reg. Images) is the number of registered
images that contribute to the reconstruction. A higher value
generally means that the 3D model covers more images and
therefore achieves better completeness. Reprojection Error
(Reproj. Error) is the averaged reprojection error of all 3D
points, which indicates the accuracy of the 3D model.
Results. In Tab. 3, POP+S3 and SP+S3 represent
POP+S3Esti and SuperPoint+S3Esti respectively. Gen-
erally, POP+S3 and SP+S3 can maintain #Dense Points,
indicating they complete 3D reconstruction successfully.
POP+S3 outperforms the others on Reproj. Error, while
POP+S3 and SP+S3 obtain a higher #Reg. Images than the
original methods. Some visualization results of 3D recon-
struction are shown in Supplementary Section 11. Overall,
S3Esti can improve the number of registered images and the
accuracy of 3D reconstruction.

4.6. Discussion

How S3Esti benefits 3D reconstruction. As demonstrated
in Secs. 4.3 and 4.4, S3Esti can benefit image matching
because it provides more accurate scales and orientations
that lower the matching difficulty under significant geomet-
ric changes. This section discusses how S3Esti improves
3D reconstruction. The main reason may be the improve-
ment in wide-baseline image matching. According to the
results of the MegaDepth dataset in Supplementary Sec-
tion 3, S3Esti improves the matching accuracy under signif-
icant viewpoint changes that generally correspond to wide-
baseline image pairs. The matching of wide-baseline pairs
is helpful to register more images and improve the triangu-
lation precision in 3D reconstruction [33].
Adaptiveness on homography transformation. As shown
in the third row of Fig. 4, S3Esti also benefits the image
matching involving homography transformations. The rea-
son may be that the scaling and rotation transformations still
dominate the geometric changes in a local region [22, 41].
Furthermore, most of the sequences in HP-view-small and
HP-view-large involve homography transformations [2]. So
the quantitative results in Fig. 5 also verify the adaptiveness
of S3Esti on homography transformation.
Limitations and improvement directions. The main lim-
itations of S3Esti are twofold. First, S3Esti only predicts

10Following the notation in [33], “#” indicates that this metric is a count.

Table 3. 3D Reconstruction Results of Different Methods.
“Madrid Metropolis”, “Gendarmenmarkt” and “Tower of London”
are three scenes in the ETH dataset. The green texts indicate that
S3Esti improves a metric compared with the baseline, while red
means S3Esti worsens it. Bord or green bord texts indicate the
best performance on a metric.

Madrid Metropolis Gendarmenmarkt Tower of London
#Dense #Reg. Reproj. #Dense #Reg. Reproj. #Dense #Reg. Reproj.

Method Points Images Error Points Images Error Points Images Error

D2Net 1.46M 501 1.28 3.49M 1053 1.19 2.73M 785 1.24
R2D2 0.17M 344 1.19 3.63M 917 1.15 0.96M 652 1.27
HAN HN 1.74M 520 0.89 4.33M 1028 0.96 2.96M 789 0.85
SP 1.76M 518 1.11 3.90M 963 1.16 2.79M 730 1.12
SP+S3 1.62M 524 0.90 3.73M 1011 0.97 2.83M 775 0.89
POP 1.91M 554 0.84 4.08M 993 0.91 2.95M 727 0.82
POP+S3 1.73M 550 0.70 3.93M 1037 0.80 2.81M 761 0.70

scale and orientation without concerning other parameters.
Intuitively, the accurate estimation of more parameters like
shear and squeeze may further improve the matching accu-
racy. Second, the current S3Esti is an independent model,
which is inefficient because the intermediate features have
to be computed with its own CNN backbone.

The corresponding improvement directions are as below.
First, the discretization formulations of more transforma-
tion parameters should be explored. Then S3Esti can be
modified to handle such new parameters. Predicting more
parameters with S3Esti will not lead to a “combination ex-
plosion” as introduced in Sec. 4.1. Second, S3Esti can be
integrated into the existing local feature extraction models
to re-use the intermediate features. Therefore, the overall
time consumption can be significantly decreased.

5. Conclusion
In this paper, a soft self-supervised estimator named

S3Esti is proposed for keypoint scale and orientation esti-
mation. S3Esti can provide more accurate predictions com-
pared with the existing estimators. S3Esti achieves over-
all 50% accuracy improvements in the image matching task
under significant geometric changes, while maintaining the
accuracy for small viewpoint changes. It also has good gen-
eralization on homography transformations. In the 3D re-
construction task, S3Esti improves the accuracy of the 3D
point cloud. S3Esti is suitable to be a pluggable module
for the existing systems. Its limitations and improvement
directions are also discussed.
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