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Abstract

How to effectively handle label noise has been one of the
most practical but challenging tasks in Deep Neural Net-
works (DNNs). Recent popular methods for training DNNs
with noisy labels mainly focus on directly filtering out sam-
ples with low confidence or repeatedly mining valuable in-
formation from low-confident samples. However, they can-
not guarantee the robust generalization of models due to
the ignorance of useful information hidden in noisy data.
To address this issue, we propose a new effective method
named as LaCoL (Latent Contrastive Learning) to leverage
the negative correlations from the noisy data. Specifically,
in label space, we exploit the weakly-augmented data to fil-
ter samples and adopt classification loss on strong augmen-
tations of the selected sample set, which can preserve the
training diversity. While in metric space, we utilize weakly-
supervised contrastive learning to excavate these negative
correlations hidden in noisy data. Moreover, a cross-space
similarity consistency regularization is provided to con-
strain the gap between label space and metric space. Ex-
tensive experiments have validated the superiority of our
approach over existing state-of-the-art methods.

1. Introduction

In the past ten years, Deep Neural Networks (DNNs)
have achieved impressive performance and revolutionized
a wide variety of computer vision applications, such as im-
age recognition [13,14], semantic segmentation [31,36], ob-
ject detection [10,27], and cross-modal retrieval [30,34,48].
The remarkable success in training DNNs has been benefit-
ing from the collection of large-scale datasets with high-
quality human annotations (e.g., ImageNet [8] and MS-
COCO [28]).

However, it is expensive and time-consuming to obtain
high-quality annotations for large-scale data in most real-
world scenarios. To overcome this limitation, online key

*C.D. is corresponding author.
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Figure 1. An illustration of negative information and pairwise neg-
ative correlation. Negative information (Left) provides a new com-
plementary label to the training sample. If the assigned comple-
mentary label is wrong, it will attenuate the performance severely.
Pairwise negative correlation (Right) randomly selects K negative
samples that are not in the same category as the anchor image, e.g.,
the anchor image has the negative correlation to the image labeled
“car”. Instead of using noisy positive correlation (black arrows),
these pairwise negative correlations (red arrows) can be well cap-
tured in metric space to improve the robustness of DNNs.

search engine [4, 26] or crowdsourcing [52] methods are
proposed to efficiently and cheaply gain the desired train-
ing datasets with low-quality labels, in which noisy labels
are likely to be introduced consequently. Although DNNs
have high model capacities, they often overfit the noisy la-
bels due to the memorization effect, resulting in poor clas-
sification and generalization performance [53]. Therefore,
developing an effective method to improve the robustness of
DNNs against noisy labels is of great practical importance.

Early robust learning methods primarily model noisy la-
bels with the noise transition matrix [11, 15, 40] and use
it refine losses. However, it is difficult to correctly es-
timate the noise transition matrix, as it heavily relies on
either prior knowledge or a subset of high-quality labeled
data. Considering the memorization effect to noisy labels,
recent methods attempt to select high-confident samples as
clean data and filter out others through a human-defined
rule. For example, the small-loss trick widely-used in many
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Figure 2. Conceptual illustration of different methods that leverage noisy data. The black solid line means “belong to”, the red solid line
means “is not”, the black dotted line denotes a positive similarity relationship, the red dotted line denotes a negative similarity relationship,
and the red scissors mean “filter out this relationship”. (a) Sample selection methods adopt a sample selection strategy to find clean data
and filter out noisy data. (b) Relabeling methods give new pseudo-labels for noisy data using the model’s predictions. (c) Negative learning
methods randomly assign a complementary label for each noisy sample. (d) LaCoL randomly selects K negative samples for each noisy
sample.

methods, such as Co-teaching [12], Co-teaching+ [51] and
JoCoR [43], selects a proportion of small-loss samples as
clean ones. However, these methods cannot fully exploit
the hidden information in the filtered samples, which de-
generates the robustness of DNNs. To further take ad-
vantage of noisy training data, a series of methods, repre-
sented by semi-supervised learning based approaches (e.g.,
DivideMix [22], and ELR+ [29]), relabel noisy samples us-
ing the model’s predictions. Whereas the semi-supervised
learning strategy increases computation cost, and relabeling
noisy samples according to the model’s predictions could
cause confirmation bias, where the prediction error accu-
mulates and harms performance.

Different from relabeling based methods, the recently
proposed negative learning [18, 19] can effectively capture
the underlying negative information of each noisy sample,
which uses complementary labels to replace the original
noisy labels and train DNNs by virtue of the learned neg-
ative information more effectively. For example, as shown
in the left of Figure 1, the image of a cat is assigned to the
wrong label “dog”. Negative learning will randomly give it
a new complementary label other than “dog”, e.g., “bird”.
Although the negative learning provides the “right” infor-
mation (e.g., the image of a cat shown in Figure 1 is not
“bird”) with a high probability in this manner, selecting a
true label as a complementary label (e.g., the image of a
cat shown in Figure 1 is not “cat”) is inevitable, which will
severely degenerate the performance of the model. Mean-
while, this influence will be exacerbated due to the strong
discrimination ability of cross-entropy (CE)-like loss used
in these negative learning methods.

In this paper, we propose a simple yet effective method,
named LaCoL (Latent Contrastive Learning), to improve
the robustness and generalization of DNNs through excavat-

ing the implicit negative correlations in noisy data. Specif-
ically, for each anchor sample, we randomly select K other
samples, that are not in the same category with the anchor
image, as negative samples, and use these negative pairs
to construct negative correlations (as shown in Figure 2,
compared with the existing approaches, pairwise negative
correlation can make full use of noisy data and has higher
confidence, which is beneficial for enhancing the robust-
ness of DNNs). To better capture these negative correla-
tions, we exploit the weakly-supervised contrastive learning
method in the latent metric space, which is robust against
wrongly assigned negative samples. Considering that in-
corporating different augmentation strategies during train-
ing can improve the generalization of models [9, 16, 35],
we adopt weak (e.g., using only crop-and-flip) and strong
(e.g., using RandAugment [7]) augmentations. Specifi-
cally, given the anchor sample with weak augmentation, its
strong augmentation is the positive point and the negative
points are derived by exploiting negative correlations in our
method. Meanwhile, inspired by the alternate sample se-
lection in Co-teaching [12], we use weak augmentations to
select high-confident samples, and then apply strong aug-
mentations to the back-propagation in label space, which
can keep the divergence of sample selection procedure. Fur-
thermore, we provide a cross-space similarity consistency
regularization to narrow the gap between label space and
metric space, which makes the learned negative correlation
in metric space more powerful to improve the performance
of the classification task in label space. The main contribu-
tions of this work are summarized as follows:

1) We propose a latent contrastive learning method ex-
ploiting the useful negative correlation hidden in noisy
data, which can improve the robustness and general-
ization of traditional DNNs.
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Figure 3. The framework of the proposed LaCoL. Given the training data with noisy labels, their weakly-augmented images are used to
filter samples, and then the strong augmentations of the selected high-confident images are applied to optimize classification loss (Part
a). Meanwhile, the weakly-augmented and strongly-augmented images are both projected in metric space to capture the implicit negative
correlation guided by a weakly-supervised contrastive learning loss (Part b). Furthermore, the similarity matrices in label space and metric
space are calculated to train both classification head and embedding head such that images with similar classification probabilities have
similar embeddings (Part c).

2) To keep the divergence during sample selection in each
iteration, we use weak augmentations to calculate con-
fidence for selection, and then apply strong augmenta-
tions of high-confident data to train DNNs.

3) To make latent contrastive learning in metric space
better guide classification tasks in label space, we
present a cross-space similarity consistency regulariza-
tion to constrain the gap between label space and met-
ric space.

4) Extensive experiments demonstrate that LaCoL signif-
icantly outperforms state-of-the-art methods on both
synthetic and real-world noisy datasets.

2. Related Work
Learning with Noisy Labels. Recently, learning with

noisy data has been well studied and achieved great ad-
vances [1, 25, 38, 44, 45, 49]. Considering that the memo-
rization effect of noisy labels in DNNs usually results in in-
ferior model performance, existing state-of-the-art methods
primarily adopt a sample selection strategy, which selects
high-confident samples for subsequent training. For ex-
ample, Co-teaching [12] trains two networks and feeds the
small-loss samples of each network to its peer for parameter
updating. The small-loss inputs have high confidence to be

clean because that DNNs fit the underlying clean distribu-
tion before overfitting to noisy labels.

Straightly throwing away low-confident samples means
that we ignore the underlying information implied in them,
which makes DNNs insufficiently trained. To alleviate this
phenomenon, some methods perform label correction us-
ing predictions from the network [29, 33]. The recent semi-
supervised techniques such as MixUp exhibit good robust-
ness to label noise. Inspired by this, MixMatch [2] lever-
ages low-confident samples as unlabeled data in a semi-
supervised learning paradigm. The recently proposed Di-
videMix [22] effectively combines label correction and
sample selection with the MixUp data augmentation un-
der a co-training framework. However, the usage of semi-
supervised learning increases the computation cost, and the
error of learned pseudo-label will be accumulated and de-
generate the model performance [25].

Contrastive Learning. Self-supervised learning [3, 50,
54] has attracted much attention in unsupervised represen-
tation learning, due to its ability to directly leverage un-
labeled data for model pre-training. Recently, contrastive
learning and its variants [5,6,17,37] develop rapidly and are
widely adopted in many practical applications [24,25,48] to
learn informative representations from unlabeled data. In
contrastive learning, two different augmented images are
randomly generated for each input image. Then the fea-
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ture embeddings from the same source image are pulled to-
gether while the feature embeddings from different source
images are pushed apart through the designed contrastive
loss. For example, SimCLR [5] calculates the pairwise sim-
ilarity of images from the same batch, whereas MoCo [6]
maintains a queue of feature embeddings from the EMA
model. Considering the existence of false-negative samples,
some methods such as supervised contrastive learning [17]
are proposed to select more informative negative samples.

3. Methodology
In this section, we will first illustrate the existing prob-

lem on learning with noisy labels. After that, we formu-
late the framework of the proposed LaCoL, which con-
tains three parts: (a) classification task in label space, (b)
weakly-supervised contrastive learning in metric space, and
(c) cross-space similarity consistency regularization shown
in Figure 3.

3.1. Overview

Label Noise Problem. Considering the influence of
memorization effect on DNNs, most of the latest robust
learning methods try to filter noisy samples and mine extra
information from noisy data for training DNNs. As shown
in Figure 2, a classical method represented by Co-teaching
[12] just filters out low-confident samples according to the
value of output probability. However, the filtering of noise
data makes the model training insufficient. To address this
issue, relabeling based methods give pseudo-labels to low-
confident samples, while negative learning methods assign
a new complementary label to each sample. Whereas both
methods suffer from confirmation bias, i.e., the error of de-
rived implicit supervised information will accumulate and
harm performance. Meanwhile, relabeling procedure in-
creases computation cost. Therefore, it is critical to propose
an efficient and effective method to enhance the robustness
of models through mining more useful and reliable infor-
mation hidden in noisy data.

To this end, we propose a new latent contrastive learning
(LaCoL) framework for combating noisy labels. Different
from most existing robust learning methods, LaCoL jointly
learns the encoder g(·), the classification head h(·) shown
in Figure 4, and the embedding head f(·) with two dif-
ferent data augmentations (i.e., weak augmentation Aw(·)
and strong augmentation As(·)). As shown in Figure 3,
given the noisy training data D = {(xi,yi)}Ni=1, where
yi ∈ {0, 1}C is the one-hot label vector corresponding
to xi over C classes, we perform one weak augmentation
Aw(xi) using only crop-and-flip, and two strong augmen-
tations As(xi) and A′

s(xi) using RandAugment [7] for each
sample xi. And then LaCoL jointly optimizes three losses:
(1) a supervised classification loss on strong augmentations
of selected high-confidence data in label space LLS , (2)a

DNN
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Figure 4. The pipeline of the proposed LaCoL. In the training pro-
cedure, we jointly learn the encoder g(·), the classification head
h(·) and the embedding head f(·) optimized by three loss func-
tions: (1) a supervised classification loss in label space LLS , a
latent contrastive learning loss in metric space LMS , and (3) a
cross-space similarity consistency loss LSC . For testing, only the
encoder g(·) and the classification head h(·) with classification
loss LLS are used.

latent contrastive learning loss that is weakly supervised by
learned pairwise negative correlation in metric space LMS ,
and (3) a cross-space similarity consistency loss LSC .

3.2. Latent Contrastive Learning

Pairwise Negative Correlation. For a sample with the
noisy label, it has a non-true label and the remaining labels
thus contain its real label. When negative learning assigns
a complementary label from the remaining labels, its real
label would be treated as the negative information. This er-
ror will be accumulated progressively and degenerate the
performance. To alleviate this problem, we randomly select
several negative samples rather than a single complemen-
tary sample shown in Figure 1. This sample-wise negative
correlation is richer in diversity than class-wise negative in-
formation, which makes it robust against wrong assignment.

For each sample xi, we randomly construct a negative
set with K samples as follows,

Ni = {xj}Kj=1, ∀yj ̸= yi. (1)

The derived negative pairs {(xi,xj)}Kj=1 make up the
sample-wise negative correlation, which is more diverse and
informative to guide the classification task with noisy data.

Weakly-supervised Contrastive Learning. After
achieving the pairwise negative correlation, we need to se-
lect a suitable objective function to capture it. Most existing
methods still process auxiliary information extracted from
noisy data constrained by classification loss (e.g., Cross-
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Entropy loss) in label space. Due to the strong discrimi-
nation ability of classification loss, it is sensitive to the er-
ror of predicted pseudo-label or assigned complementary
label. Meanwhile, class-wise classification loss cannot well
apply sample-wise negative correlation. To better capture
negative correlation in a robust manner, we propose latent
contrastive learning (LaCoL) that is weakly supervised by
learned negative correlation in metric space. Considering
that the mined negative correlation only contains the nega-
tive similarity relationship, we introduce the different aug-
mentation of the anchor sample as the self-supervised posi-
tive similarity relationship.

We conduct latent contrastive learning for all training
data. That being said, our method is weakly supervised
by the negative correlations, thus less wrong negative sam-
ples will be involved during training, which can improve
the robustness of models. Specially, for clean data, our
method can be regarded as self-supervised contrastive learn-
ing without the wrong negative samples, which is informa-
tive to guide the classification task.

In LaCoL, we project weakly-augmented input Aw(xi)
and strongly-augmented As(xi) into metric space, and de-
rive the feature embedding z̃i = f ◦ h (Aw(xi)) and ẑi =
f◦h (As(xi)), respectively. Within the self-supervised pos-
itive similarity relationship and weakly-supervised negative
similarity relationship, the latent contrastive learning loss in
metric space is defined as:

LMS =

N∑
i=1

−log
exp (⟨z̃i, ẑi⟩ /τ)∑

j∈Ni
exp ((⟨z̃i, ẑj⟩+⟨z̃i, ẑj⟩)/τ)

, (2)

where < ·, · > denotes the cosine similarity, and τ is the
temperature parameter.

3.3. Divergence Preserving

As mentioned above, we adopt two different augmenta-
tion strategies for feature embedding in metric space. And
then, we further take full advantage of weak augmentation
and strong augmentation, and extend these augmentation
strategies to train classification head, since incorporating
different augmentation strategies during training can im-
prove generalization and robustness. To preserve the di-
versity during training, some methods represented by Co-
teaching [12] train two networks alternately, i.e. one select
high-confident samples with smaller loss, the other opti-
mize the loss function using selected samples. However,
training two networks simultaneously increase computation
cost. Therefore, we utilize two different augmentation poli-
cies mentioned above to achieve the diversity preserving
with the single network.

We first use weakly-augmented data W = {Aw(xi)}Ni=1

to select high-confident samples which can facilitate the
model training. Following [1], we treat samples whose pre-
dictions are consistent with given labels as high-confident

samples. The high-confident sample set D̄ can be derived
as follows:

D̄ = {(xi,yi)|yi = ȳi, i = 1, · · · , N} ,
ȳi = Sharpen (h ◦ g (Aw(xi))) ,

(3)

where p̃i = h ◦ g (Aw(xi)) denotes the classification prob-
ability in label space, and Sharpen operation sets the max-
imum term 1 and the others 0. After obtaining the high-
confident data set, we adopt the strong augmentation of
high-confident samples S̄ = {As(xi)|(xi,yi) ∈ D̄} for
training in label space with a weighted classification loss:

LLS =
∑

As(xi)∈S̄

−µky
⊤
i log (p̂i) ,

µk =
ϵk∑C
j=1 ϵi

,
(4)

where p̂i = h ◦ g (As(xi)), ϵk is the number of high-
confident samples belonging to the k-th class, and k denotes
that the sample xi belongs to the k-th class.

3.4. Cross-Space Similarity Consistency

During training, the classification loss and latent con-
trastive loss are optimized in different spaces, which leads
to a semantic gap between the learned feature embedding
in metric space and the derived classification probability in
label space. To make the latent contrastive learning better
guide the classification task, we propose a cross-space sim-
ilarity consistency regularization since it can guarantee the
classification probabilities and feature embeddings to guide
each other.

The representations in metric space should have the same
similarity relationship as the classification results in label
space. To ensure this cross-space similarity consistency, we
minimize the cross-entropy between the similarity matrices
in label space and metric space.

Given the weakly-augmented data {Aw(xi)}Ni=1 and
their output probability {p̃i}Ni=1, the similarity matrix in la-
bel space can be constructed as follows:

wl
ij =

 1 if i = j
⟨p̃i, p̃j⟩ if i ̸= j and ⟨p̃i, p̃i⟩ ≥ ρ

0 otherwise
(5)

where ρ is a threshold.
To obtain the similarity matrix in metric space,

we conduct two strong augmentations {As(xi)}Ni=1 and
{A′

s(xi)}Ni=1. Their feature embedding can be represented
as {ẑi}Ni=1 and {ẑ′i}

N
i=1 in label space. Then we build the

similarity matrix in label space as follows:

wm
ij =

{
exp(⟨ẑi, ẑ′i⟩ /τ) if i = j
exp(⟨ẑi, ẑj⟩ /τ) if i ̸= j

(6)
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Algorithm 1 Latent Constrastive Learning Algorithm
Input:

Training dataset D = {x1,x2, · · · ,xn} with label
noise;

Hyper-parameter τ , ρ, λMS , λSC , and K;
The number of epochs E.

1: Pre-train and initialize the model parameters θ.
2: for epoch = 1, 2, · · · , E do
3: Conduct weak and strong augmentations

{Aw(xi),As(xi),A′
s(xi)} for each sample follow-

ing the description in subsection 3.2;
4: Filter the training data according to the predictions

of weak augmentation {Aw(xi)}Ni=1, and derive the
strongly-augmented data with high confidence S̄;

5: Calculate the classification loss Eq.(4) in label space
using the obtained S̄;

6: Randomly select K negative samples for each in-
put sample to construct the pairwise negative corre-
lations acccording to Eq.(1);

7: Calculate the latent contrastive learning loss Eq.(2)
weakly-supervised by learned negative correlations;

8: Construct similarity matrices in both label space and
metric space described in Eqs.(5) and (6);

9: Calculate the cross-space similarity consistency loss
Eq.(7) with two similarity matrices;

10: Optimize the parameters θ using the joint loss Eq.(8);
11: end for
12: return θ.

Based on two similarity matrices, the cross-space similarity
consistency loss is defined as:

LSC =
1

N

N∑
i=1

ℓce(w̌
l
i, w̌

m
i ), (7)

where ℓce(·, ·) denotes the cross-entropy loss function, and
w̌l

i and w̌m
i are the normalized similarity vectors between i-

th sample and other samples in label space and metric space,
respectively. Due to the similarity consistency regulariza-
tion, the negative information captured in metric space can
better boost the classification task in label space.

To this end, our overall training objective function is:

L = LLS + λMSLMS + λSCLSC , (8)

where λMS and λSC are two scalar hyper-parameters.
Note that the proposed LaCoL can capture more reli-

able and discriminative information (i.e., pairwise negative
correlation) from noisy data by applying weakly-supervised
contrastive learning in metric space. Guided by informative
feature embedding in metric space, DNNs can also achieve
appealing performance with label noise.

4. Experiments
4.1. Experimental Settings

Datasets. To evaluate the performance of the proposed
LaCoL, we conduct the experiments on two benchmarks
CIFAR-10 and CIFAR-100 [20] with different levels of
symmetric, asymmetric, and instance-dependent label noise
(abbreviated as instance label noise), and a large-scale real-
world dataset Clothing1M [46]. CIFAR-10 and CIFAR-
100 are both composed of 50k training images and 10k
test images of size 32 × 32. Following previous works
[12, 25, 29, 45], symmetric noise is generated by uniformly
flipping labels for a percentage of the training dataset to
all possible labels. Asymmetric noise is class-dependant,
where labels are only changed to similar classes. And, in-
stance noise is generated by image features. More details
about the synthetic label noise are given in the supplemen-
tary material. Clothing1M consists of 1 million training
images collected from online shopping websites with noisy
labels generated from surrounding texts. Its noise level is
estimated at 38.5%, and some pairs of classes are often con-
fused with each other (e.g., Hoodie and Windbreaker).

Baselines. To evaluate the performance on CIFAR-10
and CIFAR-100, we compare our method against standard
CE, along with recent state-of-the-art approaches includ-
ing Co-teaching [12], Co-teaching+ [51], JoCoR [43], CDR
[45], APL [32] and JNPL [19]. To perform evaluation on
Clothing-1M, besides the above methods, other state-of-
the-art methods like Joint-Optim [41], MLNT [23], DMI
[47], and PENCIL [50] are also compared.

Evaluation Metrics. Following the standard protocol
[12, 22], we use the test accuracy, i.e., test accuracy = (#
of correct predictions) / (# of test dataset) to measure the
performance. Higher test accuracy implies that the method
is more robust to the label noise.

Implementation details. We implement our method in
PyTorch [39]. Same as the previous works [18, 19], we
use ResNet-34 [14] for CIFAR-10 and CIFAR-100 [20].
We adopt SGD with 0.9 momentum as the optimizer and
train the network for 200 epochs. The initial learning rate
is set as 0.1 and decayed with a factor of 10 at the 100th
and 150th epoch respectively, and weight decay set 1e− 4.
For Clothing-1M [46], we follow the setting of [41] with
ResNet-50 [14] pre-trained on IamgeNet [21]. We train the
network for 6 epochs and use SGD with 0.9 as the opti-
mizer with a weight decay of 1e − 3. The initial learning
rate is 5e − 3 and is decayed by a factor of 10 at the 3rd
and 4th epoch, respectively. For the hyper-parameters, we
fix τ = 0.2, ρ = 0.8, λMS = 1 and λSC = 0.5.

4.2. Experimental Results

Comparison on synthetic datasets. We first evaluate
the performance of our proposed method on two synthetic
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Datasets Model Methods Symmetric Asymmetric
20% 40% 60% 20% 40%

CIFAR-10

ResNet-18 Standard (Cross-Entropy loss) 78.37 51.15 32.51 79.31 50.55
ResNet-18 Co-teaching [12] 91.01 87.36 84.22 92.58 72.10
ResNet-18 Co-teaching+ [51] 91.66 88.08 82.18 90.47 70.58
ResNet-34 JoCoR [43] 91.84 88.15 59.20 91.19 83.61
ResNet-34 NFL+RCE [32] 90.50 85.16 70.77 89.66 78.30
ResNet-34 NCE+RCE [32] 90.36 84.57 74.09 90.13 78.48
ResNet-34 JNPL [19] 93.53 91.89 88.45 93.45 90.72
ResNet-34 Ours 94.12 92.33 88.72 93.76 91.07

CIFAR-100 ResNet34

Standard (Cross-Entropy loss) 57.32 45.64 24.30 62.12 44.55
Co-teaching [12] 69.56 62.81 51.12 67.46 52.86

Co-teaching+ [51] 68.18 60.15 48.97 70.13 52.40
JoCoR [43] 71.75 63.96 37.84 65.05 45.14

NFL+RCE [32] 58.70 42.76 24.77 56.45 37.52
NCE+RCE [32] 57.41 43.75 25.87 56.84 36.40

JNPL [19] 70.94 68.11 61.26 69.95 59.51
Ours 71.24 68.59 61.93 70.84 59.73

Table 1. Comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100 with symmetric and asymmetric label noise from different
levels. We show the test accuracy (%). Bold indicates best performance.

Dataset CIFAR-10 CIFAR-100

Methods/Noise Instance - 20% Instance - 40% Instance - 20% Instance - 40%

Standard (Cross-Entropy loss) 85.10 77.00 52.19 42.26
Co-teaching [12] 86.54 80.98 57.24 45.69
Joint-Optim [41] 89.69 82.62 65.15 55.57

DMI [47] 89.14 84.78 58.05 47.36
CDR [45] 90.41 83.07 67.33 55.94

Ours 92.47 86.76 70.16 63.87

Table 2. Comparison with state-of-the-art methods on CIFAR-10 and CIFAR-100 with instance-dependent label noise from different levels.
We show the test accuracy (%). Bold indicates best performance.

Figure 5. t-SNE visualization results on CIFAR-10 with 40% symmetric label noise. (a) Left: Baseline (Standard CE loss + normal sample
selection); (b) Middle: Baseline + Diversity Preserving Strategy; (c) Right: Our LaCoL. It is clear that the learned representations in middle
and right images are more discriminative than the left image.

datasets CIFAR-10 and CIFAR-100 [20] with different lev-
els of symmetric, asymmetric, and instance label noise.

Results are presented in Tables 1 and 2, which show that
our proposed method can consistently outperform all other
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Method Model Test Accuracy (%)

Standard (CE loss)

ResNet-50

69.21
Joint-Optim [41] 72.16

MLNT [23] 73.47
DMI [47] 72.46

PENCIL [50] 73.49
JNPL [19] 74.15

Ours 74.68

Table 3. Compassion with state-of-the-art methods on Clothing-
1M. Results of baseline methods are taken from the original pa-
pers. Bold indicates best performance.

baselines in all cases. These empirical results support our
proposal that the proposed LaCoL can effectively extract
informative and robust representations to guide the classifi-
cation task, which helps improve the robustness and gener-
alization of DNNs training with label noise.

Comparison on real-world dataset. To verify the ef-
fectiveness of the proposed method, we also perform exper-
iments on a real-world dataset Clothing-1M [46] with com-
pared methods such as CE, Joint-Optim [41], MLNT [23],
DMI [47], PENCIL [50] and JNPL [19]. The overall results
are reported in Table 3, from which we can easily observe
that the proposed LaCoL can outperform all baselines. This
demonstrates that, through applying latent contrastive learn-
ing that is weakly supervised by pairwise negative correla-
tion, our method is more effective to handle such real-world
noise problems.

Symmetric Asymmetric

w/o diversity preserving 67.24 58.22
w/o LMS 59.12 47.71
w/o LSC 66.91 56.49

Ours 68.59 59.73

Table 4. Effect of the proposed components. We show the test
accuracy (%) on CIFAR-100 with 40% label noise.

4.3. Ablation Study

Performance contributions of different components
in the proposed method. In Table 4, we study the effect
of three components from the proposed methods includ-
ing the diversity preserving strategy, the latent contrastive
loss LMS and the cross-space similarity consistency loss
LSC . The results show that all the components improve the
model’s performance, especially that LMS is most crucial
to the model’s performance. We also show the t-SNE [42]
visualization of the feature embeddings on CIFAR-10 with
40% symmetric label noise in Figure 5. It is clear that the

Figure 6. Classification performance on CIFAR-100 with 40%
symmetric and asymmetric label noise in comparison with differ-
ent number of negative samples K.

learned representations in middle and right images are more
discriminative than the left image, which demonstrates that
the components of the proposed method can all improve the
performance of DNNs training with label noise.

Impact of the different number of negative samples.
During training, we randomly assign K negative samples
for each training sample. The number of negative samples
K is a critical parameter for the proposed method. We an-
alyze the impact of different values of K to the model’s
performance, and the corresponding results are shown in
Figure 6. The value of K ranges from 5, 10, 15, 20 to 25.
We can see that the best value of K is 15.

5. Conclusion
In this paper, we propose a new latent contrastive learn-

ing (LaCoL) method for learning with noisy labels. We
excavate the underlying negative correlation in noisy data
and capture it with a weakly-supervised contrastive learn-
ing loss in metric space. Meanwhile, we exploit weakly-
augmented data to select samples and optimized classifi-
cation loss on strong augmentations of the selected sam-
ple set. Furthermore, we provide a cross-space similarity
consistency regularization to make the learned feature em-
bedding more informative to guide the classification task.
Extensive experiments show that our method achieves the
state-of-the-art performance on multiple noisy datasets.
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