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Abstract

Despite the impressive progress of general face detec-
tion, the tuning of hyper-parameters and architectures is
still critical for the performance of a domain-specific face
detector. Though existing AutoML works can speedup such
process, they either require tuning from scratch for a new
scenario or do not consider data privacy. To scale up, we
derive a new AutoML setting from a platform perspective.
In such setting, new datasets sequentially arrive at the plat-
form, where an architecture and hyper-parameter config-
uration is recommended to train the optimal face detector
for each dataset. This, however, brings two major chal-
lenges: (1) how to predict the best configuration for any
given dataset without touching their raw images due to the
privacy concern? and (2) how to continuously improve the
AutoML algorithm from previous tasks and offer a better
warm-up for future ones? We introduce “HyperFD”, a new
privacy-preserving online AutoML framework for face de-
tection. At its core part, a novel meta-feature representation
of a dataset as well as its learning paradigm is proposed.
Thanks to HyperFD, each local task (client) is able to effec-
tively leverage the learning “experience” of previous tasks
without uploading raw images to the platform; meanwhile,
the meta-feature extractor is continuously learned to bet-
ter trade off the bias and variance. Extensive experiments
demonstrate the effectiveness and efficiency of our design.

1. Introduction
Face detection [6, 28, 51, 68, 69] is one of the most fun-

damental problems in computer vision. Although, rapid
progress has been made lately for the general cases, be-
spoken face detection models are still in high-demand for
domain-specific scenarios. This is because, the challenges
for detecting faces from an outdoor surveillance camera
might be different from a panoramic indoor fish-eye camera
[13]; likewise, the challenges for detecting occluded faces
(e.g., masks [21]) are also quite different from selfie faces
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Figure 1. Overview of HyperFD framework, which aims to build
a shared AutoML platform that enables exchanging tuning experi-
ence among customers, without access to customers’ raw datasets.
The performance ranker consists of meta-feature extractor and
configuration encoder. Both are continuously updated to incor-
porate tuning experience on the latest task.

captured by cellphone cameras [30]. Therefore, extensive
manual parameter tuning and large computing resource is
required in order to obtain the best specialized model for
each domain. To scale up the scenarios, we see a clear in-
dustry demand of building shared AI model training plat-
form so as to leverage pretrained representation from other
relevant tasks. For example, Microsoft Custom Vision [34]
can train specialized object detection models given a set of
user-uploaded images for engineers without deep learning
background. This, however, comes at the cost of sacrificing
the face data privacy, for face detection models. Similarly,
other AutoML tools (e.g., NNI [35]) either do not consider
the data privacy or still require tuning from scratch for a
new scenario, which is not secure and scalable.

The training of domain-specific face detection for real-
world scenarios requires a new problem setup from a
platform perspective, where the platform receives new
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datasets sequentially, and recommends architecture and
hyper-parameter configuration to train the optimal face de-
tector for each dataset (corresponds one particular domain).
This problem setting brings two major challenges. The first
is to effectively predict the best configuration for any in-
coming dataset under the constraints that the privacy of their
raw images are protected. The second is to leverage the “ex-
perience” from previous tasks1 to continuously improve the
AutoML algorithm, such that the platform can better serve
future ones.

To tackle the challenge of privacy protection, we derive
a new online AutoML paradigm for face detection, which
is called “HyperFD”. Specifically, instead of uploading the
raw images to the server, each local client only sends the
dataset level representations (called “meta-features” in the
following) to the platform and asks for the best configura-
tion including a network architecture and hyper-parameters.
The meta-feature is designed to encode the overall statis-
tics and general attributes of a given dataset. The plat-
form maintains a learnable performance ranker that se-
lects top-k optimal training configurations from the hyper-
parameter/architecture search space based on the dataset
meta-feature. Finally, after obtaining the configurations
from the platform, the face detector is then trained locally
on each client. In this way, the platform only sees dataset
meta-features and the testing performance, which effec-
tively protect the training data privacy. Figure 1 gives an
overview of our HyperFD framework. Note that, although
it is federated, HyperFD conducts the actual training task
locally and there is no global aggregation is needed, which
is different from traditional federated learning [32].

To tackle the second challenge and make HyperFD more
generalizable for unseen scenarios, we ask the meta-feature
to be updated continuously with the new dataset, yet prop-
erly borrow the “experience” from previously trained tasks.
Due to the fact that there is no way to access the raw
data, we integrate a novel meta-feature transformation mod-
ule that builds a mapping between the current meta-feature
space and previous feature space. Intuitively, this mapping
will help make similar distributed historical tasks play more
influence in ranking the final configuration for the new task.
To summarize, we make the following contributions:

• We introduce privacy-preserving online AutoML for
face detection, which is a new problem setting from
platform perspective.

• We propose a novel meta-feature extractor to build bet-
ter dataset level representations, which is trained con-
tinuously without touching the raw face images.

• Extensive experiments show the superior performance
of our approach. We will also release the benchmark
and source code to facilitate future research.

1In this paper, we use “task” and “dataset” interchangeably.

2. Related works
Transferable AutoML. Early works of transferable Au-
toML addressed the problem from a multi-task collabora-
tive tuning perspective [2, 15, 47], in the hope that run-
ning multiple AutoML tasks simultaneously will help each
other achieve better results. The underlying techniques in-
clude surrogate-based ranking [2], multi-task Gaussian pro-
cesses [47] and probabilistic matrix factorization [15]. A
later stream of researches focus on the “warm-start” setting,
which is to recommend a good starting point for a new Au-
toML task based on previous experiments [12, 25, 36, 60].
However, from a platform perspective, a more realistic set-
ting would be, training tasks arrive sequentially and one
needs to search the best configuration for a coming dataset.
Xue et al. [59] firstly refers to this setting as “AutoML under
online setting”. Although a few attempts have been made
to formulate and solve such problem [55, 59], they still ne-
glected the essential constraints of privacy and assumed all
datasets to be directly accessible to the algorithm, which is
infeasible especially for sensitive datasets like face.
Dataset meta-feature. Dataset meta-feature (or represen-
tation) is shown to be crucial to the performance of transfer-
able AutoML [23]. The most straight-forward and earliest
dataset representation is based on descriptive statistics of
a dataset [2, 11, 24, 33, 62], e.g., number of images. More
advanced approaches include the usage of pretrained mod-
els’ performances on unseen datasets [12,54,59] along with
their landscape [1]. However, these methods are heuristi-
cally designed and not directly aware of the end-to-end goal
of AutoML. An alternative way is to optimize deep features
of neural network [23, 25, 36, 53] in an end-to-end manner.
Although effective, this has not become the mainstream and
recent works targeting at online setting [55, 59] are still us-
ing heuristically designed representations. Moreover, most
works are limited on image classification and tabular dataset
for their evaluation. To the best of our knowledge, we are
the first to extract meta-features for face detection datasets.
Continual learning. Continual learning is a scenario where
a single neural network needs to sequentially learn a se-
ries of tasks. The crucial challenge is catastrophic for-
getting that parameters or semantics learned for the past
tasks drift to the direction of new tasks. To alleviate such
issue, regularization on gradients [26, 67], designs of dy-
namic architectures [56, 64, 66], replay of previous training
data [27, 41, 45] are usually needed. Despite the various
techniques, joint training on all history data is still consid-
ered the upper bound for continual learning [48]. Recent
researches proposed federated continual learning [22, 63],
putting privacy into consideration, but they are essentially
different from us. Their clients aggregate parameters, while
we propose to share meta-level knowledge of AutoML ex-
perience. Moreover, their solution is designed for Task-IL
scenario [48] and not applicable to ours.
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3. HyperFD
3.1. Framework overview

Figure 1 illustrates an overview of our HyperFD frame-
work, where the domain-specific training tasks for face de-
tection sequentially arrive. For a new task, meta-feature ex-
tractor maintained on the server is transmitted to the client.
The client extracts features from the face dataset with the
extractor, and sends the features back to the server without
disclosing the raw images. The server maintains a search
space which has various model architectures and hyper-
parameters for face detection. A performance ranker pre-
dicts the rank of the configurations on that client’s task
based on its meta-feature and suggests several configura-
tions to the client. The client verifies the performance of
those configurations on its dataset, and informs the perfor-
mance to the server. Then the server updates the perfor-
mance ranker with the newly collected data. This is a con-
tinual learning process with tuning experience on new face
detection tasks continuously arriving. The problem is that
raw datasets are not available on the server and every client
becomes unreachable after its task is done. Thus, we de-
sign a meta-feature transformation module. It continuously
projects the features extracted with old-version extractors
to the feature space of the latest extractor, so that the up-
dates could leverage all the historical data to prevent forget-
ting. The loss function combines ranking loss, regulariza-
tion, and synaptic intelligence to guarantee steady improve-
ment of the whole framework.

3.2. Performance ranker
Performance ranker is the basic building block of Hy-

perFD framework. It ranks configurations from a search
space for each dataset. The search space C contains |C| =
M different configurations, the k-th of which is denoted as
ck. We use D = {d1, d2, . . . , dN} to denote the datasets of
face detection tasks, where dt corresponds to the t-th task.
Our goal is to learn a performance ranker that, for any pair
of ck and dt, it predicts a score (e.g., AP@50).

We formulate the ranker as a differentiable function
F (ck, dt; ✓F ) parameterized by ✓F . F consists of two key
components: a configuration encoder H(ck; ✓H) that maps
any configuration in C into a fixed-length vector, and a
dataset meta-feature extractor G(dt; ✓G) that extracts se-
mantic information from a dataset to generate a fixed-length
vector. G and H are learned such that the configuration
embedding and dataset embedding lie in the same embed-
ding space, and we measure their similarity with an inner
product. A higher similarity means a better match of an
configuration and a dataset, leading to a potentially better
performance.

F (ck, dt; ✓F ) = G(dt; ✓G)
|
H(ck; ✓H) (1)

…

G
W
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Figure 2. Architecture of meta-feature extractor.

In our framework, the performance ranker is optimized
in a supervised learning manner on tuning experience. Here,
tuning experience is a meta-dataset consisting of a number
of triplets {(cui , dvi , ai)}Si=1 (1  ui  M , 1  vi  N ),
where ui is the index of the configuration evaluated on the
vi-th dataset in the i-th triplet, ai is its performance, i.e.,
evaluation score of a detector trained with cui on dvi .

3.2.1 Meta-feature extractor

The key challenge to design a performance ranker is how
to effectively extract meta-features from a dataset. Inspired
by previous works on image classification [25, 36], we fol-
low the intuition that semantic information from the raw
images (e.g., statistical information of images and anno-
tations, vision features extracted with a pretrained model)
could decently convey the characteristics of a dataset. How-
ever, face detection is more complex, which spans multi-
scale anchors combined with per-anchor classification and
regression. Thus, we design a novel hierarchical feature ex-
traction approach starting from anchor-level, followed by a
series of aggregations to generate a high-level dataset fea-
ture. The overall architecture is shown in Figure 2.
Anchor-level. To handle raw images, we first feed them
into a pretrained face detector, RetinaFace [6]. We use
the feature pyramid generated by context modules (i.e.
SSH [38]), which consists of three feature maps downsam-
pled by 8, 16 and 32 respectively. These feature maps are
responsible for detecting small, medium, and large faces in
the original detector design. We call those feature maps
anchor-level features because every pixel on the feature map
corresponds to one or several anchors in detection tasks.
Apart from features extracted by detector, we also attach the
matching ground-truth bounding boxes to each anchor to
enrich the information. The feature map for the k-th stage
is denoted with detk(I), whose height is Hk and width is
Wk, where I is a preprocessed image,
Image-level. To aggregate anchor-level features into
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image-level, each of the three feature maps is fed into a
Global Weighted Average Pooling (GWAP) [40], which in
our case is to balance the weights for unbalanced positive
and negative samples in face detection. We reweight the an-
chors such that different levels of IoU matching ratios con-
tribute equally to the results. Concretely, for k = 1, 2, 3,
we group the anchors on detk(I) according to levels of IoU
matching ratios into positive anchors, negative anchors, and
ignored anchors [4], and average the anchors within groups
before a total average:

det
k

(I) =
1

3

⇣
det

k

pos(I) + det
k

neg(I) + det
k

ign(I)
⌘

(2)

where det
k

pos, det
k

neg, det
k

ign are the average of the stage-k
feature map over positive, negative and ignored anchors re-
spectively. The feature for one image is then a concatena-
tion of det

k

(I) for k = 1, 2, 3. Another vector of high-
level descriptive statistics of the dataset [62] is concate-
nated, which, in our case, are number of images and bound-
ing boxes of the whole dataset. This is needed because such
information is missing in the context of a batch of images.
The information is injected at the image level so that the
follow-up modules can fuse it with other visual semantics.
Dataset-level. This level aggregates the features of all the
images of a dataset to capture the distribution of the im-
ages’ features. We propose to use self-attention (i.e., a
transformer encoder layer [50]) to extract the distribution
semantic. The rationale behind this is that the optimal con-
figuration suited for one task is mostly correlated to the dis-
tribution of the dataset. Specifically, positional embedding
is not used because the sequence of images is permutation
invariant. After the features fused among images, an av-
erage pooling is used to obtain a dataset-level feature, i.e.,
meta-feature of the dataset.

3.2.2 Configuration encoder

Different types of search spaces prefer different configu-
ration encoders. For a hyper-parameter search space which
consists of one or more categorical variables, Multi-layer
Perceptron is a simple yet effective choice. For neural ar-
chitecture search space, a more sophisticated encoder is de-
sired, so as to handle the complexity in neural networks.
There is recently a growing popularity to use Graph Neural
Networks as the performance predictor in NAS [7, 46, 52],
because neural networks are essentially graphs. To be spe-
cific, we use GIN [57] as the configuration encoder for neu-
ral architectures due to its superiority over other GNNs [46].

3.3. Privacy-preserving continual learning
In HyperFD, performance ranker runs in a scenario that

raw datasets on the client side are not accessible by the
server and the client is only reachable during its own task.

However, continuously improving performance ranker re-
quires joint training on experience of both incoming new
tasks and old ones. This brings two new challenges to con-
tinual learning. Firstly, the server only stores meta-features
rather than raw datasets. Secondly, the meta-features are
generated with different versions of meta-feature extractor
due to continual learning. To address those challenges, we
design a novel meta-feature transformation module com-
bined with three loss functions, which guarantees stable and
effective update of the performance ranker.

3.3.1 Meta-feature transformation module

Our performance ranker can be naturally decomposed
into G and H . G is executed and updated on the client
side, thus, preserves privacy of the client. The updated G is
sent back to the server. As G keeps evolving along with in-
coming tasks, we introduce t to denote the t-th task (assum-
ing tasks arrive sequentially). The t-th task has dataset dt,
meta-feature G

(t)(dt; ✓
(t)
G

), where ✓
(t)
G

is the weight of the
meta-feature extractor in the state of finishing t-th task. We
use G

(t)(dt) for short in the rest of this paper. The tuning
experience triplets on the server is {cui ,�vi , ai}Si=1, where
�vi the meta-feature of dvi , defined as follows:

�t =

(
G(d⌧ ; ✓G), if t = ⌧

G
(t)(dt; ✓

(t)
G

), otherwise
(3)

where d⌧ is the dataset of the current (i.e. ⌧ -th) task.
From Equation 3 we can see that, the meta-features of

current dataset and the meta-features in the past are ex-
tracted with different meta-feature extractors, and lie in dif-
ferent feature spaces. The oracle solution would be that
we ask the users to extract the meta-feature again with the
current extractor, but it is infeasible in our scenario. To
align meta-features to the latest feature space, we project
the meta-features extracted with old meta-feature extractors
to the latest feature space using linear mapping. We call this
meta-feature transformation.

Assume our system is currently ready to serve dataset
d⌧ . The latest meta-feature extractor is denoted as G. We
aim to predict G(dt), with G

(t)(dt) as input, multiplied by
a transformation matrix Z(t) (one matrix for each dataset).
It becomes a supervised learning problem to minimize the
distance between Z(t)

G
(t)(dt) and G(dt). To learn Z(t),

we need a plenty number of pairs (G(t)(d), G(d)), where
d is any dataset. It is impossible to collect such data from
users, because we cannot expect “plenty” of users to be on-
line when serving a new user. Thus, we take d from Doffline,
a series of datasets prepared in HyperFD framework offline,
whose raw data are always accessible. Then Z(t) can be
trained via:

Ltrans(Z
(t)) =

X

d2Doffline

kZ(t)
G

(t)(d)�G(d)k2 (4)
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With the transformation modules Z(1)
,Z(2)

, . . . ,Z(⌧�1)

sufficiently trained, we have Z(t)
G

(t)(d) ⇡ G(d) hold for
any dataset d. We can then extend the definition of perfor-
mance ranker F to F , so that it can work on any pair of
configurations and meta-features.

F(ck,�t; ✓F ) =

(
�
|
t
H(ck), if t = ⌧�

Z(t)
�t

�|
H(ck), otherwise

(5)

In this equation, when updating ✓F with back propa-
gation, ✓G can be updated only for the branch of current
dataset d⌧ . On the other hand, for t < ⌧ there is no gradi-
ents, because �t is pre-computed and Z(t) is already opti-
mized. Hence, the joint training on previous experience is
essentially adapting the configuration encoder to the feature
space of the latest meta-feature extractor.

3.3.2 Loss functions

Next, we introduce the loss function to optimize the per-
formance ranker.
Ranking loss. Our primary loss function is a ranking loss
proposed by [70] that penalizes imperfect ranking of config-
urations. The loss is calculated on {(cui ,�vi , ai)}Ki=1, and
is in the form of,

Lrank(F ) = Evi=vj
ai>aj

[��NDCG·log �(F(cui ,�vi)�F(cuj ,�vj ))]

(6)
where � refers to the sigmoid function and �NDCG is the
changes of a ranking metric, i.e., Normalized Discounted
Cumulative Gain (NDCG) [20] in particular, after switching
the ranking position of i and j, so that ranking failures on
top items are emphasized.
Triplet regularization. As the tuning experience triplets to
train the ranker may not be “plenty” enough, it is critical to
have a proper regularization. Similar to previous works [23,
36], we use a triplet loss with margin [44] to minimize the
distance to a batch from the same dataset minus the distance
to another dataset. Formally, it is defined as,

Lsim(G) = max
⇣
k�vi � f�vik2 � k�vi � �vjk2 + ↵, 0

⌘

(7)
where vi 6= vj . �vi and f�vi are the meta-feature of the
same dataset but extracted with different representative im-
age samples, �vj and �vi are different datasets and ↵ is a
hyper-parameter controlling the margin. Note that this loss
is only applicable when vi = ⌧ or vj = ⌧ . Otherwise, G
will not receive any gradients.
Synaptic Intelligence. Though we used joint training to
incorporate the experience from both past and present, as
discussed previously, only the configuration encoder is op-
timized. Although the whole performance ranker benefits
from those updates, the meta-feature extractor could still

experience forgetting issue, which potentially degrades the
performance. Because the meta-feature extractor is feder-
atedly trained on the client side, we do not have access to
their raw data. Thus, we adopt another continual learning
technique, Synaptic Intelligence (SI) [67], which is a regu-
larization loss that nicely fits our framework. To this end,
for any dataset dt, we first calculate !

(t), which is a per-
parameter contribution to the change of loss:

!
(t) = �

NitersX

i=1

⇣
✓
(t,i) � ✓

(t,i�1)
⌘
� �L(t,i)

unreg

�✓(t,i)
(8)

where Niters denotes the number of iterations. ✓
(t,i) is the

parameters after the i-th iteration of training on dataset dt.
L(t,i)

unreg represents the loss without this regularization term at
the i-th iteration. � means element-wise product. We sum
! over the datasets to get ⌦(⌧�1), which the importance of
every parameter in the first ⌧�1 datasets (⌧ is current time):

⌦(⌧�1)
i

=
⌧�1X

t=1

!
(t)
i⇣

✓
(t)
i

� ✓
(t�1)
i

⌘2
+ ⇠

(9)

where ✓i is the i-th parameter in ✓. ⇠ is a small dampening
term to prevent dividing by zero, which we set to 0.1. Then,
the regularization loss is given by,

Lreg(F ) =

|✓|X

i=1

⌦(⌧�1)
i

(✓i � ✓
(⌧�1)
i

)2 (10)

Overall, the loss for the performance predictor is,

Ltotal(F ) = Lrank(F ) + �simLsim(G) + �regLreg(F ) (11)

�sim and �reg are hyper-parameters controlling the weight of
regularizations.

4. Experiments
4.1. Experiment setup
Face detector training. We use RetinaFace [6] with
MobileNet-V2 [43] backbone, pretrained on WIDER-
Face [61]. To train on a new dataset, we inherit weights
pretrained on WIDER-Face, and fine-tune it on the target
dataset. If the model used a different architecture from
the pre-trained model, we perform a network adaptation
with parameter remapping [10]. We adopt “Reduce LR on
Plateau” learning rate scheduler to ensure convergence. For
evaluation, we follow [6,29,58] to rescale the shorter side of
images to 720 pixels. We use Average-Precision at IoU 0.5
(AP@50) as our evaluation metric. A more detailed training
setup is provided in Appendix B.1.
Datasets. We evaluate HyperFD on 12 publicly avail-
able face datasets: AFLW [31], Anime [39], Face-
Mask [18], FDDB [19], FDDB-360 [13], MAFA [16],
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Pascal VOC [8], UFDD [37], UMDAA-02 [30], WIDER-
Face [61], WIDER-360 [14], WIKI [42]. Details on data
cleaning and train/val/test split can be found in Appendix
B.2. We split the datasets into server side and client side,
where WIDER-Face is considered always available at the
server side. The rest of the datasets are treated as customer
data which is not directly visible to the central server. We
shuffle the order of the 11 customer datasets before every
experiment, so as to simulate the scenario of customers’
data coming by in an arbitrary order.
Search space. We define two search spaces for our evalu-
ation. (i) HPO space (i.e. hyper-parameter search space)
tunes 6 different dimensions and contains 216 combina-
tions of hyper-parameters, spanning from generic hyperpa-
rameters (e.g., learning rate) to domain-specific ones (e.g.,
IoU threshold). (ii) NAS space tunes the backbone archi-
tecture, as backbones are found to be essential to the de-
tection performance [5]. Our backbone search space is a
MobileNetV2-like space proposed by [3]. We limit the
FLOPs to be less than 730M under 360P resolution to avoid
selecting extra large models. The size of whole search space
is 2.44 · 1015. Details available in Appendix B.3.
Dataset augmentation. With only WIDER-Face available
at the beginning, it is difficult to obtain a meaningful meta-
feature extractor. Also, the training of meta-feature trans-
formation module relies on a diversity of datasets so that
it does not overfit to a particular representation. Follow-
ing [55,59], we extract subsets from WIDER-Face to create
a variety of datasets on the server side. We intentionally ma-
nipulate the distribution of each subset to increase diversity
in domains. This is done by clustering features generated
by different deep learning models. We end up creating 1418
datasets to form Doffline. Refer to Appendix B.4 for details.
Performance ranker. For each of HPO and NAS space,
we sample 3,000 pairs of configurations and datasets (from
Doffline), and get their corresponding performance. This
forms a meta-dataset which we use to “warm-up” the
ranker before online datasets are received. During online
stage, for each dataset, we randomly sample 200 configu-
rations (that almost exhausts the space for HPO), and get
B configurations according to the prediction scores. An
exploration-exploitation strategy [7] is adopted to prevent
the selected configurations becoming too homogeneous.
Following [36], we pre-built a performance benchmark (i.e.,
lookup table), so that we do not have to go through the
computationally-expensive step of detector training in ev-
ery experiment. Budget, i.e., the number of trials for each
dataset, is set to 4 if not otherwise specified. Other hyper-
parameters can be found in Appendix B.5.

4.2. Performance of HyperFD

Baselines. We compare our method with the following
baselines: (i) Random search: Randomly selecting cer-

Method HPO space NAS space
�AP (") Rank (#) �AP (") Rank (#)

Random search 0.00 20.09 0.00 20.10
Best on WIDER 1.33 25.12 2.04 10.97
Tr-AutoML [59] -0.18 22.18 -0.52 25.29
HyperSTAR [36] -0.47 22.00 -0.14 21.09
SCoT [2] -0.10 20.83 -0.28 21.30
HyperFD (ResNet) -0.23 17.41 1.54 11.97
HyperFD (Statistics) 0.08 17.59 1.58 12.06
HyperFD (MSE) -0.05 20.93 0.21 18.34
HyperFD 1.67 13.16 2.39 7.78

Table 1. Comparison of end-to-end performance with baselines
and several variants. HyperFD (ResNet): using ResNet50 as
meta-feature extractor. HyperFD (Statistics): using descriptive
statistics as meta-features. HyperFD (MSE): using MSE as the
primary loss.

tain number of configurations, without any knowledge over
dataset or search space. (ii) Best on WIDER: Finding the
top configurations on WIDER-Face (by grid search on HPO
space and performance predictor on NAS space) and ap-
plying them on new datasets. (iii) Tr-AutoML [59]: A
Markov-analysis based method. It can be applied to our
scenario because it is a transferable AutoML algorithm that
is designed for an online setting similar to ours. (iv) Hy-
perSTAR [36]: The framework is optimized in an end-to-
end manner. It adopts a frozen ResNet50 [17] as meta-
feature extractor, and thus can be adapted to our scenario.
We fine-tune its predictor on all historic experience before
serving new datasets. (v) SCoT [2]: A bayesian optimiza-
tion framework whose surrogate model learns to predict
performance conditioned jointly on descriptive statistics of
datasets and configurations.
Evaluation metrics. The metrics used in our evaluation
are: (i) �AP: The performance gain of the proposed search
algorithm compared to random search under the same bud-
get. The gains are summed across datasets. The higher the
better ("). (ii) Rank: The rank of the best found configura-
tion in the search space. The rank is normalized to 0⇠100%
for easy comparison across different search spaces, then av-
eraged over datasets. The lower the better (#).
Results. We show the results in Table 1. We evaluate each
setting with 20 different seeds and report the average. The
standard deviations along with more detailed results on each
dataset can be found in Appendix C.

We firstly point out that we cannot rely on the tuning
experience of one single dataset. The top configurations
on WIDER-Face rank 25.12% and 10.97% in average for
HPO and NAS search space respectively, indicating that
no golden configuration works on all datasets. Although
on some datasets, the best configuration on WIDER-Face
can be impressive (e.g., WIDER-360, HPO, +2.5% �AP),
for some datasets they can be almost at the bottom (e.g.,
ANIME, HPO, worse than 85.6% of the search space).

Surprisingly, in our scenario, the sophisticated ap-
proaches (e.g., HyperSTAR) perform even worse than a
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Figure 3. Performance (rank normalized to 0–100%) of HyperFD
compared to baselines when assigned with different budgets. The
shaded region is the standard deviation for 20 runs.

simple random search baseline. We think this could be at-
tributed to three reasons. (i) The meta-feature they proposed
to measure the similarity of datasets does not align with the
face detection scenario. (ii) The loss functions they used
(e.g., MSE) make the optimization difficult. (iii) For Tr-
AutoML, the design of sharing the “top-1” configuration
among datasets is too arbitrary and does not sufficiently ex-
ploit the budget. To verify our hypothesis, we create vari-
ants of HyperFD by replacing the meta-feature extractor
and loss function with those used in baselines. The results
are shown in Table 1, which are significantly worse than
HyperFD, indicating that the meta-feature extractor and loss
function tailored for our scenario are the indispensable com-
ponents to make the algorithm work. Among the three vari-
ants, the MSE version has the worst performance, implying
that ranking loss is the most crucial to our results.

HyperFD remarkably outperforms baselines on all met-
rics, especially in terms of “rank”. It is noteworthy that the
improvement is particularly significant on the HPO search
space. By contrast, on the NAS search space, most of the al-
gorithms enjoy a better rank. We argue that NAS is an eas-
ier search space for AutoML, mainly because the datasets
share more preferences for architectures than for hyper-
parameters. The findings in § 4.4 also echo such claim.

Finally, we verify the effectiveness of HyperFD by vary-
ing the budget, i.e., number of trials to run for each dataset,
between 2 and 10. We then report the averaged rank for
each method under different budgets. The results are shown
in Figure 3. Remarkably, HyperFD almost consistently per-
forms best under all variants of budgets.

4.3. Ablations

Continual learning. We first evaluate the effectiveness
of the proposed continual learning strategy. Specifically,
we conduct several ablation experiments including: (i)
Only leverage the tuning experience from the latest dataset.
(ii) Freeze the meat-feature extractor after warm-up. (iii)
Freeze the whole performance ranker after warm-up. The

Method HPO NAS
�AP (") Rank (#) �AP (") Rank (#)

Latest data only 1.12 15.99 2.03 9.55
Freeze meta-extractor 1.22 15.28 2.19 9.41
Freeze whole ranker 1.32 16.85 2.26 8.60
HyperFD (full) 1.67 13.16 2.39 7.78

Table 2. Ablations to justify the necessity of continual learning.

Method HPO NAS
�AP (") Rank (#) �AP (") Rank (#)

No transformation 1.28 15.65 2.16 9.67
Oracle 1.84 13.79 2.37 7.73
HyperFD (full) 1.67 13.16 2.39 7.78

Table 3. Ablations on transformation module.

Ranking Triplet SI HPO NAS
�AP (") Rank (#) �AP (") Rank (#)

X X 0.50 16.49 1.60 12.06
X X 1.38 15.40 2.33 8.86
X X X 1.67 13.16 2.39 7.78

Table 4. Ablations on loss functions.

results are in Table 2. Thanks to the design of our perfor-
mance ranker and the warm-up process, even if the whole
ranker is frozen, the performance still looks fairly good.
Nevertheless, using continual learning techniques can make
the framework perform even better.
Transformation module. The proposed transformation
module is a critical component of HyperFD. Equipped
with the transformation module, HyperFD can benefit
from the historical experience without sacrificing any pri-
vacy, because the transformation module only needs ab-
stract dataset-level meta-features rather than raw images.
From the results in Table 3, we can learn that the perfor-
mance drops significantly without the transformation mod-
ule, which means our design enables a more effective us-
age of the historical experience and alleviates the knowl-
edge forgetting. Furthermore, we also compare HyperFD
with the oracle baseline which neglects the privacy concerns
and gathers all data at the central server. Remarkably, our
transformation obtains comparable performance to the ora-
cle baseline, which again proves the effectiveness.
Loss functions. The effectiveness of our loss functions are
demonstrated in Table 4. There are three components in our
loss function: a ranking loss and two regularization losses
(triplet loss and SI loss). The ranking loss is essential and
cannot be disabled, thus we turn the other two regularization
losses on and off for comparison. On average, the triplet
loss and SI loss contributes 3.81% and 1.66% to the rank
across different search spaces.
Designs of meta-feature extractor. Apart from variants
of meta-feature extractors in Table 1, we further experi-
ment with various versions, where we disable several key
components in our meta-feature extractor. For a more
comprehensive comparison, we further show the validation
NDCG [20], i.e. a ranking metric used to assess the warm-
up quality. Table 5 empirically proves the effectiveness of
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Method HPO NAS
NDCG(val) (") Rank (#) NDCG(val) (") Rank (#)

Anchor-level: w/o labels 0.930 14.13 0.895 11.13
Image-level: w/o GWAP 0.932 14.22 0.901 10.41
Image-level: w/o pyramid 0.927 16.92 0.898 12.98
Image-level: w/o statistics 0.922 15.42 0.899 11.92
Dataset-level: w/o attn. 0.919 15.09 0.886 12.09
HyperFD (full) 0.933 13.16 0.903 7.78

Table 5. Ablations on meta-feature extractor. w/o labels: do
not attach the bounding boxes information to feature maps. w/o
GWAP: use average pooling rather than GWAP. w/o pyramid:
use features from the last stage only. w/o statistics: no dataset-
level descriptive statistics attached to the feature of each image.
w/o attn.: remove the self-attention encoder layer.

Method HPO NAS
�AP (") Rank (#) �AP (") Rank (#)

w/o warm-up 0.50 16.28 1.38 12.62
w/o augmentation 0.96 17.55 1.43 15.23
HyperFD (full) 1.67 13.16 2.39 7.78

Table 6. Ablations for warm-up and augmentation.

Figure 4. Distribution of normalized ranks of 50 experiments. RS:
Random search.

our meta-feature extractor. Of the components in our ex-
tractor, the ablation of self-attention has the largest effect,
with the worst NDCG(val) on both search spaces.
Warm-up and augmentation. Finally, we ablated our
warm-up that is performed before the algorithm receives
online datasets. We compare our method with the version
without warm-up at all, and the version with warm-up but
no augmented datasets. Results can be found in Table 6,
where we see a performance drop without warm-up or aug-
mentation. We argue that without proper warm-up, both
meta-feature extractor and configuration encoder are prone
to overfit the few samples (i.e., trials) on each task. More-
over, meta-feature transformation module can hardly learn
anything useful with only WIDER-Face dataset in hand.

4.4. Analysis

Robustness to task arriving order. The proposed Hy-
perFD is robust to the order in which the tasks arrive. In
Figure 4, we run 50 experiments with different arriving or-
der for each search space, and report their distribution. Even
the worst case is still much better than the average case of
random search. Such robustness to order ensures the fair-
ness across different tasks [65], which is important for a
reliable platform.
Meta-feature visualization. We visualize representation of
meta-features via t-SNE [49]. For each dataset, we extract
meta-feature 30 times, each of which is extracted from a

Figure 5. t-SNE visualization of the feature representations af-
ter offline warm-up. Each color represents a dataset. Multiple
points correspond to multiple batches of images. (left) Trained on
HPO search space. (right) Trained on NAS search space. (Better
viewed in color)

randomly sampled batch of images from the dataset. Re-
sults are shown in Figure 5. After warmed up, our meta-
feature extractor can already successfully distinguish most
of the datasets without further training the extractor on those
datasets. There are two interesting findings. First, the
datasets which are similar to each other (e.g., WIDER-Face
and WIDER-360) are also located close to each other in the
figure. Second, the datasets tend to be more mingled among
each other on NAS search space than on HPO search space,
which means the preference on architectures is easier to be
transferred among datasets than the preference on hyper-
parameters. This also justifies the necessity to optimize the
meta-feature extractor in an end-to-end manner.

5. Discussions and conclusions
From a platform perspective, this paper studied online

AutoML for domain-specific face detection, i.e. how to con-
tinuously improve the AutoML algorithm and learn from a
sequence of training tasks while protecting the privacy of
sensitive face detection data. Various techniques are pro-
posed and extensive experiments show their effectiveness.
Admittedly, this paper did not include incorporation with
multi-fidelity techniques (e.g., BOHB [9]), and did not at-
tempt to generalize our approach to scenarios other than
face detection. We leave them in future works.
Broader impacts. The sensitivity of face datasets has been
long noticed, and there is no need to emphasize more the
importance of protect their privacy. However, if customers
use their own datasets isolatedly, such over-protection will
put resources in waste, especially when AutoML is used.
By introducing HyperFD, we reach a balance between effi-
ciency and privacy, and achieve the best of both worlds.
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