ShapeFormer: Transformer-based Shape Completion via Sparse Representation

Xingguang Yan\(^1\) Liqiang Lin\(^1\) Niloy J. Mitra\(^2,3\) Dani Lischinski\(^4\) Daniel Cohen-Or\(^1,5\) Hui Huang\(^1\)*

\(^1\)Shenzhen University \(^2\)University College London \(^3\)Adobe Research \(^4\)Hebrew University of Jerusalem \(^5\)Tel Aviv University

Abstract

We present ShapeFormer, a transformer-based network that produces a distribution of object completions, conditioned on incomplete, and possibly noisy, point clouds. The resultant distribution can then be sampled to generate likely completions, each exhibiting plausible shape details while being faithful to the input.

To facilitate the use of transformers for 3D, we introduce a compact 3D representation, vector quantized deep implicit function (VQDIF), that utilizes spatial sparsity to represent a close approximation of a 3D shape by a short sequence of discrete variables. Experiments demonstrate that ShapeFormer outperforms prior art for shape completion from ambiguous partial inputs in terms of both completion quality and diversity. We also show that our approach effectively handles a variety of shape types, incomplete patterns, and real-world scans.

1. Introduction

Shapes are typically acquired with cameras that probe and sample surfaces. The process relies on line of sight, and, at best, can obtain partial information from the visible parts of objects. Hence, sampling complex real-world geometry is inevitably imperfect, resulting in varying sampling densities and missing parts. This problem of surface completion has been extensively investigated over multiple decades [5]. The central challenge is to compensate for incomplete data by inspecting non-local hints in the observed data to infer missing parts using various forms of priors.

Recently, deep implicit function (DIF) has emerged as an effective representation for learning high-quality surface completion. To learn shape priors, earlier DIFs [13, 41, 48] encode each shape using a single global latent vector. Combining a global code with region-specific local latent codes [14, 15, 22, 27, 35, 50] can faithfully preserve geometric details of the input in the completion. However, when presented with ambiguous partial input, for which multiple plausible completions are possible (see Fig. 1), the deterministic nature of local DIF usually fails to produce meaningful completions for unseen regions. A viable alternative is to combine generative models to handle the input uncer-

Figure 1. ShapeFormer predicts multiple completions for a real-world scan of a sports car (left column), a chair with missing parts (middle column), and a partial point cloud of human lower legs (right column). The input point clouds are superimposed with the generated shapes to emphasize the faithfulness of the completion to the input point cloud.
tainty. However, for representations that contain enormous statistical redundancy, as in the case of current local methods, such combination [57] excessively allocates model capacity towards perceptually irrelevant details [21, 25].

We present ShapeFormer, a transformer-based autoregressive model that learns a distribution over possible shape completions. We use local codes to form a sequence of discrete, vector quantized features, greatly reducing the representation size while keeping the underlying structure. Applying transformer-based generative models toward such sequences of discrete variables have been shown to be effective for generative pretraining [3, 11], generation [23, 53] and completion [64] in image domain.

However, directly deploying transformers to 3D feature grids leads to a sequence length cubic in the feature resolution. Since transformers have an innate quadratic complexity on sequence length, only using overly coarse feature resolution, while feasible, can barely represent meaningful shapes. To mitigate the complexity, we first introduce Vector Quantized Deep Implicit Functions (VQDIF), a novel 3D representation that is both compact and structured, that can represent complex 3D shapes with acceptable accuracy, while being rather small in size. The core idea is to sparsely encode shapes as sequences of discrete 2-tuples, each representing both the position and content of a non-empty local feature. These sequences can be decoded to deep implicit functions from which high-quality surfaces can subsequently be extracted. Due to the sparse nature of 3D shapes, such encoding reduces the sequence length from cubic to quadratic in the feature resolution, thus enabling effective combination with generative models.

ShapeFormer completes shapes by generating complete sequences, conditioned on the sequence for partial observation. It is trained by sequentially predicting the conditional distribution of both location and content over the next element. Unlike image completion [64], where the model is trained with the BERT [3, 20] objective to only predict for unseen regions, in the 3D shape completion setting, the input features may also come from both noisy and incomplete observations, and keeping them intact necessarily yields noisy results. Hence, in order to generate whole complete sequences from scratch while being faithful to the partial observations, we adapt the auto-regressive objective and prepend the partial sequence to the complete one to achieve conditioning. This strategy has been proved effective for conditional synthesis for both text [39] and images [23].

We demonstrate the ability of ShapeFormer to produce diverse high-quality completions for ambiguous partial observations of various shape types, including CAD models and human bodies, and of various incomplete sources such as real-world scans with missing parts. In summary, our contributions include: (i) a novel DIF representation based on sequences of discrete variables that compactly represents satisfactory approximations of 3D shapes; (ii) a transformer-based autoregressive model that uses our new representation to predict multiple high-quality completed shapes conditioned on the partial input; and (iii) state-of-the-art results for multi-modal shape completion in terms of completion quality and diversity. The FPD score on PartNet is improved by at most 1.7 compared with prior multi-modal method cGAN [67].

2. Related Work

Shape reconstruction and completion. 3D reconstruction is a longstanding ill-posed problem in computer vision and graphics. Traditional methods can produce faithful reconstruction from complete input such as point cloud [5], or images [26]. Recently, neural network-based methods have demonstrated an impressive performance toward reconstruction from partial input [30], where the unseen regions are completed with the help of data priors. They can be classified according to their output representation, such as voxels, meshes, point clouds, and deep implicit functions. Since voxels can be processed or generated easily through 3D convolutions thanks to their regularity, they are commonly used in earlier works [17, 19, 31, 56]. However, since their cubic complexity toward resolution, the predicted shapes are either too coarse or too heavy in size for later applications. While meshes are more data-efficient, due to the difficulty of handling mesh topology, mesh-based methods have to either use shape template [38, 54, 65], limiting to a single topology, or produce self-intersecting meshes [29]. Point clouds, in contrast, do not have such a problem and are popularly used lately for generation [1, 24] and completion [59, 68, 69, 71]. However, point clouds need to be non-trivially post-processed using classical methods [6, 34, 36, 37] to recover surfaces due to their sparse nature. Recent works that represent shapes as deep implicit functions have been shown to be effective for high-quality 3D reconstruction [13, 41, 48]. By leveraging local priors, follow-up works [15, 22, 27, 40, 50] can further improve the fidelity of geometric details. However, most current methods are not effective toward ambiguous input due to their deterministic nature. Other methods handle such input by leveraging generative models. They learn the conditional distribution of complete shapes represented as either a single global code [2, 67], which, due to their lack of spatial structure, leads to completions misaligned with the input, or raw point cloud [73], which, due to its statistical redundancy, is only effective for completing simple shapes with a limited number of points. In this paper, we show how building generative models upon our new compact, structured representation enables multi-modal high-quality reconstruction for complex shapes.
Figure 2. Overview of our shape completion approach. Given a partial point cloud \(\mathcal{P} \), possibly from a depth image, as input, our VQDIF encoder first converts it to a sparse feature sequence \(\mathbf{z}_0 \ldots \mathbf{z}_{K-1} \), replacing them with the indices of their nearest neighbor \(\mathbf{e}_j \) in a learned dictionary \(\mathcal{D} \), forming a sequence of discrete 2-tuples consisting of the coordinate (pink) and the quantized feature index (blue). We refer to this partial sequence as \(\mathcal{S}_\mathcal{P} \) (drawn with dashed lines). The ShapeFormer then takes \(\mathcal{S}_\mathcal{P} \) as input and models the conditional distribution \(p(\mathcal{S}_\mathcal{C}|\mathcal{S}_\mathcal{P}) \). Autoregressive sampling yields a probable complete sequence \(\mathcal{S}_\mathcal{C} \). Finally, the VQDIF decoder converts the sequence \(\mathcal{S}_\mathcal{C} \) to a deep implicit function, from which the surface reconstruction \(\mathcal{M} \) can be extracted. To show the faithfulness of our reconstructions, we super-impose the input point cloud on them. Please see the supplementary material for more architectural details.

3. Method

We model the shape completion problem as mapping a partial point cloud \(\mathcal{P} \in \mathbb{R}^{N \times 3} \) to a complete, watertight mesh \(\mathcal{M} \) which matches the cloud. Since this is an ill-posed problem, we seek to estimate the probabilistic distribution of such mesh \(p(\mathcal{M}|\mathcal{P}) \) utilizing the power of Transformers. Instead of working directly on point clouds, meshes, or feature grids, we approximate shapes as short discrete sequences (see Sec. 3.1) to greatly reduce both the number of variables and the variable bit size, which enables Transformers to complete complex 3D shapes (see Sec. 3.2).

With such compact representation, the conditional distribution becomes \(p(\mathcal{S}_\mathcal{C}|\mathcal{S}_\mathcal{P}) \), where \(\mathcal{S}_\mathcal{P} \) and \(\mathcal{S}_\mathcal{C} \) are the sequence encoding of the partial point cloud and the complete shape, respectively. Once such distribution is modeled, we can sample multiple complete sequences \(\mathcal{S}_\mathcal{C} \), from which different surface reconstructions \(\mathcal{M} \) can be obtained through decoding. This process is illustrated in Fig. 2.

3.1. Compact sequence encoding for 3D shapes

We propose VQDIF, whose goal is to approximate 3D shapes with a shape dictionary, with each entry describing a particular type of local shape part inside a cell of volumetric grid \(G \) with resolution \(R \). With such a dictionary, shapes can be encoded as short sequences of entry indices, describing the local shapes inside all non-empty grid cells, enabling transformers to efficiently model the global dependencies.

We design an auto-encoder architecture to achieve this. The encoder \(E \) first maps the input point cloud to a 64 resolution feature grid with local-pooled PointNet and then downsample it to resolution \(R \). Unlike the previous strategy for image synthesis [23], the encoder parameters are

Autoregressive models and Transformers. Autoregressive models are generative models that aim to model distributions of high dimensional data by factoring the joint probability distribution to a series of conditional distributions via the chain rule [4]. Using neural networks to parameterize the conditional distribution has been proved to be effective [28, 60] in general, and more specifically to image generation [12, 47, 62]. Transformers [63], known for their ability to model long-range dependencies through self-attentions, have shown the power of autoregressive models in natural languages [8, 51], image generation [11, 49]. Contrary to deterministic masked auto-encoders [32], Transformers can produce diverse image completions [64] that are sharp in masked regions by adopting the BERT [20] training objective. In the 3D domain, autoregressive models have been used to learn the distribution of point clouds [57, 66] and meshes [44]. However, these models can only generate small point clouds or meshes restricted to 1024 vertices due to the lack of efficient representation. In contrast, by eliminating statistical redundancy, a compressed discrete representation enables generative models to focus on data dependencies at a more salient level [53, 61] and recently allows high-resolution image synthesis [23, 62]. Follow-up works utilize data sparsity to obtain even more compact representations [21, 45]. We explore this direction in the context of surface completion. Concurrently with our work, AutoSDF [42] trains Transformers to complete and generation shapes with dense grid. And Point-BERT [70] adopts generative training for downstream tasks like classification.
carefully set to have the least receptive field, reducing the number of non-empty features to the number of sparse voxels of the voxelized input point cloud \mathcal{P} at resolution R. Then these non-empty features are flattened to a sequence of length K in row-major order. Since these features are sparse, we record their locations with their flattened index $\{e_i\}_{i=0}^{K-1}$. Other orderings are also possible, but for generation they are not as effective as row-major order [23].

Following the idea of neural discrete representation learning [61], we compress the bit size of the feature sequence $\{z_i\}_{i=0}^{K-1}$ through vector quantization, that is, clamping it to its nearest entry in a dictionary D of V embeddings $\{e_j\}_{j=0}^V$ and we save the indices of these entries:

$$v_i = \arg \min_{j \in [0, V)} \| z_i - e_j \|.$$ (1)

Thus, we get a compact sequence of discrete 2-tuples representing the 3D shape $S = \{(e_i, v_i)\}_{i=0}^{K-1}$. Finally, the decoder projects this sequence back to a feature grid and, through a 3D-Unet [18], decodes it to a local deep implicit function f [50], whose iso-surface is the reconstruction \mathcal{M}.

Training. We train the VQDIF by simultaneously minimizing the reconstruction loss and updating the dictionary using exponential moving averages [61], where dictionary embeddings are gradually pulled toward the encoded features. We also adopt commitment loss L_{commit} [61] to encourage encoded features z_i to stay close to their nearest entry e_{v_i} in the dictionary, with index v_i, thus keeping the range of the embeddings bounded. We define the loss as,

$$L_{\text{commit}} = \frac{1}{K} \sum_{i=0}^{K-1} (z_i - \text{sg}(e_{v_i}))^2,$$ (2)

where sg stands for stop gradient operator which prevents the embedding being affected by this loss.

The full training objective for VQDIF is the combination of reconstruction loss of L_{commit} with weighting factor β:

$$L_{\text{vqdiff}} = \frac{1}{T} \sum_{i=0}^{T-1} \text{BCE}(f(x_i), o_i) + \beta L_{\text{commit}}.$$ (3)

Here, T is the size of the target set and BCE is the binary cross-entropy loss which measures the discrepancy between the predicted and the ground truth occupancy o_i at target point x_i. During training, we select the target set $\mathcal{T}_x = \{x_i^{T-1}\}$ and its occupancy values $\mathcal{T}_o = \{o_i^{T-1}\}$ in a similar fashion to prior work [41].

3.2. Sequence generation for shape completion

We autoregressively model the distribution $p(S_C|S_P)$ by predicting the distribution of the next element conditioned on the previous elements. We also factor out the tuple distribution for each element: $p(c_i, v_i) = p(c_i)p(v_i|c_i)$. The final factored sequence distribution is as follows:

$$p(S_C|S_P; \theta) = \prod_{i=0}^{K-1} p(c_i) \cdot p(v_i)$$

$$p(c_i) = p(c_i|c_{<i}, v_{<i}, S_P; \theta)$$

$$p(v_i) = p(v_i|c_{<i}, v_{<i}, S_P; \theta).$$

Here, θ indicates model parameters and p_{c_i} and p_{v_i} are the distributions of the coordinate and the index value of the i-th element of S_C, conditioned on previously generated elements and the partial sequence S_P. Note that p_{v_i} is also conditioned on the current coordinate c_i.

Different approaches have been applied to build a transformer model that can predict tuple sequences. Instead of flattening them [57], which in our case doubles the sequence length, we stack two decoder-only transformers to predict the p_{c_i} and p_{v_i} respectively in a similar way to prior works [21, 45, 66], as illustrated in Fig. 3. Unlike in the image completion case [64], where the partial sequence is strictly a part of the complete sequence so that only the missing regions need to be completed. For our case, however, due to the noise or incompleteness of local observations, we would like to predict complete sequences from scratch to fix such data deficiencies. And thanks to the autoregressive structure of the decoder-only transformer, we can achieve conditioning by simply prepending S_P before S_C to generate complete sequences that are in coordination with the partial one. We also append an additional end token to both sequences to help learning.

Training and inference. The training objective of Shape-
Former is to maximize the log-likelihood given both S_C and S_P: $L_{\text{ShapeFormer}} = -\log p(S_C|S_P; \theta)$. After the model is trained, ShapeFormer performs shape completion by sequentially sampling the next element of the complete sequence until an end token ([END]) is encountered. Given the partial sequence, we alternatively sample the new coordinate and value index using top-p sampling [33], where only a few top choices, for which the sum of probabilities exceeds a threshold p_n, are kept. Also, we mask out the invalid choices for coordinate to guarantee monotonicity.

4. Results and Evaluation

In this section, we demonstrate our method outperforms prior arts for shape completion from ambiguous scans and part-level incompleteness (Sec. 4.1). Then we show our approach can effectively handle a variety of shape types, out-of-distribution shapes, and real-world scans from the Redwood dataset [16] (Sec. 4.2). Lastly, we show our VQDIF representation has a significantly smaller size compared with prior DIFs while achieving similar accuracy (Sec. 4.3).

<table>
<thead>
<tr>
<th>SCAN AMBIGUITY</th>
<th>LOW</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>CD↓</td>
<td>F1↑</td>
<td>FPD↓</td>
<td>CD↓</td>
<td>F1↑</td>
<td>FPD↓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OccNet [41]</td>
<td>1.48</td>
<td>63.2</td>
<td>0.34</td>
<td>2.79</td>
<td>50.4</td>
<td>3.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ConvONet [50]</td>
<td>0.81</td>
<td>72.9</td>
<td>0.23</td>
<td>3.14</td>
<td>60.4</td>
<td>2.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF-Net [15]</td>
<td>0.79</td>
<td>73.8</td>
<td>0.25</td>
<td>18.4</td>
<td>51.5</td>
<td>3.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PoinTr [69]</td>
<td>0.80</td>
<td>70.1</td>
<td>0.23</td>
<td>3.11</td>
<td>59.3</td>
<td>3.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cGAN [67]</td>
<td>1.33</td>
<td>62.1</td>
<td>1.36</td>
<td>3.49</td>
<td>59.3</td>
<td>2.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ours</td>
<td>0.74</td>
<td>70.3</td>
<td>0.24</td>
<td>4.72</td>
<td>60.5</td>
<td>1.45</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ours</td>
<td>0.73</td>
<td>71.4</td>
<td>0.22</td>
<td>4.69</td>
<td>60.7</td>
<td>1.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VQDIF-only</td>
<td>0.79</td>
<td>73.8</td>
<td>0.25</td>
<td>3.07</td>
<td>60.3</td>
<td>3.14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Quantitative results on ShapeNet with different scan ambiguity. Ours: top-p=0.4 sampling, Ours*: top-p=0 sampling.

Throughout all these experiments, we use feature resolution $R = 16$ for VQDIF and set its loss balancing factor $\beta = 0.01$. We also set the vocabulary of the dictionary D to be $V = 4096$. We use 20 and 4 blocks for Coordinate and Value Transformers, respectively. All of these blocks have 16 heads self-attention, and the embedding dimension is 1024. We find that a maximum sequence length of 812...
is enough for all of our experiments. We set the default probability factor $p = 0.4$ for sampling. Further implementation details such as architecture and training statistics are provided in the supplementary.

4.1. Shape completion results

Data. We consider two datasets: 1) ShapeNet [9] for testing on partial scan and 2) PartNet [43] for testing on part-level incompleteness; we follow the same setting as in cGAN [67]. For ShapeNet, following prior works [13, 15, 41, 50], we use 13 classes of the ShapeNet with train/val/test split from 3D-R2N2 [17]. The data are processed and sampled similarly to IMNet [13] and we create partial input for training via random virtual scanning. For evaluation, we first measure the ambiguity score of a partial point cloud P to its complete counterpart C as the mean ratio of the distance of each point $x \in C$ with its nearest neighbor in P to its distance toward furthest neighbor in C. We uniformly sample 70 viewpoints on a sphere for each shape. Then we create two setups for the dataset according to ambiguity. The high scan ambiguity setup selects scans with the top half ambiguity score and vice versa. More details about this score are provided in the supplementary material.

Metric. For the low ambiguity setting, we use Chamfer L_2 Distance (CD) and F-score%1 ($F1$) [58] to measure how accurate the completion is; this is similar to the previous setup [50]. And to evaluate completion quality for high ambiguity setting, we follow prior work [55] to use pre-trained PointNet [10] classifier as a feature extractor to compute the Fréchet Point Cloud Distance (FPD) between the set of completion results and ground truth shapes. Additionally, for the PartNet dataset, we follow cGAN [67] and use Uni-directional Hausdorff Distance (UHD) to measure faithfulness toward input, Total Mutual Difference (TMD) to measure diversity, and Minimal Matching Distance (MMD) [1].

Baselines. We compare our model with a global DIF method OccNet [41], two local DIF methods ConvONet [50] and IF-Net [15], PoinTr [69], which adopts Transformers without autoregressive learning, and multimodal completion method cGAN [67]. We also compare our VQDIF-only model to illustrate the necessity of ShapeFormer. We train these methods for shape completion in our dataset setting with their official implementation.

Results on ShapeNet. As shown in Fig. 4, methods incorporating structured local features can better preserve the input details than those that only operate on global features (OccNet [41], cGAN [67]) And deterministic methods tend to produce averaged shape since they are unable to handle multi-modality. Notice that PoinTr [69] also utilizes the power of Transformers, but they can not alleviate this problem by adopting Transformers without generative modeling. This phenomenon is more apparent for the chair example,
RGBD Input Completions

Figure 6. Shape completion results on real-world depth scan from Redwood dataset. ShapeFormer takes partial point clouds converted from depth images and produces multiple possible completions whose variation depends on the uncertainty of viewpoints.

Scan Completions

Figure 7. Shape completion results on out-of-distribution shapes. Given a scan of an unseen type of shape, ShapeFormer can produce multiple reasonable completions by generalizing the knowledge learned in the training set.

which has higher ambiguity. Our VQDIF-only model also fails to produce good completion in this case. Based on VQDIF, our ShapeFormer resolves ambiguity by factoring the estimation into a distribution, with each sampled shape sharp and plausible. In contrast, the multi-modal method cGAN [67] is unable to produce high-quality shapes due to their unstructured representation. Further, we generate one completion per input with top-p sampling for quantitative evaluation. As shown in Tab. 1, our method has a much better FPD for high ambiguity scans. Notice CD is not reliable when ambiguity is high since it often treats plausible completions as significant errors. For low ambiguity scans, our method is also competitive toward previous state-of-the-art completion methods in terms of accuracy.

Results on PartNet. We compare our model with cGAN and ShapeInversion [72] on PartNet. The latter method achieves multiple completions through GAN inversion. The quantitative and qualitative comparisons are shown in Tab. 2 and Fig. 5, respectively. Thanks to our structured representation, we achieve much better faithfulness (UHD) and can generate more varied (TMD) high-quality shapes (MMD and FPD) than these GAN-based methods.

4.2. More results

Results on real scans. We further investigate how our model pre-trained on ShapeNet can be applied to scans of real objects. We test our model on partial point clouds converted from RGBD scans of the Redwood 3D Scans dataset [16]. Figure 6 shows the results for a sofa and a table, both of them have two scans from different views. Notice that our model sensitively captures the uncertainty of a scan, producing a distribution of completions that are faithful to the scan and plausible in unobserved regions. We also show results for a sports car in Fig. 2.

Results on out-of-distribution objects. We further evaluate ShapeFormer’s generalization by testing scans of unseen types of shapes on our trained model of Sec. 4.1. We pick the novel shapes from the "Famous” dataset collected by Erler et al. [22] which includes many famous geometries for testing, such as the "Utah teapot," and apply virtual scan to get the partial point cloud. Fig. 7 demonstrates our ShapeFormer can grasp general concepts such as symmetry or hollow and filled. Even the model is only trained on the 13 ShapeNet categories, without ever seeing any cups or teapot, it can still successfully produce multiple reasonable completions from the partial scan. Moreover, in the second row, we see the completions of a one-side scan of a cup contain two distinct features: the cups might be solid or empty. These examples show the ShapeFormer’s potential for general-purpose shape completion, where once we have it trained, we can apply it for all types of shapes.

Results on human shapes. In addition to CAD models, we qualitatively evaluate our completion results on scans of hu-
Table 3. Auto-encoding results for objects in ShapeNet. len. stands for sequence length of the flattened representation.

<table>
<thead>
<tr>
<th></th>
<th>Occ.</th>
<th>CONet.</th>
<th>IF.</th>
<th>Ours8</th>
<th>Ours16</th>
<th>Ours32</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>3.56</td>
<td>0.98</td>
<td>0.43</td>
<td>1.90</td>
<td>0.98</td>
<td>0.55</td>
</tr>
<tr>
<td>F1</td>
<td>68.2</td>
<td>89.0</td>
<td>97.8</td>
<td>77.5</td>
<td>88.1</td>
<td>96.4</td>
</tr>
<tr>
<td>len.</td>
<td>1</td>
<td>32</td>
<td>128</td>
<td>57</td>
<td>217</td>
<td>889</td>
</tr>
</tbody>
</table>

Human shapes (D-FAUST dataset [7]) using the same setting as Niemeyer et al. [46]. Human shapes are very challenging due to their thin structures and the wide variety of poses. To simulate part level incompleteness, we randomly select a point from the complete cloud and only keep neighboring points within a ball of a fixed radius as partial input. Fig. 8 shows examples of our results. We can see that our completions keep the pose of the observed body parts and generate various possible poses for the unobserved body parts.

4.3. Surface reconstruction with VQDIF

Our final experiment evaluates the representation size and reconstruction accuracy of VQDIF. We compare VQDIF of different feature resolutions (Ours8, Ours16, Ours32) with OccNet, ConvONet, IF-Net, which are re-trained to auto-encode the complete shape with their released implementations. As shown in Fig. 9, Ours32 achieves similar accuracy to the local implicit approach IF-Net while being significantly smaller in size thanks to the sparse and discrete VQDIF features. The minimum receptive field of our encoder keeps the feature as local as possible, which greatly reduces the feature amount. Then the multi-dimensional feature vectors are quantized and can be referred to using a single integer index, which further reduces the size. The accuracy loss is only salient for lower feature resolution, as seen in the w/o quant. comparison, where we train VQDIF without vector quantization. These together allow transformers to effectively model the distribution of shapes. We adopt Ours16 for ShapeFormer since it only has an average length of 217 (see Tab. 3) and its accuracy is already comparable with ConvONet (see Fig. 10).

5. Conclusions

We have presented ShapeFormer, a transformer-based architecture that learns a conditional distribution of completions, from which multiple plausible completed shapes can be sampled. By explicitly modeling the underlying distribution, our method produces sharp output instead of regressing to the mean producing a blurry result. To facilitate generative learning for 3D shape, we propose a new 3D representation VQDIF that can significantly compress the shapes into short sequences of sparse, discrete local features, which in turn enables producing better results, both in terms of quality and diversity, than previous methods.

The major factor limiting our method to be applied in fields like robotics is the sampling speed, which is currently 20 seconds per generated complete shape. In the future, we would also like to explore utilizing a more efficient attention mechanism to allow Transformers to learn VQDIF with smaller size, producing even higher quality completions. Moreover, the current method is generic, leveraging advances in language models. More research is required to include geometric or physical reasoning in the process to better deal with ambiguities.

Acknowledgements. We thank the reviews for their comments. We thank Ziyu Wan, Xuelin Chen and Jiahui Lyu for discussions. This work was supported in parts by NSFC (62161146005, U21B2023, U2001206), GD Talent Program (2019JC05X328), GD Science and Technology Program (2020A0505100064), DFG Key Project (2018KZDM058, 2020SFKC059), Shenzhen Science and Technology Program (RCJ2020071414435012, JCYJ20201234120213036), Royal Society (NAF-R1-180099), ISF (3441/21, 2492/20) and Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ).
References

[23] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image synthesis, 2020. 2, 3, 4

[32] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners, 2021.

