
A Unified Query-based Paradigm for Point Cloud Understanding

Zetong Yang1,4∗ Li Jiang2∗ Yanan Sun3 Bernt Schiele2 Jiaya Jia1
1CUHK 2MPI Informatics 3HKUST 4SmartMore

{tomztyang, now.syn}@gmail.com {lijiang, schiele}@mpi-inf.mpg.de leojia@cse.cuhk.edu.hk

Abstract

3D point cloud understanding is an important compo-
nent in autonomous driving and robotics. In this paper,
we present a novel Embedding-Querying paradigm (EQ-
Paradigm) for 3D understanding tasks including detection,
segmentation and classification. EQ-Paradigm is a unified
paradigm that enables combination of existing 3D back-
bone architectures with different task heads. Under the EQ-
Paradigm, the input is first encoded in the embedding stage
with an arbitrary feature extraction architecture, which is
independent of tasks and heads. Then, the querying stage
enables the encoded features for diverse task heads. This
is achieved by introducing an intermediate representation,
i.e., Q-representation, in the querying stage to bridge the
embedding stage and task heads. We design a novel Q-Net
as the querying stage network. Extensive experimental re-
sults on various 3D tasks show that EQ-Paradigm in tan-
dem with Q-Net is a general and effective pipeline, which
enables flexible collaboration of backbones and heads. It
further boosts performance of state-of-the-art methods.

1. Introduction
3D point cloud understanding is an essential line in com-

puter vision since it could benefit many applications, such
as autonomous driving [14], robotics [12], and augmented
reality [31].

In point cloud understanding, there are two dominant
input representations: points and voxels. Specifically de-
signed for these two representations, mainstream mod-
els can be grouped into point- [19, 23, 28, 36, 51, 56, 69]
and voxel-based [7, 16, 61, 71] networks. In both cases,
state-of-the-art models consist of an encoder network to
gradually downsample the points/voxels by sampling al-
gorithms / strided convolution. There are also a de-
coder network to propagate features of the subsampled
points/voxels into original ones and a task-specific head
for making predictions. We call these methods Encoder-
Decoder paradigm (ED-Paradigm) models. Due to the

∗ Equal contribution. Work done during internship at SmartMore.

voxel-based networks

Embedding Stage

Querying Stage

classification 
head

Input Point Cloud

point-based networksor

Query 
Positions

Q-representation

Various Task Heads

segmentation 
head

BEV-based 
detection 

head

point-based 
detection 

head
…

Figure 1. Illustration of the unified query-based EQ-Paradigm.
The query position can be randomly designated in the 3D scene,
thus making it possible to combine any backbone embedding net-
works with different task heads.

downsampling-upsampling design, ED-Paradigm models
extract features for some fixed positions appearing in the
downsampling process.

In this paper, we propose a novel Embedding-Querying
paradigm (EQ-Paradigm) for 3D understanding tasks.
Compared to the ED-Paradigm, which extracts features for
fixed positions, EQ-Paradigm enables feature generation
for any position in the 3D scene. Thus, the EQ-paradigm
is generalization of the ED-Paradigm. Any ED-Paradigm
model has an EQ-Paradigm counterpart. An EQ-Paradigm
model consists of three stages: an Embedding stage, a
Querying stage, and a task-specific head.

The embedding stage can be implemented with any fea-
ture extraction architecture, including voxel- and point-
based networks, regardless of tasks and heads. We use the
embedding network to extract support features for follow-
ing stages. The querying stage then takes a set of positions
as query positions and generates their intermediate repre-
sentation, i.e., Q-representation, based on the support fea-
tures. Note that the query positions could be any point in the
contiguous 3D space, thus enabling feature generation for
any location. We further present a novel querying stage net-

8541



work called Q-Net to effectively extract Q-representation.
Afterwards, a task head is employed for generating predic-
tions based on the Q-representation.

Due to the flexibility in query position designation, the
EQ-Paradigm is a unified query-based paradigm that can
easily combine any state-of-the-art 3D backbone networks
with different task heads without extra efforts (Figure 1),
which gives a lot of freedom in the head design. For
example, SSD head [21] designed for voxel-based detec-
tors [61, 72] can be applied with a point-based embedding
network under EQ-Paradigm; an EQ-Paradigm segmenta-
tion model can directly obtain point-wise features based
on a voxel-based embedding network [7, 16]; also, an EQ-
Paradigm version of PVRCNN [39] is able to directly gen-
erate proposal grid features from the voxel-based backbones
for the following detection head. This greatly increases the
flexibility of model design for different tasks.

We evaluate our EQ-Paradigm on multiple important 3D
understanding tasks including object detection [26, 32, 39,
40, 61], semantic segmentation [7, 16] and shape classifica-
tion [36]. Our experiments show that our EQ-Paradigm and
Q-Net can be well integrated with any state-of-the-art mod-
els regardless of tasks, backbone architectures and head de-
signs, while making consistent performance improvement.
Our primary contributions are the following.

• We propose an Embedding-Querying paradigm for 3D
point cloud understanding. It is a unified query-based
paradigm enabling combination of arbitrary point- or
voxel-based networks with different task heads.

• We present a novel querying stage network Q-Net, to
extract intermediate Q-representation, i.e., query fea-
tures, for the designed query positions.

• We integrate our EQ-Paradigm and Q-Net into multi-
ple state-of-the-art 3D networks for different tasks and
achieve consistent performance improvement from ex-
tensive experiments.

2. Related Work

ED-Paradigm ED-Paradigm models are widely used. They
consist of an encoder network to extract high-level seman-
tic features, a decoder network for feature propagation, and
a task head to perform predictions. U-Net [37] is a clas-
sical ED-Paradigm network to deal with biomedical im-
age segmentation. It inspires following work on 2D pixel-
level tasks including semantic segmentation [5, 6, 27, 70],
super resolution (SR) [50] and matting [13, 44, 57]. In 3D
tasks, it is also a mainstream paradigm for object detection
[18,34,61,72] and semantic segmentation [23,28,45,54,69].

Point-based 3D Architectures Point-based 3D models deal
with raw point clouds, which extract sparse point features,
downsample point cloud in encoder networks, propagate

features to original points by decoders, and make predic-
tions by task-specific heads. PointNet++ [36] is a funda-
mental point-based backbone and has been widely applied
to many point-based models [26,33,34,40,52,63,64]. These
models utilize a series of set-abstraction layers as their en-
coders and multiple feature propagation layers as decoders.

Some models focus on developing elegant heads to lever-
age the sparse point features. For example, F-PointNet [34]
achieves amodal 3D box estimation. In [40, 65], canon-
ical 3D bounding box refinement and PointsPool layer
are proposed respectively. Other point-based backbones
[19, 59, 68] focus on improving the feature aggregation op-
eration in PointNet++ by introducing graph convolutions
[42, 48], convolution-like operations [45, 54, 56] or trans-
former structure [30,69]. For raw point cloud, a point-based
model can extract features with accurate relative positions
and structural information. But it is limited in dealing with
large-scale point cloud due to high time complexity for ball
query and farthest point sampling.

Voxel-based 3D Architectures Voxel-based methods first
divide raw point cloud into regular voxels, then apply con-
volutional neural networks (CNNs) composed of sparse
[7, 15, 16] or dense [72] convolutions as their encoder and
decoder networks to extract voxel features. Still, voxel-
based models are widely applied in various methods [7, 18,
39, 41, 61, 72] on different tasks. Compared to point-based
architectures, voxel-based methods reduce a large number
of redundant points in the same voxels but sacrifice the
data precision during the voxelization process. However,
voxel-based methods are able to deal with the large-scale
scenario. In this paper, we propose an EQ-Paradigm for en-
abling models on different tasks to easily switch between
these two backbone architectures and providing great flexi-
bility in head design.

3. EQ-Paradigm

We first give an overview of the EQ-paradigm in this sec-
tion, then elaborate our novel querying stage design, Q-Net,
in the next section.

3.1. Overview

As shown in Figure 2, our EQ-Paradigm has three stages:
an Embedding stage, a Querying stage and a task head.
First, the embedding stage extracts features from the input
point cloud I ∈ RN×3. We take those features as support
features FS for the following querying stage. The corre-
sponding 3D positions of FS are denoted as support points
S ∈ Rn×3. The querying stage is then responsible for
generating Q-representation, that is, query features FQ for
query positions Q ∈ Rm×3 based on support points S and
support features FS . Notably, Q is not required to be a sub-
set of I . Instead, a query point is expected to be any position

8542



in the continuous 3D space. We provide a novel querying
stage design called Q-Net. Finally, the task head produces
predictions based on query positions Q and features FQ.
Our EQ-Paradigm is expressed as

FS , S = Embedding(I),
FQ = Querying(FS , S,Q),

O = Head(FQ, Q),

(1)

where O indicates the final outputs for specific tasks.

3.2. Embedding Stage

In the EQ-Paradigm, the feature extraction network in
the embedding stage can be any 3D network, including
voxel-based networks with voxelized input [7, 15, 16] and
point-based networks with raw point clouds [23,35,36,54],
independent of tasks and heads. The goal of the embed-
ding stage is to generate support points S and support fea-
tures FS . For point-based embedding networks, the support
points S are usually a subsample of the input point cloud
I , depending on the downsampling strategy (e.g., farthest
point sampling) of the network. In the voxel-based situa-
tion, downsampling is usually achieved by strided convolu-
tions, and we take the downsampled voxel centers as S.

As mentioned in Section 2, a voxel-based backbone is
able to deal with large-scale point cloud scenarios, while
a point-based backbone can extract more precise structural
information. In the EQ-Paradigm, a model can arbitrarily
specify its embedding stage network according to the prac-
tical demand, which brings flexibility in model design.

3.3. Querying Stage

The querying stage is utilized for extracting query fea-
tures FQ for a set of manually designated query positions Q
from support features FS and their positions S. The queried
features are then sent to the task-specific head for generat-
ing final predictions.

The key aspect of the querying stage lies in the selection
of query positions according to different tasks and head de-
signs, as illustrated in Figure 2 and the following.

• Query positions in detection. To deploy an SSD
[21,61] head in an outdoor 3D object detection model,
query positions are selected to be the pixel centers
within the target Bird-Eye-View (BEV) map (Fig-
ure 2(a)). To utilize point-based heads proposed in
[32, 40, 63], query positions are subsampled points
from the raw input point cloud by uniform or farthest
point sampling (Figure 2(b)).

• Query positions in segmentation. In semantic segmen-
tation, query positions are the points requiring point-
wise class predictions in a 3D scene (Figure 2(c)).
Usually, the whole input point cloud I is taken as Q.

Querying Stage

(a)

Query
Features 𝐹!

(Q-representation)

…
…

Task Head

or

voxel 
centers

point
samples

Input 𝐼

Embedding Stage
(b)

(c)

(d)

Support
Features 𝐹!

Support
Points 𝑆

Query 
Positions

𝑄

Detection

Segmentation

Classification

Detection

BEV-
based

point-
based 

Figure 2. Overview of our EQ-Paradigm. Given an input point
cloud I , a set of support features FS for support points S are gener-
ated in the embedding stage. The support points (marked in green)
can be voxel centers or point samples for voxel- or point-based
embedding networks, respectively. The querying stage network
generates the query features FQ (also known as Q-representation)
used in the task head for query positions Q based on S and FS .
The query positions Q (marked in yellow) for different tasks and
heads are shown in (a)-(d).

• Query positions in classification. In classification,
Q can be the shape center to produce a representa-
tive feature for the classifier, or can also be multi-
ple uniformly-distributed positions indicating different
parts of an object to vote for the category (Figure 2(d)).
In this paper, we intend to vote category using 16 sam-
pled points as query positions.

The querying stage is agnostic of the embedding network
type and has great flexibility in query position selection.
The point or voxel features extracted in the embedding stage
can be well propagated to the query positions required by
different tasks and heads. Also, for a specific task head, it is
possible to switch the point- or voxel-based embedding net-
works depending on which representation is better for the
head. This is valuable for tasks like detection, where the
head and backbone designs are both important, as shown in
the ablation study in Section 5.5.

4. Q-Net
Our querying stage network Q-Net is based on the trans-

former structure [11, 47] to extract Q-representations, i.e.,

8543



Input Point Cloud 𝐼

Query
Features
𝐹!"(𝟎)

Support
Points
𝑆

(a) Embedding Stage (b) Querying Stage (Q-Net)

M
LP

(c) Task Head

Point- or Voxel-based
Embedding

Network

𝑚
×
𝑑

Support
Features
𝐹#"(𝐹$) 𝑛

×
𝑑

Q-Decoder
Layer

Q-Block #1

Q-Encoder
Layer

𝑚
×
3Query 

Positions 
𝑄

𝑛
×
3

𝑚
×
𝑑

𝑛
×
𝑑

𝐹!%

𝐹$%

Q-Decoder
Layer

Q-Block #2

Q-Encoder
Layer

𝑚
×
𝑑

𝑛
×
𝑑

𝐹!&

𝐹$&

…

Q-Blocks

…

𝑚
×
𝑑

𝑛
×
𝑑

𝐹!'(%

𝐹$'(%

Det.

Seg.

Cls.

Q-Encoder
Layer

Q-Decoder
Layer

Q-Block #L

𝑚
×
𝑑

𝐹!

Figure 3. Illustration of our Q-Net in EQ-Paradigm. Taking as input the support points S and support features FS , Q-Net generates query
features FQ for query positions Q. Q-Net consists of L consecutive Q-Blocks, each containing a Q-Encoder layer for updating support
features and a Q-Decoder layer for refining query features. We initialize F 0

Q by 0 and take FS as the initial support features F 0
S .

query features FQ. Recently, transformer models have
shown great potential in the field of 2D computer vi-
sion [4,10,11,25,46,62] as well as 3D tasks [29,30,66,69].
Here, we develop our Q-Net based on the transformer to
effectively generate features for query positions due to the
flexible receptive field and strong representation ability of
transformer layers. Note that the transformer mechanism
suits the querying stage because the attention operator with
positional encoding both contributes a global perspective
and considers the relative positions between points, which
satisfies the need of feature generation for flexible query po-
sitions. Figure 3 shows the architecture of Q-Net.

4.1. Q-Block

Q-Net is a stack of L Q-Blocks. Each Q-Block has four
input elements. For the l-th block, the four inputs are query
positions Q, support points S, query features F l−1

Q , and
support features F l−1

S , where F l−1
Q and F l−1

S are the output
of the (l − 1)-th block. For the first Q-Block, we initialize
F 0
Q as 0. Since query positions Q are not necessarily a sub-

set of input point cloud I , initializing their features as zeros
does not introduce any inductive bias. Meanwhile, F 0

S is
initialized by the support features FS from the embedding
stage. These L Q-Blocks update the query and support fea-
tures in iterations. L is set to 3 in our implementation. Ab-
lation study on L is included in the supplementary material.

Each Q-Block utilizes two layers. They are a Q-Encoder
layer and a Q-Decoder layer to update the support features
and refine the query features, respectively. The support fea-
tures are updated to encode richer global semantic infor-
mation, thus benefiting the query feature refinement. We
abandon the Q-Encoder layer in the last Q-Block, since we
do not need updated support features anymore without the
next Q-Decoder layer. The output of the last Q-Block is the
final query features FQ, which are fed into the task head for

making predictions. Formally, the Q-Block is depicted as

F l
Q = Q-Decoder(Q,F l−1

Q , S, F l−1
S ),

F l
S = Q-Encoder(S, F l−1

S ).
(2)

We follow the original transformer [47] to build our Q-
Encoder and Q-Decoder layers. We adopt the transformer
encoder layer as our Q-Encoder layer, while the Q-Decoder
layer is adapted from the transformer decoder layer.
Q-Encoder Layer We use the Q-Encoder layer to update
the support features. Architecture of our Q-Encoder layer
follows the widely-used transformer encoder layer, which
consists of an attention layer (Attention) and a feed-forward
network (FFN). We formulate the Q-Encoder layer as

F̂ l
S = Attention(S, F l−1

S , S, F l−1
S ) + F l−1

S ,

F l
S = FFN(F̂ l

S) + F̂ l
S .

(3)

The attention layer here is a classical qkv-based multi-head
self-attention [47], where q, k and v are all from the support
features F l−1

S . We use LayerNorm [3] to normalize features
before each Attention and FFN module.
Q-Decoder Layer The Q-Decoder layer generates en-
hanced feature representations for query positions. Differ-
ent from the transformer decoder layer, in the Q-Decoder
layer, we do not apply self-attention to query features and
instead directly adopt the cross-attention layer to generate
query features from the support features, formulated as

F̂ l
Q = Attention(Q,F l−1

Q , S, F l−1
S ) + F l−1

Q ,

F l
Q = FFN(F̂ l

Q) + F̂ l
Q,

(4)

where the attention layer is a qkv-based multi-head cross-
attention, in which q is from the query features while k and
v are from the support features. Removing the self-attention

8544



in the conventional transformer decoder layer keeps inde-
pendence of query positions. That is, the query feature
of a query position only depends on its relationship with
the support points/features, but not with other query posi-
tions/features, thus providing more freedom in the choice
of query positions. For example, we can query the features
of only parts of interest in the whole scene. The ablation
study in Section 5.5 shows the advantages of this design.
Attention Layer The Attention layer, formulated as

F̃Y = Attention(Y, FY , X, FX), (5)

plays a fundamental role in a Q-Block. It leverages m tar-
get positions Y ∈ Rm×3 with features FY ∈ Rm×d and n
source positions X ∈ Rn×3 with features FX ∈ Rn×d to
obtain new target features F̃Y ∈ Rm×d. Here, d denotes the
channel number of features. A qkv-based attention layer
can be viewed as applying attention weights to the source
features FX for computing new target features. Here, we
describe the single-head calculation for clarity. The compu-
tation of the i-th new target feature F̃

(i)
Y is formulated as

F̃
(i)
Y = A(i)(FXWv +B(i)

v ). (6)

The attention weight A ∈ Rm×n is obtained by utilizing a
softmax function on the result of dot product between target
features FY and source features FX as

A = SoftMax
(
(FY Wq)(FXWk)

T +Bqk√
d

)
. (7)

Wq, Wk and Wv are weights of the linear layers for q,
k and v, respectively. Also, in our Q-Block, we apply
two types of relative positional encoding. The first Bv ∈
Rm×n×d in Eq. (6) is for providing relative geometric in-
formation in the value vectors. The second Bqk ∈ Rm×n

in Eq. (7) encodes the Euclidean positional difference be-
tween the target Y and source X in the attention weights.
Relative Positional Encoding Relative positional encoding
is an indispensable component in our Q-Net. Unlike previ-
ous transformer structures [4, 47] that adopt input features
with effective semantic and position information, we ini-
tialize query features F 0

Q by 0 in the first Q-Block, which
avoids introducing inductive biases and provides no effec-
tive information. Hence, at the beginning of our Q-Net,
query positions are the only hints for generating query fea-
tures from support points and support features.

Meanwhile, it is not optimal to update query features in
the first block only depending on the coordinate difference
between query and support points, since it makes no dif-
ference in attention weights for object points with the same
relative position but in various scales and shapes. Inspired
by [38, 53], we adopt contextual relative positional encod-
ing, which fits our Q-Block well.

Hierarchical Embedding Network

Support Points
Support Features
Query Points
Query Features

C

Q-Net

Q-Net

Q-Net

Q-Net

Figure 4. The hierarchical extension of our Q-Net.

Compared to bias-mode relative positional encoding
[25, 53, 62], contextual relative positional encoding consid-
ers the interactions of positional embeddings with the q,
k, v features, making the relative positional encoding au-
tomatically adapt to features with different contextual in-
formation. Hence, it produces various responses for points
in objects with diverse scales and shapes, even when some
point pairs share the same relative positional difference. We
provide the details of our relative positional encoding strat-
egy and its effect in the supplementary material.
Local Attention When the numbers of target m and source
n are large, e.g., 40k, applying global attention to them
is extremely GPU memory-consuming, since the attention
weight A ∈ Rm×n is too large to store. To address this is-
sue, we instead apply local attention in our Q-Net inspired
by [30,69]. Specifically, for each target point, we figure out
its K nearest neighbors (KNN) in source points according
to Euclidean distances and compute attention only on these
neighbors. In this way, the size of attention weight A is
greatly reduced to m×K, and K is far smaller than n.

4.2. Hierarchical Q-Net

Hierarchical multi-level architecture is proven to be es-
sential for 3D tasks [7, 36] considering the diversity in 3D
scene scales and object sizes. Especially for a point-wise
prediction task like semantic segmentation, the multi-level
features are of great importance in producing state-of-the-
art results [7,69], since the fine-grained features are needed
to make detailed per-point segmentation.

We develop a hierarchical Q-Net for exploiting multi-
level features. As illustrated in Figure 4, we apply a series
of Q-Nets on support features from multiple levels of the
hierarchical embedding network and concatenate the query
features from different levels to generate final predictions.

5. Experiments
We conduct experiments on four popular 3D tasks: se-

mantic segmentation, indoor object detection, outdoor ob-
ject detection and shape classification. Implementation de-
tails of training schedule, hyper-parameters and network

8545



Method ScanNet S3DIS
Validation Test Area 5 6-fold

PointNet [35] - - 41.1 47.6
PointNet++ [36] - 33.9 - -
PointCNN [19] - 45.8 57.3 65.4
PointWeb [68] - - 60.3 66.7
PointEdge [17] 63.4 61.8 61.9 67.8
PointConv [54] 61.0 66.6 - -
PointASNL [60] 66.4 66.6 62.6 68.7
KPConv [45] 69.2 68.6 67.1 70.6
FusionNet [67] - 68.8 67.2 -
SparseConvNet [16] - 72.5 - -
MinkowskiNet [7] 72.2 73.6 65.4 -
PAConv [56] - - 66.6 69.3
PointTransformer [69] - - 70.4 73.5

Sparse U-Net (Baseline) 72.9 - 66.9 72.6
Sparse EQ-Net (Ours) 75.3 74.3 71.3 77.5
Improvement +2.4 - +4.4 +4.9

Table 1. Semantic segmentation results on mIoU(%) of our
method and other 3D networks on ScanNet and S3DIS. The Sparse
U-Net is our re-implemented version of SparseConvNet.

Method Network mAP mAP
@0.25 @0.5

ScanNetV2
VoteNet [32] PointNet++ 58.6 33.5
VoteNet+ PointNet++ 62.9 39.9
VoteNet (Ours) EQ-PointNet++ 64.3 45.4
GroupFree [26] PointNet++ (L6, O256) 67.3 48.9
GroupFree+ PointNet++ (L6, O256) 66.3 47.8
GroupFree (Ours) EQ-PointNet++ (L6, O256) 68.0 50.0
SUN RGB-D
VoteNet [32] PointNet++ 57.7 32.9
VoteNet+ PointNet++ 59.1 35.8
VoteNet (Ours) EQ-PointNet++ 60.5 38.5

Table 2. Performance of different methods with PointNet++ and
EQ-PointNet++ on ScanNetV2 and SUN RGB-D datasets. + de-
notes the models reproduced by MMDetection3D [8].

structure are included in the supplementary material.

5.1. Semantic Segmentation

Datasets For point cloud semantic segmentation, we use
competitive and popular datasets of ScanNetV2 [9] and
S3DIS [1] in our experiments. ScanNetV2 comprises 1,613
indoor scans (1,201/312/100 for train/val/test) with point-
wise semantic labels in 20 object categories. S3DIS is com-
posed of 271 point cloud scenes collected from 6 large-
scale indoor areas, annotated with 13 semantic classes. For
evaluation, we follow the commonly-used S3DIS dataset
split [7, 19, 68] to test on Area 5 and train on other 5 ar-
eas, and also apply the 6-fold cross validation, which takes
each area as test set once. For the evaluation metrics, we
adopt the mean Intersection-over-Union (mIoU).

Models We utilize the voxel-based residual U-Net structure
with sparse convolutions [7,16] as the baseline model in our
experiments. The sparse U-Net follows the ED-Paradigm
with an encoder network and a decoder one. It is a power-

ful backbone structure in 3D segmentation. We develop our
network with EQ-Paradigm based on the sparse U-Net by
keeping the encoder as our embedding network and adopt-
ing the Q-Net to extract the features for each point. In the
embedding stage, the input 3D volume is downsampled for
6 times, providing multi-level support features. We use the
center coordinates of the voxels as the support positions and
apply the hierarchical Q-Net to fuse the multi-level features
to get better feature representations for the query positions.
The queried features are then fed into a classifier to produce
point-wise semantic predictions.

Experimental Results We compare our EQ-Net with our
baseline model and other 3D networks. The results are
shown in Table 1. On both datasets, our method attains
higher mIoU than the strong baseline models, with signif-
icant gain of 2.4%, 4.4% and 4.9% on ScanNet validation
set, S3DIS Area 5 and 6-fold, respectively. Also, compared
with recent state-of-the-art 3D segmentation networks, our
EQ-Net still achieves higher performance on these two
datasets, showing effectiveness of the EQ-Paradigm and our
well-designed Q-Net in point-wise prediction tasks.

5.2. Indoor Object Detection

Datasets We evaluate our method on two popular datasets
of ScanNetV2 [9] and SUN RGB-D [43]. ScanNetV2
contains 1,513 scenes with bounding boxes labeled in
18 categories; SUN RGB-D includes 5k training scenes
with bounding boxes in 10 classes. Evaluation metric is
the mean Average Precision (mAP) with intersection-over-
union (IoU) 0.25 (mAP@0.25) and 0.5 (mAP@0.5) follow-
ing [32].

Baseline Models We test our approach on VoteNet [32]
and GroupFree [26] for ScanNetV2 dataset, and on VoteNet
for SUN RGB-D dataset. All baseline models are publicly
available at MMDetection3D [8] codebase. VoteNet is the
classical indoor detector serving as the baseline model for
all modern methods; GroupFree is the current state-of-the-
art indoor detector.

EQ-PointNet++ PointNet++ [36] is the cornerstone of in-
door 3D object detection. Recent methods [26,32] all utilize
it to extract sparse point features for detection heads.

EQ-PointNet++ is the EQ-Paradigm version of Point-
Net++. It treats a stack of set-abstraction layers as its em-
bedding stage similar to PointNet++ and applies a hierarchi-
cal Q-Net in its querying stage to extract query features with
multi-level information. Query positions are 1,024 points
obtained by applying furthest point sampling (FPS) on the
raw input point cloud following [26, 32]. For all models,
we replace their PointNet++ backbone networks by our EQ-
PointNet++ networks.

Experimental Results As shown in Table 2, models
with EQ-PointNet++ achieve better performance on both

8546



Set Method Car (%) Pedestrian (%) Cyclist (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Val

SECOND [61] 90.85 81.66 78.57 56.07 51.12 46.14 83.06 66.69 63.02
EQ-SECOND (Ours) 91.74 81.49 78.62 57.48 53.64 49.55 85.01 67.13 63.34
PointRCNN [40] 91.35 80.25 77.84 61.19 54.33 47.43 89.77 71.55 67.20
EQ-PointRCNN (Ours) 91.80 84.00 82.29 64.80 58.36 52.55 91.23 71.09 66.35
PVRCNN [39] 92.07 84.75 82.46 62.32 54.42 49.81 90.39 70.42 65.99
EQ-PVRCNN† (Ours) 92.63 85.41 82.97 66.78 59.23 54.34 93.34 75.71 71.11
EQ-PVRCNN§ (Ours) 92.52 85.61 83.13 69.95 62.55 56.51 91.51 74.02 69.46

Test PVRCNN [39] 90.25 81.43 76.82 52.17 43.29 40.29 78.60 63.71 57.65
EQ-PVRCNN§ (Ours) 90.13 82.01 77.53 55.84 47.02 42.94 85.41 69.10 62.30

Table 3. Performance comparison on the KITTI val and test sets.

datasets. Specifically, VoteNet with EQ-PointNet++ gains
5.5% and 2.7% mAP@0.5 improvement on ScanNetV2 and
SUN RGB-D datasets respectively. On state-of-the-art in-
door detector GroupFree [26], our approach brings consis-
tent performance improvement in terms of mAP@0.25 and
mAP@0.5 by 0.7% and 1.1% compared to the official re-
sults [26] and by 1.7% and 2.2% compared to our repro-
duced results [8]. These experiments demonstrate our EQ-
Paradigm and Q-Net are well adapted into indoor detectors
and boost their performance.

5.3. Outdoor Object Detection

Datasets For outdoor detection, we conduct experiments on
the widely adopted KITTI dataset [14]. There are 7,481
training point clouds and 7,518 testing point clouds with 3
categories of “Car”, “Pedestrian” and “Cyclist”. Follow-
ing [72], we split the original KITTI training dataset into
3,717 images/scenes train set and 3,769 images/scenes val
set. All “AP” results are calculated with 40 recall positions
following the official KITTI protocol.

Baseline Models We select 3 outdoor detectors to demon-
strate the superiority of our approach. They are SECOND
[61], PointRCNN [40] and PVRCNN [39]. These meth-
ods with different heads require varying query position des-
ignation. In SECOND, query positions are the pixel cen-
ters within the target BEV map; in PointRCNN, all points
within the input point cloud serve as query positions; while
in PVRCNN, they can be coordinates either of keypoints
(EQ-PVRCNN§) following the original PVRCNN design or
of proposal grids in a straightforward way (EQ-PVRCNN†).

Experimental Results As listed in Table 3, our approach
yields consistent improvement on different detectors. Espe-
cially on PointRCNN, EQ-PointRCNN obtains significant
improvements, e.g., 3.75% “AP” improvement on “Car” in-
stances labeled as “Moderate” difficulty. Compared to the
state-of-the-art model PVRCNN, our approach achieves re-
markable improvement on both KITTI val and test sets. On
the test set, EQ-PVRCNN§ attains 3.73% and 5.39% im-
provement on “Pedestrian” and “Cyclist” instances labeled
as “Moderate” difficulty level.

These practical improvement indicates that EQ-

Method Input Accuracy (%)

PCNN [2] 1k points 92.3
RS-CNN (SSG) [23] 1k points 92.4
PointCNN [19] 1k points 92.5
KPConv [45] 1k points 92.9
DGCNN [51] 1k points 92.9
InterpCNN [28] 1k points 93.0
DensePoint [22] 1k points 93.2
Grid-GCN [58] 1k points 93.1
PosPool [24] 5k points 93.2
SpecGCN [49] 2k points+normal 92.1
PointWeb [68] 1k points + normal 92.3
SpiderCNN [59] 1k points+normal 92.4
PointConv [54] 1k points+normal 92.5

PointNet++ (SSG) 1k points 92.1
EQ-PointNet++ (SSG) 1k points 93.2

Table 4. Accuracy comparison on the ModelNet40 dataset.

Paradigm and Q-Net can be widely applied to any 3D
outdoor detectors and deliver sustained performance
improvement. Meanwhile, by altering query positions,
our approach can inspire some new designs on existing
methods. As shown in Table 3, by directly obtaining
proposal grid features for box prediction to get rid of a
few modules (including voxel-set abstraction, predicted
keypoint weighting, and RoI-grid Pooling in PVRCNN),
EQ-PVRCNN† still achieves impressive performance
improvement with concise head design.

5.4. Shape Classification

Datasets and Models We conduct classification experi-
ments on ModelNet40 dataset [55], which includes 9,843
training and 2, 468 testing meshed models in 40 categories.
We employ EQ-PointNet++ as our classification model.
Query positions are 16 points obtained by furthest point
sampling on the input point cloud. In the recognition head,
we deploy another set-abstraction layer to summarize the 16
query features for category prediction.
Experimental Results As shown in Table 4, EQ-
PointNet++ surpasses PointNet++ with single-scale group-
ing (SSG) by 1.1% in terms of classification accuracy.
Compared with other classifiers [51], EQ-PointNet++ still
yields better performance, showing the generalization abil-
ity of EQ-Paradigm and effectiveness of Q-Net.

8547



Head Embedding Network AP (%)voxel-based point-based

SECOND head
(voxel-based)

√
- 81.49

-
√

82.70√ √
82.94

PointRCNN head
(point-based)

√
- 82.65

-
√

84.00√ √
84.38

Table 5. AP comparison on different head designs with point- and
voxel-based embedding networks.

5.5. Ablation Study

Analysis on the EQ-Paradigm In Table 5, we verify the
capacity of EQ-Paradigm in combining point- or voxel-
based backbone networks with different task heads by
adopting different embedding structures in voxel- and point-
based detectors, SECOND [61] and PointRCNN [40]. Ex-
periments are conducted on KITTI validation set with “AP”
calculated on “Moderate” difficulty level in class “Car”. We
use the SparseConvNet in SECOND [61] as the voxel-based
embedding network, and PointNet++ without decoder in
PointRCNN [40] as the point-based embedding network.

As illustrated in Table 5, heads in SECOND and PointR-
CNN are both applicable to point- and voxel-based embed-
ding stage networks and produce promising performance.
This manifests the EQ-Paradigm unifies different 3D archi-
tectures. Notably, SECOND with point-based embeddings
achieves 1.21% improvement over its voxel-based baseline.
This demonstrates that different architectures have unique
advantages. For example, point-based architectures extract
more precise structural information.

Meanwhile, in Table 5, we show that voxel- and point-
based embedding networks can be simultaneously utilized
in an EQ-Paradigm model to yield further improvement.
These experiments demonstrate that EQ-Paradigm is vastly
flexible in backbone and head selection and is able to com-
bine strengths of points and voxels.

Analysis on the Hierarchical Q-Net Multi-level features
play an important role in recognition [5, 20, 70]. Our
EQ-Paradigm is naturally compatible with the multi-level
scheme by simply employing multi-level features as sup-
port features in the querying stage. We accordingly design
a simple and yet effective hierarchical Q-Net structure. We
validate the advantage of fusing multi-level information by
conducting experiments on point cloud semantic segmenta-
tion, which calls for fine-grained features to better segment
points on object boundaries.

Table 6 lists effect of incorporating levels of features in
the querying stage on ScanNet validation set. We start from
the coarsest layer and gradually include more finer features.
Continuous performance improvement is observed with the
increasing number of feature levels, manifesting the effec-
tiveness of our hierarchical Q-Net.

No. of Levels 1 2 3 4 5 6
mIoU (%) 58.4 64.1 68.3 71.9 74.2 75.3

Table 6. Effects of the number of feature levels in our hierarchical
Q-Net. The experiments are conducted on ScanNet validation set.

Method SA Query Position Selection AP (%)train test

EQ-SECOND

√
patch patch 81.61√
patch random 74.96

- patch patch 81.49
- patch random 81.49

Table 7. AP comparison on EQ-SECOND utilizing Q-Decoder
layer with or without self-attention (“SA”) layers.

Analysis on the Q-Decoder In Q-Decoder layer, to make
query positions independent of each other to allow arbitrary
query position selection, we remove the self-attention layer
for query points in the transformer decoder layer. In Ta-
ble 7, we compare the performance of EQ-SECOND with
and without the self-attention layer on different test modes.
Both models are trained in “patch” mode, and tested in
modes of “patch” and “random”. In “patch” mode, we split
the target BEV map into patches with equal sizes, randomly
select one patch at each iteration, and treat all pixel centers
within the patch as query positions. In “random” mode,
we arbitrarily choose pixel centers within the BEV map as
query positions.

The self-attention layer encodes the relation among
query positions, thus restricting the choice of query posi-
tions at test time. Table 7 shows AP drop of 6.65% on the
model with self-attention layer when tested with randomly-
selected query positions. Great negative effect of self-
attention layer to arbitrary query position selection is ob-
served. In contrast, our model free of self-attention enables
arbitrary selection without influencing performance. It is
also noticeable that self-attention layer brings limited AP
improvement (0.12%) and incurs large computation over-
head when dealing with a large number of query positions.

6. Conclusion

We have presented a novel unified pipeline of EQ-
Paradigm for 3D understanding tasks including object de-
tection, semantic segmentation and classification. The EQ-
Paradigm enables combination of 3D backbone architec-
tures, heads and tasks freely. We achieve this by proposing
a querying stage to transfer the support features extracted in
the embedding stage to the positions required by heads and
tasks. We further develop a dedicated Q-Net for the query-
ing stage, applicable to different state-of-the-art models for
clear performance improvement. In the future, we plan to
generalize our EQ-Paradigm to other 3D tasks like scene
completion and instance segmentation. We will extend the
EQ-Paradigm as a unified pipeline for all 3D tasks.

8548



References
[1] Iro Armeni, Ozan Sener, Amir Roshan Zamir, Helen Jiang,

Ioannis K. Brilakis, Martin Fischer, and Silvio Savarese. 3d
semantic parsing of large-scale indoor spaces. In CVPR,
2016. 6

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point
convolutional neural networks by extension operators. ACM
Trans. Graph., 2018. 7

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 4

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Andrea Vedaldi,
Horst Bischof, Thomas Brox, and Jan-Michael Frahm, edi-
tors, ECCV, 2020. 4, 5

[5] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L. Yuille. Deeplab: Semantic im-
age segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. TPAMI, 2018. 2, 8

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
ECCV, 2018. 2

[7] Christopher B. Choy, JunYoung Gwak, and Silvio Savarese.
4d spatio-temporal convnets: Minkowski convolutional neu-
ral networks. In CVPR, 2019. 1, 2, 3, 5, 6

[8] MMDetection3D Contributors. MMDetection3D: Open-
MMLab next-generation platform for general 3D object
detection. https://github.com/open-mmlab/
mmdetection3d, 2020. 6, 7

[9] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas A. Funkhouser, and Matthias Nießner. Scan-
net: Richly-annotated 3d reconstructions of indoor scenes.
In CVPR, 2017. 6

[10] Stéphane d’Ascoli, Hugo Touvron, Matthew L. Leavitt,
Ari S. Morcos, Giulio Biroli, and Levent Sagun. Convit: Im-
proving vision transformers with soft convolutional induc-
tive biases. In ICML, 2021. 4

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 3, 4

[12] Haoshu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu.
Graspnet-1billion: A large-scale benchmark for general ob-
ject grasping. In CVPR, 2020. 1

[13] Marco Forte and François Pitié. F, b, alpha matting. CoRR,
abs/2003.07711, 2020. 2

[14] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The KITTI dataset. I. J.
Robotics Res., 2013. 1, 7

[15] Ben Graham. Sparse 3d convolutional neural networks. In
BMVC, 2015. 2, 3

[16] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. In CVPR, 2018. 1, 2, 3, 6

[17] Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-
Wing Fu, and Jiaya Jia. Hierarchical point-edge interaction
network for point cloud semantic segmentation. In ICCV,
2019. 6

[18] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,
Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds. CVPR, 2019. 2

[19] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,
and Baoquan Chen. Pointcnn: Convolution on x-transformed
points. In NIPS, 2018. 1, 2, 6, 7

[20] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,
Bharath Hariharan, and Serge J. Belongie. Feature pyramid
networks for object detection. In CVPR, 2017. 8

[21] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexander C.
Berg. SSD: single shot multibox detector. In ECCV, 2016.
2, 3

[22] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming
Xiang, and Chunhong Pan. Densepoint: Learning densely
contextual representation for efficient point cloud process-
ing. In ICCV, 2019. 7

[23] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In CVPR, 2019. 1, 2, 3, 7

[24] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A
closer look at local aggregation operators in point cloud anal-
ysis. In ECCV, 2020. 7

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. CoRR, 2021. 4, 5

[26] Ze Liu, Zheng Zhang, Yue Cao, Han Hu, and Xin Tong.
Group-free 3d object detection via transformers. ICCV,
2021. 2, 6, 7

[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, 2015. 2

[28] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-
lated convolutional networks for 3d point cloud understand-
ing. ICCV, 2019. 1, 2, 7

[29] Ishan Misra, Rohit Girdhar, and Armand Joulin. An End-to-
End Transformer Model for 3D Object Detection. In ICCV,
2021. 4

[30] Xuran Pan, Zhuofan Xia, Shiji Song, Li Erran Li, and Gao
Huang. 3d object detection with pointformer. In CVPR,
2021. 2, 4, 5

[31] Youngmin Park, Vincent Lepetit, and Woontack Woo. Mul-
tiple 3d object tracking for augmented reality. In ISMAR,
2008. 1

[32] Charles R Qi, Or Litany, Kaiming He, and Leonidas J
Guibas. Deep hough voting for 3d object detection in point
clouds. In ICCV, 2019. 2, 3, 6

[33] Charles R. Qi, Or Litany, Kaiming He, and Leonidas J.
Guibas. Deep hough voting for 3d object detection in point
clouds. ICCV, 2019. 2

8549



[34] Charles Ruizhongtai Qi, Wei Liu, Chenxia Wu, Hao Su, and
Leonidas J. Guibas. Frustum pointnets for 3d object detec-
tion from RGB-D data. CVPR, 2018. 2

[35] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and
Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In CVPR, 2017. 3, 6

[36] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J.
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NIPS, 2017. 1, 2, 3, 5, 6

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In MICCAI, 2015. 2

[38] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-
attention with relative position representations. In NAACL-
HLT, 2018. 5

[39] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping
Shi, Xiaogang Wang, and Hongsheng Li. PV-RCNN: point-
voxel feature set abstraction for 3d object detection. In
CVPR, 2020. 2, 7

[40] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-
cnn: 3d object proposal generation and detection from point
cloud. In CVPR, 2019. 2, 3, 7, 8

[41] Shaoshuai Shi, Zhe Wang, Xiaogang Wang, and Hongsheng
Li. Part-aˆ2 net: 3d part-aware and aggregation neural net-
work for object detection from point cloud. arXiv preprint
arXiv:1907.03670, 2019. 2

[42] Martin Simonovsky and Nikos Komodakis. Dynamic edge-
conditioned filters in convolutional neural networks on
graphs. In CVPR, 2017. 2

[43] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao.
SUN RGB-D: A RGB-D scene understanding benchmark
suite. In CVPR, 2015. 6

[44] Yanan Sun, Chi-Keung Tang, and Yu-Wing Tai. Semantic
image matting. In CVPR, 2021. 2

[45] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. ICCV, 2019. 2, 6, 7

[46] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 4

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors,
NIPS, 2017. 3, 4, 5

[48] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-
tral graph convolution for point set feature learning. In
ECCV, 2018. 2

[49] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-
tral graph convolution for point set feature learning. In Vitto-
rio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair
Weiss, editors, ECCV, 2018. 7

[50] Xintao Wang, Kelvin C.K. Chan, Ke Yu, Chao Dong, and
Chen Change Loy. Edvr: Video restoration with enhanced
deformable convolutional networks. In CVPR, 2019. 2

[51] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon. Dynamic
graph CNN for learning on point clouds. ACM Trans.
Graph., 2019. 1, 7

[52] Zhixin Wang and Kui Jia. Frustum convnet: Sliding frustums
to aggregate local point-wise features for amodal 3d object
detection. In IROS. IEEE, 2019. 2

[53] Kan Wu, Houwen Peng, Minghao Chen, Jianlong Fu, and
Hongyang Chao. Rethinking and improving relative position
encoding for vision transformer. 2021. 5

[54] Wenxuan Wu, Zhongang Qi, and Fuxin Li. Pointconv: Deep
convolutional networks on 3d point clouds. In CVPR, 2019.
2, 3, 6, 7

[55] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
CVPR, 2015. 7

[56] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan
Qi. Paconv: Position adaptive convolution with dynamic
kernel assembling on point clouds. In CVPR, 2021. 1, 2,
6

[57] Ning Xu, Brian L. Price, Scott Cohen, and Thomas S. Huang.
Deep image matting. In CVPR, 2017. 2

[58] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang, and
Ulrich Neumann. Grid-gcn for fast and scalable point cloud
learning. In CVPR, 2020. 7

[59] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.
Spidercnn: Deep learning on point sets with parameterized
convolutional filters. In ECCV, 2018. 2, 7

[60] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and
Shuguang Cui. Pointasnl: Robust point clouds processing
using nonlocal neural networks with adaptive sampling. In
CVPR, 2020. 6

[61] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely em-
bedded convolutional detection. Sensors, 2018. 1, 2, 3, 7,
8

[62] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai,
Bin Xiao, Lu Yuan, and Jianfeng Gao. Focal self-attention
for local-global interactions in vision transformers. CoRR,
2021. 4, 5

[63] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd:
Point-based 3d single stage object detector, 2020. 2, 3

[64] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya
Jia. IPOD: intensive point-based object detector for point
cloud. CoRR, 2018. 2

[65] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya
Jia. STD: sparse-to-dense 3d object detector for point cloud.
ICCV, 2019. 2

[66] Zetong Yang, Yin Zhou, Zhifeng Chen, and Jiquan Ngiam.
3d-man: 3d multi-frame attention network for object detec-
tion. In CVPR, 2021. 4

[67] Feihu Zhang, Jin Fang, Benjamin Wah, and Philip Torr. Deep
fusionnet for point cloud semantic segmentation. In ECCV,
2020. 6

[68] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia.
Pointweb: Enhancing local neighborhood features for point
cloud processing. In CVPR, 2019. 2, 6, 7

8550



[69] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip H. S. Torr, and
Vladlen Koltun. Point transformer. In ICCV, 2021. 1, 2, 4,
5, 6

[70] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
CVPR, 2017. 2, 8

[71] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
jects as points. CoRR, 2019. 1

[72] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning
for point cloud based 3d object detection. CVPR, 2018. 2, 7

8551


