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Abstract

The 3D Lookup Table (3D LUT) is a highly-efficient
tool for real-time image enhancement tasks, which mod-
els a non-linear 3D color transform by sparsely sampling
it into a discretized 3D lattice. Previous works have made
efforts to learn image-adaptive output color values of LUTs
for flexible enhancement but neglect the importance of sam-
pling strategy. They adopt a sub-optimal uniform sampling
point allocation, limiting the expressiveness of the learned
LUTs since the (tri-)linear interpolation between uniform
sampling points in the LUT transform might fail to model
local non-linearities of the color transform. Focusing on
this problem, we present AdaInt (Adaptive Intervals Learn-
ing), a novel mechanism to achieve a more flexible sampling
point allocation by adaptively learning the non-uniform
sampling intervals in the 3D color space. In this way, a
3D LUT can increase its capability by conducting dense
sampling in color ranges requiring highly non-linear trans-
forms and sparse sampling for near-linear transforms. The
proposed AdaInt could be implemented as a compact and
efficient plug-and-play module for a 3D LUT-based method.
To enable the end-to-end learning of AdaInt, we design
a novel differentiable operator called AiLUT-Transform
(Adaptive Interval LUT Transform) to locate input colors
in the non-uniform 3D LUT and provide gradients to the
sampling intervals. Experiments demonstrate that meth-
ods equipped with AdaInt can achieve state-of-the-art per-
formance on two public benchmark datasets with a negli-
gible overhead increase. Our source code is available at
https://github.com/ImCharlesY/AdaInt.

1. Introduction
Recent advances in machine learning techniques remark-

ably boosted the performance of automatic photo enhance-
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Figure 1. Comparison between uniform and non-uniform sam-
pling on curve approximation and space partitioning. The illustra-
tion is given in 1D but can be easily extended to 3D.

ment methods [5, 6, 9, 19, 21, 48], aiming to replace a
sequence of meticulously-designed operations [2, 24, 25,
33, 43, 50] in the camera imaging pipeline [20] for en-
hanced visual quality. However, these methods suffer from
heavy computational burdens due to complicated optimiza-
tion processes [10, 13, 19, 21, 49] or neural architecture de-
signs [5, 6, 9, 47]. In fact, most of the commonly-used
enhancement operations are pixel-independent, as revisited
in [17]. Their total effect is approximately equivalent to a
3D color transform function (R3 → R3) that maps an input
color point to another one in or across the color spaces. One
can adopt a multi-layer perceptron (MLP) to design such a
transform [17] but requires a cascade of several linear and
nonlinear sub-operations to increase the model capability.
To overcome the computational complexity of a series of
sub-operations in the transform, the 3D lookup table (LUT)
is a promising data structure to conduct efficient mapping
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by sparsely sampling a range of input values and storing
the corresponding output values in a 3D lattice. The non-
linearities in the transform are typically approximated by a
set of (tri-)linear interpolation functions distributed in the
lattice cells. Since a LUT can transform images using only
memory access and interpolation operations, it shows an ad-
vantage of high efficiency and practicality.

Previous works [45, 51] have made efforts to learn an
image-adaptive LUT, mimicking the underlying optimal
color transform with adaption to extensively varied image
content. These methods embody the image-adaptiveness of
the 3D LUTs only in the output color values, which are
automatically learned by neural networks [45, 51]. How-
ever, they conduct sampling with equal intervals, not con-
sidering the adaption of sampling point density to image
contents. It results in a sub-optimal sampling point allo-
cation, limiting the expressiveness of the LUTs to model
local non-linearities. Specifically, input pixels with similar
color values but requiring highly non-linear contrast stretch-
ing (e.g., enhancement on low-light texture regions) are pos-
sibly compressed into the same lattice cell, which ends up
producing linear-scaling results. The reasons lie in limited
sampling points and (tri-)linear interpolation in the LUT
transform. As depicted in the left part of Figure 1, for ex-
ample, a uniform spacing undersamples a color range where
the transform exhibits high curvature, resulting in distortion
of the non-linearities in the transform. Ideally, increasing
the number of sampling points might mitigate the issues
but will significantly increase the overhead of the 3D LUT.
Besides, it would also aggravate the oversampling in color
space where few pixels fall into, causing waste in the LUT
capacity, as shown in the right part of Figure 1.

To achieve a better tradeoff between effectiveness and
efficiency when given limited sampling points, we develop
a novel deep learning-based approach to adjust the layout
of the 3D lattice by dynamically learning the non-uniform
sampling intervals. This idea is encapsulated into a compact
network module called AdaInt, that can adaptively allo-
cate more sampling points to color ranges requiring highly
non-linear transforms and reduce redundant sampling point
quota for strongly linear ranges. As illustrated in Figure 2,
with the incorporation of AdaInt, a lightweight convolu-
tional neural network (CNN) takes a down-sampled image
as input to simultaneously predict two components of a ded-
icated 3D LUT – the non-uniform sampling coordinates and
the corresponding output color values. These two com-
ponents are combined to compose an image-adaptive 3D
LUT that transforms the original image via a novel differen-
tiable operator called AiLUT-Transform, which can provide
gradients to AdaInt for end-to-end learning. This operator
is essential for locating input colors in a non-uniform 3D
lattice by introducing a low-complexity binary search into
the lookup procedure of a LUT transform. Therefore, our

method could be a plug-and-play module for 3D LUTs and
still presents high efficiency.

The main contributions of this paper are three-fold: (1)
We view the learning of 3D LUTs from the viewpoint of
sampling and point out the importance of the sampling strat-
egy for modeling color transforms with higher non-linear
capability. (2) We present a novel AdaInt module and
the corresponding AiLUT-Transform operator to enable the
adaptive learning of a 3D LUT with a non-uniform layout.
(3) We demonstrate the effectiveness and efficiency of our
method on two large-scale publicly available datasets.

2. Related Works
2.1. Photo Enhancement Methods

Recent advances in learning-based image enhancement
methods can be roughly divided into two categories. The
first paradigm [5, 6, 9, 37, 47, 52] directly learns the dense
end-to-end mapping via fully convolutional networks [32].
While this line of works can achieve promising results, they
usually suffer from heavy computational and memory bur-
dens, limiting their practicalities. The second paradigm si-
multaneously leverages the strong fitting abilities of deep
learning and the high efficiency of traditional physical mod-
els. This line of studies commonly transfers the heavy CNN
dense inference into light physical model parameter predic-
tion. The physical models are then used to enhance origi-
nal images efficiently. The frequently used physical mod-
els include affine color transforms [3, 14, 31, 44], mapping
curves (which can be viewed as 1D LUTs) [16, 22, 23, 28,
38, 39, 42], multi-layer perceptrons (MLPs) [17] and 3D
color LUTs [45, 51]. Among them, 3D LUT is the most
promising one due to its faster speed than MLPs, along with
the stronger capability than affine transforms and mapping
curves. The works most related to ours are [45, 51], which
also learn image-adaptive 3D LUTs for enhancing images
in real-time. However, they learn 3D LUTs in a uniform
layout without considering the image-adaptiveness of the
sampling strategy, which restricts their ability to model non-
linear color transform.

2.2. Non-uniform Sampling

Non-uniform sampling strategies have been extensively
investigated in 3D shape recognition such as meshes [15],
point clouds [41], and implicit function fields [35] due to
their higher efficiency and expressiveness compared to reg-
ular grids. For 2D image analysis, while the dominant
paradigm is computation on regular 2D grids, recent works
have made attempts to the non-uniform sampling of the in-
put images [34], output images [27], feature maps [7], and
convolution filters [11]. These works showed that an adap-
tive sampling strategy enables a high-quality representation
using fewer sampling points. Non-uniform layouts have
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Figure 2. Framework of the proposed method. Our method employs a CNN model on the down-sampled version of the input image to
simultaneously predict two fundamental components of an image-adaptive 3D LUT – the sampling coordinates and output values. These
two components construct a dedicated 3D LUT in a non-uniform layout via the lattice creation and rendering processes. The input image
of the original resolution can be afterward transformed by the predicted 3D LUT efficiently via a designed novel AiLUT-Transform. The
overall framework can be trained under the supervision of the groundtruth images in an end-to-end manner. Best viewed in color.

also emerged in traditional LUT implementation [4,30,36].
However, these works focus on another task, lattice regres-
sion [12], aiming to fit a known color transform into a static
3D LUT and repeat the transform during inference. The
non-uniform layouts are introduced as an alternative way to
reduce estimation errors. However, these methods are not
flexible and intelligent as the estimated LUT is fixed and
cannot adapt to new samples. Instead, our work learns the
non-uniform 3D LUTs based on the content of every single
image for more intelligent enhancement.

3. Method
3.1. Preliminary: 3D Lookup Tables

In this paper, we view a 3D LUT as a discrete sam-
pling of a complete 3D color transform function. The sam-
pled results are stored in a 3D lattice of output color val-
ues T = {(Tr,(i,j,k), Tg,(i,j,k), Tb,(i,j,k))}i,j,k∈INs−1

0
that

can be queried by sets of input color coordinates P =
{(Pr,(i,j,k), Pg,(i,j,k), Pb,(i,j,k)}i,j,k∈INs−1

0
, where Ns is the

number of sampling coordinates along each of three dimen-
sions and INs−1

0 denotes the set of {0, 1, . . . , Ns−1}. Such
a lattice defines a total of N3

s sampling points on the com-
plete 3D color transform function. Once a 3D lattice is sam-
pled, an input pixel looks up its nearest sampling points ac-
cording to its color and computes its transformed output via
interpolation (typically trilinear interpolation).

Due to the high efficiency and stability of 3D LUTs,
previous methods [45, 51] have tried creating automatic

image enhancement tools by learning image-adaptive 3D
LUTs. They predict image-adaptive output values T ∈
[0, 1]3×Ns×Ns×Ns by learning several basis 3D LUTs and
fusing them using image-dependent weights. These weights
are predicted by a CNN model from the down-sampled
input image, which significantly saves the computational
cost (see the left part of Figure 2). However, these meth-
ods uniformly discretize the 3D color space, not consider-
ing the image-adaptiveness of sampling coordinates P ∈
[0, 1]3×Ns×Ns×Ns , making them suffer from sub-optimal
sampling point allocation and limited LUT capability.

In this paper, we address the above issues by simulta-
neously learning the sampling coordinates and the corre-
sponding output color values in an image-adaptive fashion.
Figure 2 shows an overview of the proposed framework. We
directly follow the practice in [51] to predict a set of candi-
date output color values T due to its proven effectiveness.
Suppose that Ns sampling coordinates along each dimen-
sion and an input image X ∈ [0, 1]3×H×W are given. The
output color values of a LUT can be formulated as

T = h(f(X)), (1)

where f is a function mapping an input image into a com-
pact vector representation E ∈ RF . The function h takes E
as input and predicts all output color values in T . Note that
we encapsulate the idea of learning M image-independent
basis 3D LUTs and M image-adaptive weights [51] into a
cascade of two mappings, denoted as h : RF h0−→ RM h1−→
[0, 1]3×Ns×Ns×Ns , with the insight of using rank factoriza-
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tion to save parameters. The basis 3D LUTs are encoded as
the parameters of h1. Please refer to the supplementary ma-
terials for more details. In the following section, we focus
more on the learning of the sampling coordinates P .

3.2. Adaptive Intervals Learning (AdaInt)

Predicting the sampling color coordinates is equiva-
lent to learning the placement of the sampling points in
the 3D color space. Although the totally free sampling
points placement provides high flexibility, it complicates
the lookup procedure and increases the overhead signifi-
cantly. To this end, we present a simple yet effective way
to achieve the so-called constrained sampling point place-
ment. First, we assume that the three lattice dimensions
are independent of each other during the lookup procedure.
In this way, we can predict the sampling coordinates along
each lattice dimension separably. Second, we reparameter-
ize the sampling coordinates by the intervals between each
adjacent pair of them. Therefore, by converting the learning
goal from sampling coordinates to sampling intervals, we
propose a novel image-adaptive constrained sampling point
placement method, termed AdaInt, which we illustrate in
the following four steps.

Unnormalized Intervals Prediction Our method first
predicts different sets of Ns − 1 unnormalized sampling in-
tervals for three lattice dimensions, thus producing a total
of 3× (Ns − 1) values of intervals:

Q̂ ∈ R3×(Ns−1) = g(f(X)). (2)

In this work, we share the mapping f between sampling
points prediction and output values prediction. g denotes a
mapping of RF → R3×(Ns−1). Please refer to Section 4.2
for more implementation details.

Intervals Normalization Since the input and output
spaces are normalized, the intervals for a given dimension
should also spread out in the range of [0, 1]. In this work, we
choose the softmax function to get the normalized intervals
Q ∈ [0, 1]3×(Ns−1) = softmax(Q̂, axis = 1) for conve-
nience. The term ”axis = 1” indicates the normalization is
performed on each of three color dimensions separably.

Intervals to Coordinates Conversion The sampling co-
ordinates P̂ ∈ [0, 1]3×Ns are obtained by applying cu-
mulative summation to Q and prepending an origin to
each lattice dimension, which can be formulated as: P̂ =
[0T3 ; cumsum(Q, axis = 1)], where 03 is a 3-dimension zero
vector, and the [· ; ·] symbol denotes the concatenation op-
eration. The above operations guarantee the bounded (0 ≤
P̂c,i ≤ 1, for ∀c = r, g, b and ∀i ∈ INs−1

0 ) and the mono-
tone increasing properties (P̂c,i ≤ P̂c,j , for ∀c = r, g, b,

Lookup

Query 8 Adjacent Points in the LUT

Trilinear Interpolation

Figure 3. Procedure of the proposed AiLUT-Transform, which
is achieved by two operations: lookup and interpolation. Best
viewed in color.

and ∀i, j ∈ INs−1
0 , i ≤ j) of the predicted sampling coordi-

nates along each dimension, which significantly simplifies
the lookup procedure to be presented in Section 3.3.

Non-uniform 3D Lattice Construction The above P̂
matrix indeed provides three Ns-dimension coordinate vec-
tors for each lattice dimension, respectively. We can derive
the 3D coordinates P ∈ [0, 1]3×Ns×Ns×Ns of the N3

s sam-
pling points by calculating the n-ary Cartesian product (⊗)
over these 3 coordinate vectors, i.e., P = P̂r ⊗ P̂g ⊗ P̂b =

{(P̂r,i, P̂g,j , P̂b,k)|i, j, k ∈ INs−1
0 }. These coordinates de-

termine the vertex locations of a non-uniform 3D lattice.
The final 3D LUT is easily constructed by assigning each
output color value in T to the corresponding vertex defined
in P . Such a procedure can be vividly analogized to a ren-
dering process, as illustrated in Figure 2.

3.3. Differentiable Adaptive Interval Lookup Table
Transform (AiLUT-Transform)

With the involvement of AdaInt, the LUT transform
should take both the output values T and the sampling co-
ordinates P of the LUT, along with the input image X to
produce the transformed output image Ŷ . In the standard
LUT transform, P is usually omitted since the sampling
coordinates are assumed uniform. Therefore, the gradient
with respect to P has not yet been explored, which hinders
the end-to-end learning of AdaInt. To this end, we introduce
a novel transform operation called AiLUT-Transform:

Ŷ = AiLUT-Transform(X,T, P ). (3)

The AiLUT-Transform is (sub-)differential with respect to
not only X and T , but also P . This enables the end-to-
end learning of the AdaInt module. Given an input query
pixel x consisting of three color components {xr, xg, xb},
AiLUT-Transform computes its transformed color via two
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basic steps: lookup and interpolation. Please also see Fig-
ure 3 for a graphic illustration.

The Lookup Step Our AiLUT-Transform first performs a
lookup operation to locate the query pixel in the 3D LUT.
As shown in the top part of Figure 3, this operation aims
to find both the left and right neighbors x0

c , x
1
c ∈ P (c =

r, g, b) along each dimension for the query pixel. It can be
easily achieved by a binary search thanks to the bounded
and the monotone increasing properties of our learned sam-
pling coordinates (see Section 3.2). Accordingly, the 8 ad-
jacent points in the LUT can be queried using the indices
of the located neighbors in P . For a sampling point corre-
sponding to xi

r, x
j
g, x

k
b , where i, j, k ∈ {0, 1}, we abbrevi-

ate the output color values of these 8 neighbors as T̃:,i,j,k.

The Interpolation Step After querying 8 adjacent points,
trilinear interpolation is conducted to compute the trans-
formed output color of the query pixel. As shown in the
bottom part of Figure 3, the transformed output ŷ is the sum
of the values at 8 corners weighted by the normalized par-
tial volume diagonally opposite the corners, which can be
formulated as:

ŷ =
∑

i,j,k∈{0,1}

Vi,j,k · T̃:,i,j,k, (4)

where Vi,j,k = (xd
r)

i(1−xd
r)

1−i(xd
g)

j(1−xd
g)

1−j(xd
b)

k(1−
xd
b)

1−k, and xd
c = (xc − x0

c)/(x
1
c − x0

c) (c = r, g, b).

Backpropagation To allow the learning of AdaInt via
backpropagation, we derive the gradients with respect to
x0
c , x

1
c , and therefore to P . The partial derivative of x0

c is:

∂ŷ

∂x0
c

=
∑

i,j,k∈{0,1}

T̃:,i,j,k
∂Vi,j,k

∂xd
c

∂xd
c

∂x0
c

(5)

and similarly to Equation (5) for x1
c . Please refer to

the supplementary material for detailed derivation. Be-
sides, the gradient with respect to T̃:,i,j,k is more concise:
∂ŷ/∂T̃:,i,j,k = Vi,j,k.

As the proposed AiLUT-Transform is applied to each
pixel independently, it can be implemented efficiently via
CUDA. We merge the lookup and interpolation operations
into a single CUDA kernel to maximize parallelism. Since
our lookup operation is achieved by the binary search al-
gorithm of logarithmic time complexity (O(log2 Ns)), its
computational cost is negligible in our case, where Ns has
a relatively small value (typically, 33).

3.4. Loss Function

The overall framework can be trained in an end-to-end
manner. Our loss function consists of the MSE loss as
the reconstruction loss (Lr) and some regularization terms

Figure 4. Ablation study on AdaInt under different numbers
(Ns) of sampling coordinates. The results on the FiveK dataset
(480p) [1] for tone mapping are plotted.

Sampling Strategy PSNR↑ SSIM↑

Shared-AdaInt 25.13 0.921
AdaInt 25.28 0.925

Table 1. Ablation study on different sampling strategies in AdaInt.
The results on the FiveK dataset (480p) [1] for tone mapping are
listed. ”↑” indicates the larger is better.

adopted from [51] to constrain the output values T of the
LUT, including smoothness term (Ls) and monotonicity
term (Lm). We do not introduce any other constraint or
loss function to the learning of AdaInt, willing that it can be
image-adaptive for the network. Following [51], our final
loss is written as:

L = Lr + 0.0001× Ls + 10× Lm. (6)

4. Experiments
4.1. Datasets and Application Settings

We evaluate our method on two publicly available
datasets: MIT-Adobe FiveK [1] and PPR10K [29]. The
MIT-Adobe FiveK is a commonly used photo retouching
dataset with 5,000 RAW images. We follow the common
practice in recent works [17, 22, 51] to adopt only the ver-
sion retouched by expert C as the groundtruth and split the
dataset into 4,500 image pairs for training and 500 image
pairs for testing. To speed up the training stage, images are
downsampled to 480p resolution (with the short side resized
to 480 pixels), whereas images of both 480p and original 4K
resolutions are used during testing. The PPR10K is a newly
released portrait photo retouching dataset with a larger scale
of 11,161 high-quality RAW portrait photos. All three re-
touched versions are used as the groundtruth in three separa-
ble experiments. Following the official split [29], we divide
the dataset into 8,875 pairs for training and 2,286 pairs for
testing. Experiments are conducted on the 360p version of
the dataset due to insufficient disk space. Please refer to the
supplementary materials for more details.
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Method #Parameters 480p Full Resolution (4K)
PSNR SSIM ∆Eab Runtime PSNR SSIM ∆Eab Runtime

UPE [44] 927.1K 21.88 0.853 10.80 4.27 21.65 0.859 11.09 56.88
DPE [6] 3.4M 23.75 0.908 9.34 7.21 - - - -

HDRNet [14] 483.1K 24.66 0.915 8.06 3.49 24.52 0.921 8.20 56.07
DeepLPF [37] 1.7M 24.73 0.916 7.99 32.12 - - - -
CSRNet [17] 36.4K 25.17 0.924 7.75 3.09 24.82 0.926 7.94 77.10

SA-3DLUT [45]* 4.5M 25.50 / / 2.27 / / / 4.39

3D-LUT [51] 593.5K 25.29 0.923 7.55 1.17 25.25 0.932 7.59 1.49
3D-LUT + AdaInt 619.7K 25.49 0.926 7.47 1.29 25.48 0.934 7.45 1.59

Table 2. Quantitative comparisons on the FiveK dataset [1] for photo retouching. Runtime is measured in milliseconds. ”-” means the
result is not available due to insufficient GPU memory. The ”*” symbol indicates that the results are adopted from the original paper (some
are absent (”/”)) due to the unavailable source code. The best and second results are highlighted in red and blue, respectively.

Method 480p
PSNR SSIM ∆Eab

UPE [44] 21.56 0.837 12.29
DPE [6] 22.93 0.894 11.09

HDRNet [14] 24.52 0.915 8.14
CSRNet [17] 25.19 0.921 7.63

3D-LUT [51] 25.07 0.920 7.55
3D-LUT + AdaInt 25.28 0.925 7.48

Table 3. Quantitative comparisons on the FiveK dataset (480p) [1]
for the tone mapping application. The best and second results are
highlighted in red and blue, respectively.

We follow [51] to conduct our experiments on two
typical applications: photo retouching and tone mapping.
The target images in both applications share the same 8-bit
sRGB format. The difference between the two tasks lies in
the input formats. In the photo retouching task, the input
images are also in sRGB format (8-bit on FiveK and 16-
bit on PPR10K), while for the tone mapping task, the input
images are in 16-bit CIE XYZ format. Therefore, the tone
mapping task requires the ability of color space conversion.
We conduct both tasks on the FiveK dataset, but only the
retouching task on PPR10K as done in [29].

4.2. Implementation Details

Since the focus of our work is to present the idea of learn-
ing image-adaptive sampling intervals for a 3D LUT, we
do not dive into complicated architectural engineering. In-
stead, to instantiate the mapping f in our method, we di-
rectly follow Zeng’s [29, 51] practices to adopt the 5-layer
backbone in [51] on the FiveK dataset and the ResNet-
18 [18] (initialized with ImageNet-pretrained [8] weights)
on the PPR10K dataset. The mapping h in Equation (1)
is implemented with two cascade fully-connected layers,
which in practice reformulates the implementation in [51].
For the instantiation of AdaInt (mapping g in Equation (2)),

Method E PSNR ∆Eab PSNRHC ∆EHC
ab

HDRNet [14] a 23.93 8.70 27.21 5.65
CSRNet [17] a 22.72 9.75 25.90 6.33
3D-LUT [51] a 25.64 6.97 28.89 4.53

3D-LUT + HRP [29] a 25.99 6.76 28.29 4.38
3D-LUT + AdaInt a 26.33 6.56 29.57 4.26

HDRNet [14] b 23.96 8.84 27.21 5.74
CSRNet [17] b 23.76 8.77 27.01 5.68
3D-LUT [51] b 24.70 7.71 27.99 4.99

3D-LUT + HRP [29] b 25.06 7.51 28.36 4.85
3D-LUT + AdaInt b 25.40 7.33 28.65 4.75

HDRNet [14] c 24.08 8.87 27.32 5.76
CSRNet [17] c 23.17 9.45 26.47 6.12
3D-LUT [51] c 25.18 7.58 28.49 4.92

3D-LUT + HRP [29] c 25.46 7.43 28.80 4.82
3D-LUT + AdaInt c 25.68 7.31 28.93 4.76

Table 4. Quantitative comparisons on the PPR10K dataset [29]
for portrait photo retouching, where ”E” denotes ”Expert”, and
a, b, c indicate the groundtruths retouched by three experts.

a single fully-connected layer is employed. The weights and
bias of g are initialized to 0s and 1s, which makes the pre-
dicted sampling intervals start from a uniform state. Please
refer to the supplementary materials for more details.

We use the standard Adam optimizer [26] to minimize
the loss function in Equation (6). The mini-batch size is set
to 1 and 16 on FiveK and PPR10K, respectively. All our
models are trained for 400 epochs with a fixed learning rate
of 1× 10−4. We decay the learning rate of g by a factor of
0.1 and freeze its parameters in the first 5 training epochs
to make the AdaInt learning more stable. Our method is
implemented based on PyTorch [40]. All experiments are
conducted on an NVIDIA Tesla V100 GPU. The settings of
Ns and M are according to the datasets and the experimen-
tal purposes. We provide them in the following sections.
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(a) (b)

Figure 5. Illustration of the learned sampling coordinates and the corresponding 3D LUTs for photo retouching on the PPR10K dataset
(360p) [29]. The bottom row visualizes the learned sampling coordinates on the so-called per-color-channel Accumulative Error Histogram
(AEH) [30]. The regions in the AEH exhibiting high curvature indicate wherein more sampling points are needed. Best viewed on screen.

4.3. Ablation Studies

In this section, the tone mapping task with images from
the FiveK dataset (480p) is chosen to conduct several abla-
tion studies for verifying the proposed AdaInt. We expect
the higher dynamic range (16-bit) of the input images in
the tone mapping task can better examine the ability of our
AdaInt to learn image-adaptive sampling points. In all ab-
lation studies, the hyper-parameter M is set to 3.

Number of Coordinates along Each Dimension We as-
sess the baseline 3D-LUT [51] and our method under dif-
ferent settings of Ns (the number of sampling coordinates
along each color dimension) to verify the efficacy of the
proposed AdaInt. As shown in Figure 4, the performance
of the baseline and our method decrease as a smaller Ns

is adopted. Our AdaInt consistently improves the baseline
under all settings Ns. Further increasing Ns (from 33 to
65) can only bring marginal improvement (0.05dB) on the
baseline compared with that introduced by our AdaInt. It
is worth noting that our method achieves comparable or
even better performance with a relatively small LUT size
(Ns) compared to the baseline. It is because AdaInt enables
the ability of 3D LUTs to take full advantage of the lim-
ited sampling points for better modeling on the underlying
optimal color transform.

Sampling Strategy Our AdaInt generates an individual
set of sampling intervals for each color dimension separa-
bly, making our method adopts different sampling strate-
gies along different color dimensions. It divides the entire
3D color space into various cuboids. Here, we compare
such a default setting with another one that adopts the same
strategy over three color dimensions, which divides the 3D
space into cubes. We achieve it by letting AdaInt gener-
ate only a set of sampling intervals and replicate it to three

color dimensions, abbreviated as Shared-AdaInt. As shown
in Table 1, the Shared-AdaInt strategy performs inferior to
the default setting, which is in line with our expectation as
the sharing mechanism limits the flexibility of AdaInt to al-
locate sampling points in the 3D space.

4.4. Property of the Adaptive Sampling Intervals

The top part of Figure 5 shows two different photos on
the PPR10K dataset, their color histograms, and the cor-
responding learned 3D LUTs from our model. It can be
observed that both the color and layout of the 3D lattices
vary with the different image content, indicating the image-
adaptive property of our learned 3D LUTs. To better an-
alyze the behavior of our AdaInt, we introduce the per-
color-channel Accumulative Error Histogram (AEH) [30]
between the input and groundtruth images. The regions
with high curvature in the AEH, to some extent, indicate the
complexity/local-nonlinearity of the underlying 3D color
transform and hence require more sampling points. As
shown in the bottom part of Figure 5, the sampling coordi-
nates predicted by our AdaInt non-uniformly and adaptively
distribute to different regions according to the transform
complexity on various images and color channels. A de-
tailed description of AEH and more visualization of learned
intervals can be found in the supplementary materials.

4.5. Comparison with State-of-the-Arts

We also compare state-of-the-art real-time photo en-
hancement methods. Ns is set to 33 as done in other 3D
LUT-based approaches [45, 51] for fair comparisons. M is
set to 3 and 5 for the FiveK and PPR10K datasets, respec-
tively, as done in [29].
Quantitative Comparisons We compare the selected
methods on PSNR, SSIM [46], the L2-distance in CIE LAB
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Figure 6. Qualitative comparisons with corresponding error maps on the FiveK dataset [1] for photo retouching. Best viewed on screen.

color space (∆Eab), and the inference speed. On PPR10K,
we also include the human-centered measures [29] (denoted
by the ”HC” superscript). We obtain the results of existing
methods using their published codes and default configu-
rations. All approaches are executed on an NVIDIA Tesla
V100 GPU. For speed comparison, we measure the GPU
inference time on 100 images and report the average. Ta-
ble 2 lists the comparison on the FiveK for photo retouch-
ing. Our method outperforms others with relatively fewer
parameters on both resolutions. Similar conclusions apply
to Tables 3 and 4 on the FiveK for tone mapping and the
PPR10K for portrait photo retouching, respectively. Espe-
cially, our AdaInt brings consistent improvement over 3D-
LUT [51] on all datasets with a negligible computational
cost increase, demonstrating its efficiency and effectiveness.
It is worth noting that the concurrent study SA-3DLUT [45]
promotes 3D LUTs by constructing pixel-wise LUTs at the
cost of a significant model size increase (about 7 times) and
a speed decrease (about 3 times). We believe SA-3DLUT
equipped with our AdaInt can be further improved, though
the source code is not yet publicly available.
Qualitative Comparisons Figure 6 shows that our
method produces more visually pleasing results than other
methods. For example, our method better handles the over-
exposure of the image in the first row. In the second row,
other methods suffer from poor saturation in the blue sky,
resulting in hazy photos. Our AdaInt instead successfully
produces the correct blue color and thus provides a cleaner
result. Besides, when enhancing the brightness in the third
row, our method preserves more rock texture. Please refer
to the supplementary materials for more comparisons.

5. Limitation and Conclusion
While our AdaInt promotes the expressiveness of 3D

LUTs by providing image-adaptive sampling strategies, it

still lacks spatial modeling and noise robustness. The
3D LUTs assume that each pixel is transformed indepen-
dently according to its color without considering the local-
ity. Hence, it is more suited for global enhancement and
may produce less satisfactory results in areas requiring lo-
cal tone mapping. [45] provided a possible solution by
constructing pixel-wise LUTs. Our method is orthogonal to
and may also bring improvement over it. Besides, as our
approach is based on pixel-wise mapping, heavy noise may
also influence our results. Please refer to the supplementary
materials for some visual examples.

In this paper, we present AdaInt, a novel learning mecha-
nism to promote learnable 3D LUTs for real-time image en-
hancement. The central idea is to introduce image-adaptive
sampling intervals for learning a non-uniform 3D LUT lay-
out. We develop AdaInt as a plug-and-play neural network
module and propose a differentiable AiLUT-Transform op-
erator encapsulating binary search and trilinear interpola-
tion. Experimental results on two datasets demonstrate the
superiority of our method over other state-of-the-art meth-
ods in terms of both performance and efficiency. In addi-
tion, we believe the viewpoint of non-uniform sampling on
a complicated underlying transform function or representa-
tion is not limited to 3D LUTs and can also facilitate other
applications, which we leave as our future work.
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