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Abstract

Since facial actions such as lip movements contain sig-
nificant information about speech content, it is not sur-
prising that audio-visual speech enhancement methods are
more accurate than their audio-only counterparts. Yet,
state-of-the-art approaches still struggle to generate clean,
realistic speech without noise artifacts and unnatural dis-
tortions in challenging acoustic environments. In this pa-
per, we propose a novel audio-visual speech enhancement
framework for high-fidelity telecommunications in AR/VR.
Our approach leverages audio-visual speech cues to gen-
erate the codes of a neural speech codec, enabling effi-
cient synthesis of clean, realistic speech from noisy signals.
Given the importance of speaker-specific cues in speech, we
focus on developing personalized models that work well for
individual speakers. We demonstrate the efficacy of our ap-
proach on a new audio-visual speech dataset collected in an
unconstrained, large vocabulary setting, as well as existing
audio-visual datasets, outperforming speech enhancement
baselines on both quantitative metrics and human evalua-
tion studies. Please see the supplemental video for qualita-
tive results1.

1. Introduction

Humans have the remarkable ability to extract speech
content from visual information such as lip movement.
Studies show that viewing speakers’ faces improves human
listening in noisy environments [41, 57], and that individu-
als naturally learn to read lip movements when their hear-
ing is impaired [24]. Inspired by these observations, audio-
visual speech enhancement methods leverage the visual in-
put of a speaker to isolate their voice in a noisy environment
[35]. By integrating facial frames of a target speaker with
a noisy audio spectrogram, for example, recent deep learn-
ing models can generate a mask for the spectrogram that
suppresses irrelevant voices and background sounds from

1https://github.com/facebookresearch/facestar/
releases/download/paper_materials/video.mp4

Figure 1. Audio-Visual Speech Codecs. Our model performs
speech enhancement by leveraging audio-visual speech cues to
synthesize the discrete codes of a neural speech codec. (a) During
training, we first learn a codebook of natural speech for a target
speaker by training a neural speech codec to compress and decode
their clean speech signal. We then train an auto-regressive proba-
bilistic model over the codes conditioned on noisy audio and visual
inputs. (b) During inference, we use the auto-regressive model to
generate a sequence of speech codes, which are then synthesized
into speech using the decoder module of the speech codec.

the output [1, 11, 18]. These models prove useful for reduc-
ing noise and improving speech intelligibility of videos for
downstream applications.

However, there are a growing number of telecommuni-
cations applications where the quality and realism of the
output speech, beyond speech intelligibility, are paramount.
One example is social telepresence in AR/VR, which aims
to enable realistic face-to-face conversations between peo-
ple in a virtual setting [34, 62]. Immersive virtual conver-
sations require extremely high-quality speech signals: each
speaker’s voice must sound clean and realistic when ren-
dered in the virtual environment, as if a real conversation
were taking place there. Current state-of-the-art methods
fall short of these applications for two main reasons. First,
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they generate speech by using the noisy audio as a template
[1,11,18] rather than by explicitly modeling the distribution
of speech, which can lead to bleed-through noise and other
unnatural distortions that disrupt the sense of immersion.
Second, they focus on learning audio-visual speech cues
that generalize well across a large population, but that may
fail to capture speaker-specific cues needed for a higher-
fidelity model [45].
Main Contributions. In this work, we take a different ap-
proach from existing work that overcomes these two limita-
tions. Our main contributions are the following:
(1) We propose audio-visual (AV) speech codecs, a novel
framework for AV speech enhancement. Rather than us-
ing noisy audio input as a template for producing enhanced
output, AV speech codecs explicitly model the distribution
of speech and re-synthesize clean speech conditioned on
audio-visual cues. Our approach is summarized in Figure
1. During training, we first learn the building blocks of
natural speech by training a neural speech codec to com-
press and decode clean speech signal through a discrete
codebook. Subsequently, we learn an auto-regressive prob-
abilistic model over the codes conditioned on noisy audio
and visual inputs. At test time, we obtain speech codes
from the auto-regressive model and use the decoder mod-
ule of the neural speech codec to synthesize clean speech.
Our approach is analogous to high-quality, two-stage image
generation techniques that learn a probabilistic prior over a
pre-trained vocabulary of image components [13, 38].
(2) Rather than adopting a speaker-agnostic framework as
done in most recent work, we focus on personalized models
that leverage speaker-specific audio-visual cues for higher
fidelity speech enhancement. To this end, we introduce
Facestar2, a high-quality audio-visual dataset containing
10 hours of speech data from two speakers. Existing audio-
visual datasets used for vision-based speech synthesis tasks
are either captured in a clean, controlled environment with
a small and constrained vocabulary [7, 21] or curated from
“in-the-wild” videos with variable audio quality and unre-
liable lip motion [45]. In contrast, Facestar contains un-
constrained, large vocabulary natural speech recorded with
high audio and visual quality and enables development of
high-quality personalized speech models.
(3) Empirically, our personalized AV speech codecs outper-
form audio-visual speech enhancement baselines on quanti-
tative metrics and human evaluation studies while operating
on only 2kbps transmission rate from transmitter to receiver.
To the best of our knowledge, our work is the first to enable
audio-visual speech enhancement at the quality required for
high-fidelity telecommunications in AR/VR, even when the
transmitter is in a highly noisy and reverberant environment.
Addressing Scalability. Beyond introducing high-quality
personalized AV speech codecs, we also take steps towards

2https://github.com/facebookresearch/facestar

addressing their scalability. While personalized models are
commonly used in high-fidelity applications– for example,
personalized visual avatars enable extremely photo-realistic
visual representations of humans in VR that overcome the
uncanny valley [34, 62] – a downside is that they typically
require training on hours of data from the target individual.
The question naturally arises of how we can obtain high-
quality personalized models with less data, in order to scale
high-fidelity telecommunications to a large volume of users.
As a first step, we propose a simple strategy for personaliz-
ing AV speech codecs to new individuals with minimal new
data, based on a similar approach used to scale personal-
ized text-to-speech models [4]. Specifically, we introduce a
multi-speaker extension of AV speech codecs that features
a speaker identity encoder, which can be pre-trained on a
multi-speaker dataset and then fine-tuned for a new speaker
with only a small sample of their data. We demonstrate this
personalization strategy on the GRID dataset [7]. An addi-
tional benefit of our multi-speaker model is that it enables
voice conversion from one speaker to another, and thereby
opens up creative applications in AR/VR.

2. Related Work

Audio-only Speech Enhancement. The ability of humans
to isolate a target speaker from a noisy environment [41,57]
has inspired extensive study into computational approaches
for speech separation and enhancement. While early for-
mulations of the problem assumed input from multiple mi-
crophones [9, 65], recent approaches have also considered
the monaural setting [23, 50, 53, 54]. This includes monau-
ral speech separation methods, which address the problem
of separating a mixture of speakers from a single audio
track [23, 36, 60, 66], as well as monaural speech enhance-
ment methods, which tackle the problem of removing non-
speech background sounds [8, 30, 42, 55, 56, 63] and rever-
beration [8, 56] from noisy speech. Our work also focuses
on the task of monaural speech enhancement, but we di-
verge from audio-only studies in that we utilize an addi-
tional visual stream to guide speech synthesis.
Audio-Visual Source Separation. The correspondence be-
tween audio and visual cues in video has led to sound
source separation approaches that leverage audio-visual in-
formation [14, 40, 47, 52]. Recently, deep learning frame-
works have been developed for audio-visual separation for
speech [1, 2, 6, 11, 15, 18, 39] and music [16, 64, 69, 70]. In
the speech domain, these approaches rely on facial recog-
nition [6, 18, 70] and/or lip motion [1, 18, 39] to suppress
sounds that do not correspond to the speaker in the vi-
sual stream. We similarly consider the task of audio-visual
speech enhancement, but our framework differs from these
works in that we perform speech synthesis conditioned on
the audio-visual inputs rather than using a sound separation
framework (e.g., generating a spectrogram mask). Our re-
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sults show that our approach leads to higher-quality, more
natural sounding speech output.
Neural Speech Codecs. Modern audio communication
systems rely on speech codecs to efficiently compress and
transmit speech. Neural speech codecs use neural networks
to compress input speech into a low-bit rate representation
that can be transmitted over a network and decoded into au-
dio waveform on the receiver end [59]. The low-bit rate
representation is typically a discrete representation of hu-
man speech learned through autoencoding [19, 26, 28, 38]
or speech features obtained through self-supervised train-
ing [44]. While some of these approaches consider the im-
pact of noisy speech [28, 67], their primary focus is com-
pression of clean speech. In our work, we propose an audio-
visual speech enhancement framework that generates the
clean speech codes of a neural audio codec conditioned on
noisy audio and visual inputs.
Neural Speech Synthesis. High-quality neural speech syn-
thesis is generally based on a two-stage pipeline [29], which
first generates a low-resolution intermediate representation
of speech from the input and subsequently synthesizes
audio waveform from this representation [29, 31, 37, 46].
Prominent examples of speech synthesis include text-to-
speech synthesis and video-to-speech synthesis, where the
first stage consists of generating the intermediate represen-
tation from text [33,43,51,61] or silent video [10,12,32,45]
input. Our approach is similarly based on a two-stage
pipeline, but we use learned speech codes from a neural
speech codec as our intermediate representation, and we
condition the generation of the speech codes on noisy au-
dio and visual inputs, rather than text or silent videos.

3. Approach
Let S′ and V respectively denote the audio and visual

streams of an individual’s speech, where S′ contains vari-
ous sources of environmental noise (i.e., interfering speak-
ers, background sounds, reverberation). Our goal is to syn-
thesize a high-quality, clean version of the speech S. Our
approach consists of two learned components, which are
summarized in Figure 2:

1. Generative speech codes: We learn a discrete speech
codebook that captures a rich vocabulary of the target
speaker’s utterances, which can be used to synthesize
high-quality audio in the speaker’s voice.

2. Conditional auto-regressive model: Conditioned on
the speaker’s audio-visual inputs, we train an auto-
regressive model to generate speech codes, ensuring
that the sequence of codes follow the natural distribu-
tion of the speaker’s speech.

Our framework is inspired by high-quality two-stage gen-
erative models, such as VQ-VAE [38], which first learn a

discrete encoding of the data and subsequently learn to gen-
erate a code sequence using a probabilistic model. Here, we
condition the code generation on the speaker’s audio-visual
inputs for speech synthesis.

3.1. Generative Speech Coding

We represent an individual’s clean speech as a sequence
of entries from a codebook Q = {qk}Kk=1, where each qk is
an N -dimensional vector. Based on these codes, any clean
speech segment S ∈ RT can be approximately synthesized
from a code Z ∈ RT ′×N , where T ′ is the temporal extend
of the length T input audio. Since the encoder compresses
the input signal along the temporal axis, we typically have
T ′ < T . We first map from speech to codes using the en-
coder network Ẽ , which operates on the mel-spectrogram
representation of S:

Z̃ = Ẽ(melspec(S)) ∈ RT ′×K . (1)

Then, we transform this encoding into a sequence of T ′

codes by sampling from the Gumbel-softmax distribution
[25] and selecting the code from Q with the corresponding
index. For a temporal encoding Z = [Z1, · · · ,ZT ′ ], the t-th
code is therefore given by

Zt = qk, k = Gumbel(Z̃t,1:K). (2)

We denote the transformation from continuous valued em-
beddings Z̃ to codes Z by hQ. In practice, a codebook that
captures the full range of an individual’s speech may require
a prohibitively large number K of codebook entries. To in-
crease the expressiveness of the speech codebook, we fol-
low a commonly used concept of multi-head codes [25, 49]
and replace each code in the codebook Q by a set of H
subcodes

Q(h) = {q(h)k }K̃k=1, h = 1, . . . ,H. (3)

In other words, instead of using one large codebook of size
K, we use H smaller codebooks of size K̃ each. This en-
ables the size of our speech codebook to grow exponentially
in H , i.e., K = K̃H , increasing the expressiveness of our
speech codebook without an exponential increase in encod-
ing size. In this case, the dimensionality of the encoding Z̃
is T ′ ×H × K̃, and each temporal code is

Zt =
[
q
(h)
k

]H
h=1

, k = Gumbel(Z̃t,h,1:K̃). (4)

Finally, the decoder that reconstructs speech from the
learned codes is composed of a mel-spectrogram decoder
D̃ followed by a neural vocoder G that transforms the de-
coded mel-spectrogram back into the wave-domain. Our
speech codec architecture therefore consists of an encoder
E = hQ ◦ Ẽ that maps from mel-spectrograms of the in-
put speech to codes, and a decoder D = G ◦ D̃ that maps
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Figure 2. Schematic of our approach. (a) We train a Gumbel-Softmax autoencoder on the clean speech of a target speaker to obtain
a personalized speech codec. The codec compresses speech into discrete codes that can be re-synthesized into the original speech with
high fidelity (Section 3.1). (b) To synthesize clean speech from noisy input, we train an auto-regressive model to generate speech codes
conditioned on the noisy audio and lip motion of the target speaker (Section 3.2). The red arrows indicate information flow at test time.

from codes back to speech. The codebook Q is learned
by jointly optimizing it with the encoder E and the spec-
trogram decoder D̃ to minimize the ℓ2-loss between the
mel-spectrogram of the clean speech signal and the recon-
structed mel-spectrogram,

ES||melspec(S)− D̃(Z)||22. (5)

For the neural vocoder, i.e. the module that transforms
the decoded mel-spectrograms back into a waveform, we
use a HiFi-GAN [29] conditioned on the predicted spectro-
grams D̃(Z). The vocoder G is trained with a combination
of a multi-scale GAN loss, a mel-spectrogram loss, and a
feature-matching loss as described in Kong et al. [29]. We
let E denote full transformation S 7→ Z and D denote the
full generative speech model Z 7→ S̃.

3.2. Conditional Auto-Regressive Modeling of
Speech Codes

Having learned E and D, any clean speech segment S can
be represented by a sequence of codes Z that can be used
to reconstruct the clean speech S through D. Therefore,
audio-visual speech enhancement can be formulated as an
auto-regressive modeling problem in the latent space. Given
a sequence of codes Z1:t−1, our auto-regressive model A
predicts the distribution of the next codes conditioned on the
corresponding audio-visual features favt . We use the cate-
gorization operator hQ to map the log-probability values
output by A to codes in Q, i.e.

Zt = hQ(A(Z1:t−1, f
av
t )). (6)

The audio-visual network that extracts the audio-visual
features fav is composed of a visual stream, an audio stream,
and an audio-visual fusion module. The visual stream takes
V as input and produces an intermediate representation of
visual features of dimension T ′ ×H × K̃ that is useful for

shaping speech synthesis. To produce the audio-visual fea-
tures fav , the visual features are fused with the audio stream
along the temporal axis, then passed through a fusion mod-
ule. The auto-regressive model A and the audio-visual fea-
ture extraction network are optimized to minimize the error
in the mel-spectrogram reconstruction,

E(S,S′,V)||melspec(S)− D̃(Z)||22. (7)

where S′ and V are the noisy input speech and the visual
frames, and Z is the latent code obtained from the condi-
tional auto-regressive model as in Equation (6).

Summary: Training vs. Inference. Training occurs
through a two-stage procedure. First, we learn a dis-
crete speech codebook by optimizing Equation (5) on clean
speech data. Any sequence of latent codes can therefore
be decoded into (clean) speech using the speech decoder
D. Second, we train an auto-regressive model over the
codes by optimizing Equation (7) using noisy audio and
visual data. Note that the speech codebook and decoder
are fixed during this step. At inference time, information
flow follows the red arrows in Figure 2. We first predict
speech codes Z in an auto-regressive fashion through Equa-
tion (6). Then, the codes are passed through the speech de-
coder D to re-synthesize the output speech. Note the advan-
tage of this two-step approach: since the decoder is trained
on clean speech only and the speech codebook has limited
capacity, the decoder is incapable of producing non-speech-
like outputs. In contrast to existing approaches, bleeding-
through of noise from the noisy input speech can therefore
be avoided entirely.

4. Facestar Dataset
Existing audio-visual datasets tend to be either (i) cap-

tured in a clean, controlled environment with a small and
constrained vocabulary such as GRID [7] or TCD-TIMIT
[21]; or (ii) curated from “in-the-wild” videos with variable
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AV
Dataset

# Hours
per

Speaker

High-
Quality
Audio

Reliable
Lip

Motion

Unconstrained
Natural
Speech

GRID 0.8 ✓ ✓ ✗
TCD-Timit 0.5 ✓ ✓ ✗
Lip2Wav 20 ✗ ✗ ✓
Facestar 5 ✓ ✓ ✓

Table 1. Comparison of different audio-visual speech synthesis
datasets. Our Facestar dataset contains significantly more content
per speaker compared to GRID [7] and TCD-Timit [21] and con-
tains higher-quality data compared to the YouTube-Lip2Wav [45].

audio quality and unreliable lip motion such as Lip2Wav
[45]. The former datasets are constrained and do not cover
the range of natural speaker content, while the latter does
not have sufficiently high audio quality for training high-
quality speech synthesis models. The necessity for a dataset
with high-quality audio and video in a conversational, large-
vocabulary setting becomes apparent for applications such
as video calls, where background noise poses a significant
limitation to a socially engaging experience. Therefore, we
collect and introduce the Facestar dataset, which consists of
10+ hours of audio-visual speech data collected in a video-
conferencing setting. The dataset was recorded in a low-
noise acoustically treated 2.5m3 environment with pseudo
uniform lighting. Two participants, one male and one fe-
male, spoke freely in front of a video-conferencing device
equipped with visual and audio sensors. For technical de-
tails see supplemental material. Each participant was cap-
tured for 5+ hours, resulting in 10+ hours of high-quality
audio-visual data containing frontal face view and natural
unconstrained speech that simulates typical video call set-
tings. Table 1 shows a comparison of the Facestar dataset
with existing single-speaker datasets used for audio-visual
tasks. Compared to other datasets, the Facestar dataset
contains unconstrained speech captured in a clean, video-
conferencing like environment, providing the type of high-
quality audio needed for training speech synthesis models.

5. Experiments on Single-Speaker Datasets
In this section, we train and evaluate personalized mod-

els on large, single-speaker datasets and demonstrate signif-
icant quantitative and perceptual gains over baseline meth-
ods trained on the same data. We introduce a multi-speaker
extension that addresses scalability later in Section 6.

5.1. Evaluation Setup

Datasets. We train and evaluate our approach on the Faces-
tar dataset described in Section 4. Additionally, we evalu-
ate our approach on the Lip2Wav dataset [45]. This dataset
consists of videos downloaded from YouTube channels with
approximately 20 hours of speech available per speaker.
Model Architecture. We describe the architecture of the
generative speech coding model (Figure 2a) and the condi-
tional auto-regressive model (Figure 2b).

(a) Generative Speech Coding. Our encoder network E
consists of a 1D convolutional block (512 filters, kernel
size=5, stride=1) with batch normalization and ReLU acti-
vation, followed by three 1D residual blocks with the same
hyperparameters. The projection to Z̃ is performed by a fi-
nal 1D convolutional layer (kernel size=1, stride=1) where
the filter size depends on the size of the discrete latent space.
For our discrete latent space, we use K̃ = 256, H = 4, N =
64. The decoder network D resembles the encoder network,
except there are three additional LSTM modules after the
three residual blocks. For our neural vocoder G, we use the
architecture of HiFi-GAN [29].
(b) Conditional Auto-Regressive Model. Our audio pro-
cessing network consists of a 1D convolutional block (512
filters, kernel size=5, stride=1) with batch normalization
and ReLU activation, followed by three 1D residual blocks
with the same hyperparameters. Our visual processing net-
work consists of a 3D convolutional block (64 filters, kernel
size=(5,7,7), stride=(1,2,2)) with batch normalization and
ReLU activation, followed by a max pooling layer (ker-
nel size=(1,3,3), stride=(1,2,2)). The resulting 4D tensor
is passed through the feature extractor of a 2D ResNet [22],
which acts independently on each temporal frame. The out-
put is upsampled to match the temporal frequency of the
processed audio and passed through a series of 1D convo-
lutional and residual blocks, similar to the audio processing
network. Finally, the audio and visual features are fused
by matching their temporal axes and passed through an au-
toregressive module, which consists of two LSTMs with a
PreNet (2 fully-connected layers with dropout) for process-
ing previous frames [51], and a fully-connected layer for
mapping the output of the LSTMs to codes.
Training Details. We train our model on 3-second clips
of clean speech randomly sampled from the target dataset,
which corresponds to 75-90 video frames. The video frames
are pre-processed using the S3FD face detector [68] to ob-
tain face crops as done in Prajwal et al. [45]. To simulate
noisy speech at training time, we first add room reverber-
ation by convolving clean speech with impulse responses
from the MIT Impulse Response Survey [58]. The MIT Im-
pulse Response Survey consists of 270 impulse responses
collected from different locations that volunteers encoun-
tered in their daily lives and reflect a variety of standard
acoustic settings. Subsequently, we add random audio sam-
ples from the VoxCeleb2 [5] dataset to simulate interfering
speakers, and random audio samples from Audioset [20] to
simulate background noise. For the background noise, we
adjust the signal-to-noise ratio randomly between 0 and 40
dB with respect to the clean signal.

5.2. Baselines

State-of-the-art deep learning-based AV speech enhance-
ment approaches generally fall into two camps: spectro-
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Facestar Lip2Wav
Model PESQ ↑ STOI ↑ F-SNR ↑ MCD ↓ Mel-ℓ2 ↓ PESQ ↑ STOI ↑ F-SNR ↑ MCD ↓ Mel-ℓ2 ↓
Demucs [8] 1.251 0.554 5.602 5.003 0.0106 1.383 0.672 7.644 4.724 0.0109
AV-Masking [18] 1.257 0.593 5.991 5.184 0.0093 1.438 0.689 7.873 5.167 0.0093
AV-Mapping [15] 1.332 0.626 2.802 4.885 0.0059 1.417 0.661 6.892 4.643 0.0062
Ours 1.354 0.661 7.322 3.815 0.0056 1.482 0.740 8.801 4.072 0.0055

Table 2. Quantitative Evaluation of Audio-Visual Speech Separation and Enhancement. Our approach consistently outperforms the
baselines on both datasets. For PESQ, STOI, F-SNR, higher is better. For MCD and Mel-ℓ2, lower is better.

gram masking approaches that leverage the visual modal-
ity to mask the noisy audio spectrogram [17, 18], and di-
rect mapping approaches that leverage the audio and visual
modalities to directly generate a denoised spectrogram [15].
We compare our approach to a model from each camp:
Audio-Visual Spectrogram Masking (AV-Masking). For
the spectrogram masking baseline, we use a U-Net model
that integrates visual information in the bottleneck layer and
outputs a mask for a complex spectrogram [17, 18]. The
mask is applied to the complex spectrogram of the input
audio and the result is transformed back into time domain
using an inverse FFT to generate the output waveform.
Audio-Visual Direct Mapping (AV-Mapping). For the di-
rect mapping baseline, we use an encoder-decoder archi-
tecture that directly outputs a denoised spectrogram from
audio-visual input and uses the Griffin-Lim algorithm to
generate the output waveform [15].

In addition to these audio-visual baselines, we also com-
pare against a well-known Audio-Only Model (Demucs)
[8] to demonstrate the importance of the visual stream for
the speech enhancement task. All models are trained and
evaluated on the same datasets for fair comparison.

5.3. Quantitative Evaluation

Metrics. We evaluate all approaches using the following
metrics: Perceptual Evaluation of Speech Quality, which
measures speech quality (PESQ, higher is better); Short-
Time Objective Intelligibility, which measures speech in-
telligibility (STOI, higher is better); Frequency-Weighted
Segmental Signal-to-Noise Ratio (F-SNR, higher is better);
and the ℓ2 distance between the mel-frequency cepstrum
coefficients and mel-spectrograms of predicted and ground
truth audio (MCD, Mel-ℓ2, lower is better).
Results. The results on Facestar and Lip2Wave are shown
in Table 2. Our approach outperforms the baselines on all of
the objective metrics used to evaluate enhanced speech. The
audio-visual models (AV-Masking, AV-Mapping, ours) gen-
erally outperform the audio-only model (Demucs), demon-
strating the importance of leveraging information from the
visual modality regardless of the specific speech enhance-
ment framework.

5.4. Human Evaluation Studies

Although the objective metrics shown in Table 2 are
widely used in literature, it is important to note that no
objective metric precisely reflects how humans perceive

Ours GT recordings Can not tell
4.1% 44.5% 51.4%

Ours AV Encoder Decoder Can not tell
73.3% 6.0% 20.7%

Ours AV Masking Can not tell
78.5% 5.7% 15.8%

Table 3. Perceptual Evaluation. Participants were presented two
video clips and asked to tell which of the two sounds more natural.

reverb + noise only
Model + interfering spkr reverb + noise
Vision-Only 0.0085
Audio-Only 0.0091 0.0056
No Auto-Regressive Module 0.0051 0.0036
Full Model 0.0043 0.0033

Table 4. Ablation Results. The values shown are the mean ℓ2
errors between predicted and ground truth mel-spectrograms for
ablation models trained on the Facestar dataset (Speaker 1); lower
is better. See text for details.

speech quality [27]. Therefore, we also conduct a user study
using the Facestar dataset to compare our model results
to the two audio-visual baselines as well as ground truth
recordings. In the study, participants were presented two
clips of the same sequence from two different approaches.
The clips were presented in random order to ensure an un-
biased evaluation, and participants were asked to decide
which of the two clips sounded more natural, with three an-
swer options: first clip, second clip, or can not tell. Overall,
100 participants ranked around 1000 clips. The results in
Table 3 show that our approach is strongly preferred over
the baselines. Notably, over 50% of the time, study partici-
pants could not differentiate the outputs of our model from
the ground truth recording, which indicates the high quality
of our personalized approach.

5.5. Ablation Studies

Importance of Visual Modality. Since the noisy audio in-
put contains significant corruptions (i.e., overlapping speak-
ers, high-intensity noise, reverberation), the visual modality
is key to synthesizing the target speech components. Table 4
shows ablation results for a vision-only model (row 1) and
audio-only model (row 2) compared to the full audio-visual
model (row 4). Note that model performance declines sig-
nificantly without the visual modality (compare row 4 to
row 2). The visual modality also plays a larger role when
the noisy audio contains interfering speakers (column 1)
compared to when it contains only background noise and
reverberation (column 2), as visual information is needed
to disambiguate between speakers. To further support this
point, in the presence of interfering speakers, we find that
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Figure 3. Importance of visual modality. (a) Ground truth mel-
spectrogram and frames from visual input corresponding to spe-
cific vocal sounds. (b) Presented with white noise as audio input,
the model relies on the visual modality to synthesize speech. (c)
Presented with a speech mixture from the same speaker as audio
input, the model relies on the visual modality to disambiguate and
separate speech signals. See supplemental video for examples.

the visual-only model outperforms the audio-only model
(compare row 1 to row 2, column 1).

Figure 3 illustrates how the visual modality is used by
our model. The visual input of the target speaker contains
specific mouth articulations that correspond to sounds (e.g.,
vowels and fricatives) in the ground truth speech (Figure
3a). Our model is able to approximate these sounds from
the visual cues alone, when only white noise is provided
to the audio stream (Figure 3b). This suggests that the vi-
sual modality is primarily responsible for defining the struc-
ture of the synthesized speech from our model. When pre-
sented with noisy audio input, our model is able to further
refine the pitch of the synthesized speech, since this infor-
mation is not available from visual cues (Figure 3c). Note
that the noisy audio example in Figure 3c contains interfer-
ing speech from the same speaker, i.e. real and interfering
speech share the same voice and the visual modality is re-
quired in order to disambiguate between target and interfer-
ing speech signals. The model successfully leverages the
visual cues to suppress the distractor speech and only keeps
the original speech signal.

Figure 4. Multi-speaker model. A speaker encoder is added to
the pipeline from Figure 2. Restricting the size of the codebook
forces the model to disentangle speech content and speaker iden-
tity as shown in [48].

GRID Speaker
Sp. 1 (M) Sp. 3 (M) Sp. 11 (F) Sp. 15 (F)

Single-speaker model 0.00509 0.00794 0.00746 0.00781
Multi-speaker model 0.00657 0.00909 0.00960 0.01594

Multi-speaker model personalized to new speaker with k minutes of data
5 min 0.00481 0.00682 0.00625 0.00681
12.5 min 0.00457 0.00620 0.00589 0.00655
25 min 0.00443 0.00595 0.00570 0.00621
50 min 0.00425 0.00561 0.00553 0.00596

Table 5. Performance of multi-speaker models that are person-
alized to new speakers by fine-tuning on different quantities
of target speaker data. The personalized (i.e., fine-tuned) mod-
els outperform the single-speaker models even when the amount
of data for fine-tuning is greatly reduced. Values shown repre-
sent mean ℓ2 distances between predicted and ground truth mel-
spectrograms; lower is better.

Importance of Auto-Regressive Modeling. Our condi-
tional auto-regressive model generates speech codes condi-
tioned on previous speech codes, ensuring that the sequence
of speech codes is temporally consistent. To determine the
contribution of this model component, we perform an abla-
tion study using a model without the auto-regressive com-
ponent. As shown in Table 4 (compare row 3 to row 4), this
leads to a significant decrease in model performance.
Efficiency. Discretized neural speech codecs generally al-
low for highly efficient signal transmission. For instance,
Soundstream [67] demonstrates compelling speech recon-
struction with bitrates from 6-12kbps. In contrast, our ap-
proach is a personalized model and therefore allows for an
even stronger data compression with no or barely noticeable
loss of quality. Results shown in the supplemental video
have a bitrate of 2kbps, which we found to be sufficient for
personalized speech reconstruction.

6. Scalability with Multi-Speaker Extension
So far we have demonstrated the efficacy of AV speech

codecs as a personalized model when they are trained on
single-speaker datasets comprised of hours of data. In real-
world applications involving a high volume of telepresence
users, however, one must be able to obtain high-quality
personalized models with less individualized data. In this
section, we extend our work to the multi-speaker setting,
demonstrating two advantages to such a model: (i) efficient
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Figure 5. Voice Transfer Examples. By swapping the speaker code at the decoder stage, we can synthesize clean audio in a different target
speaker’s voice. Images shown are mel-spectrogram representations of audio. Note how the linguistic content (i.e., vowels and fricatives)
are carried over from the original male speaker, while the pitch and overtone structure are changed to that of the female speaker.

model personalization and (ii) voice controllability.

Efficient Model Personalization. For practical applicabil-
ity, there is a need for personalized speech models that can
synthesize speech for new users given a small sample of
audio-visual data. We extend our framework to the multi-
speaker setting by adding a speaker identity encoder to the
model as shown in Figure 4, following the approach of per-
sonalized text-to-speech synthesis models [4]. Our multi-
speaker AV speech codec can be pretrained on a larger,
multi-speaker dataset and finetuned on a small amount of a
new speaker’s data to personalize the model to their speech.
Table 5 shows the results of pretraining on 30 speakers from
the GRID dataset [7] and finetuning on different amounts of
data for four held-out speakers (last four rows). For compar-
ison, we train four single-speaker models on all data for the
held-out speakers (row 1). We find that personalizing our
multi-speaker model to new speakers significantly reduces
the amount of data needed to achieve the same performance
of a single-speaker model: with only 5 minutes of data per
speaker, the fine-tuned multi-speaker model already outper-
forms the pure single-speaker models. Note that this perfor-
mance gain is in fact attributed to the fine-tuning process;
the multi-speaker model alone does not generalize well to
held-out speakers and is therefore strictly worse than single-
speaker models.

Voice Controllability. An additional benefit of the multi-
speaker extension is the ability to transfer from the source
speaker’s voice to a different target speaker’s voice. Dur-
ing training of the speech codec, adding a path for infor-
mation flow from the speaker identity encoder directly to
the decoder as shown in Figure 4 and restricting the size
of the codebook disentangles speech content from speaker
identity; the information bottleneck forces speech codes
to reflect speech content [48]. Voice transfer is therefore
achieved by swapping the speaker identity embedding with
the identity embedding of the new target speaker. Figure 5
shows an example of such a voice transfer. Denoising alone
restores the linguistic content, e.g. the vowels and frica-

tives, of the noisy input speech. Denoising with simulta-
neous voice transfer (by swapping the speaker embedding
to another speaker) produces a result in which the same
speech content (e.g. vowel and fricatives in Figure 5) are
maintained but additionally the overtone structure, which
determines the sound of one’s voice, is adjusted according
to the new speaker identity.

7. Conclusion

We presented a novel speech enhancement framework
that maps video and noisy audio inputs onto discrete speech
codes, from which clean speech can be re-synthesized with-
out bleeding-through of acoustic noise or unnatural distor-
tions. To train and evaluate our model, we introduced a
novel audio-visual dataset containing more than 10 hours
of unconstrained, natural speech with large-vocabulary and
high-quality audio and visual recordings. Experiments
show that our approach outperforms existing frameworks
both in quantitative evaluation and human perceptual stud-
ies. In the same way that personalized photo-realistic
codec avatars are pushing 3D face representations beyond
the uncanny valley, we show that personalized audio-visual
speech codecs enable a similar leap forward in audio-visual
speech enhancement for VR telepresence applications.
Limitations. (1) Personalized AV speech codecs require
a separate model for each user, which comes at a higher
computational cost than speaker-agnostic methods. We pro-
pose a first step towards scaling up in Section 6, but a large-
vocabulary multi-speaker dataset with high-quality audio is
needed to investigate this direction further. (2) When our
model fails (e.g., in very noisy settings), the outputs may be
realistic but do not faithfully represent the user’s speech. In
extreme cases, our model can hallucinate plausible mum-
bling that was not part of the user’s original speech.
Ethical Considerations. As with all speech synthesis sys-
tems that enable voice conversion, our approach has to be
handled responsibly to avoid audio deep-fakes. Audio wa-
termarking [3] is one strategy for protecting against misuse.
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