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Abstract

Continual learning is a challenging real-world problem
for constructing a mature AI system when data are provided
in a streaming fashion. Despite recent progress in contin-
ual classification, the researches of continual object detec-
tion are impeded by the diverse sizes and numbers of ob-
jects in each image. Different from previous works that tune
the whole network for all tasks, in this work, we present
a simple and flexible framework for continual object de-
tection via pRotOtypical taSk corrElaTion guided gaTing
mechAnism (ROSETTA). Concretely, a unified framework
is shared by all tasks while task-aware gates are intro-
duced to automatically select sub-models for specific tasks.
In this way, various knowledge can be successively mem-
orized by storing their corresponding sub-model weights
in this system. To make ROSETTA automatically deter-
mine which experience is available and useful, a proto-
typical task correlation guided Gating Diversity Controller
(GDC) is introduced to adaptively adjust the diversity of
gates for the new task based on class-specific prototypes.
GDC module computes class-to-class correlation matrix to
depict the cross-task correlation, and hereby activates more
exclusive gates for the new task if a significant domain gap
is observed. Comprehensive experiments on COCO-VOC,
KITTI-Kitchen, class-incremental detection on VOC and se-
quential learning of four tasks show that ROSETTA yields
state-of-the-art performance on both task-based and class-
based continual object detection. 1

1. Introduction
Thanks to the development of computer vision and deep

learning, a great progress have been made in object detec-

*Equal contribution. †Corresponding author.
1Codes are available at: https://github.com/dkxocl/
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Figure 1. Overview of our pRotOtypical taSk corrElaTion guided
gaTing mechAnism (ROSETTA) for continual object detection.
Sequential detection tasks share a unified backbone of the gated
detector. Knowledge from previous tasks can be stored in the
weights of the corresponding sub-models which are activated by
the stored gates. Boxes in colors indicate the channels activated
by task-aware gates for different tasks. Best viewed in color.

tion [31, 32, 41]. The mainstream of existing works typ-
ically follows the offline training paradigm: an individ-
ual model is trained on a dataset and then evaluated on
the test set with similar distribution. Nevertheless, on-
line training on streaming data plays a more important role
in real-world applications, especially large-scale industrial
systems. More significantly, an artificial intelligent system
is expected to continually learn different skills, e.g., detect
more and more objects in multiple scenarios, resembling
the memorizing and learning abilities of humans instead of
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learning from scratch every time. A common solution from
the machine learning perspective is continual learning (life-
long learning) [23, 24, 34, 44], aiming to sequentially solve
non-stationary tasks with ideally no performance drop when
inferred on the previously seen tasks. Typically, an elastic
model is required to achieve the equilibrium between con-
tinuously acquiring new knowledge and preserving existing
knowledge.

Despite the increasing attention on continual image clas-
sification [1,24,44], few studies have been devoted to build-
ing a continual object detection [23, 34] framework due
to the challenges of preserving the capability of localiz-
ing and recognizing multiple objects of diverse scales in
streaming tasks. What is noteworthy is that, an image
of the new task might simultaneously contain objects of
novel classes and previously seen classes. Existing works
on continual object detection mostly use knowledge dis-
tillation [34, 39, 45, 53] on features of the region proposal
network (RPN) to mitigate catastrophic forgetting. Specif-
ically, suppose an object detector is trained consecutively
on two tasks, i.e., task1 and task2. When training on
task2, the distillation-based methods will force the fea-
tures of the RPN to be consistent with those produced by
the saved model trained on task1. However, such methods
suffer from domain shift: distillation over the task2 data
captures biased rather than the actual knowledge of task1
due to the unavailability of samples from task1. Another
line of researches [23, 34] on continual detection store a
small number of samples(exemplars) for reviewing previous
knowledge. Nevertheless, replaying exemplars also fails in
capturing actual knowledge because not all samples are ac-
cessible and the sampling strategy plays a decisive role.

In this work, we explore a different way to solve con-
tinual object detection without any exemplar replay: di-
rectly storing knowledge via a sparse and dynamic frame-
work. As illustrated in Fig. 1, a unified detector is shared
by sequential tasks and the task-aware gates are designed to
automatically determine which sub-models (channel-level)
should be activated for specific tasks. To avoid the difficulty
of jointly optimizing binary gates and channel weights, we
propose a soften-and-discretize strategy for the gate learn-
ing. Specifically, dynamic soft gates are generated during
training stage and then discretized to be static binary gates
for inference stage. The channels’ weights that have been
activated for previous tasks by the binary gates are frozen
and stored to keep existing knowledge. Each sub-model
can dynamically choose whether to use the frozen channels
to boost the learning for the current task. In this manner,
the previous knowledge can be unbiasedly stored in the sub-
models’ weights and cross-task knowledge can be shared by
their overlapped channels. Binary gates are used to retrieve
such existing knowledge by activating sub-models’ channel
weights.

Although the proposed gating mechanism well preserves
the previous knowledge, we observe degradation on the sub-
sequent tasks when the domain gaps are significant, e.g.,
KITTI→Kitchen, which have different foreground objects
and backgrounds. We attribute this phenomenon to the
unawareness of cross-task correlation. Confronted with a
relatively large gap, sharing too much previous knowledge
would limit the performance gain in subsequent tasks [26]
and more exclusive channels should be activated for new
tasks. Thus, we propose the Prototypical Task Correlation
Guided Gating Mechanism to achieve a balance between
sharing existing knowledge and exploiting exclusive knowl-
edge (i.e., identifying which knowledge in the current task is
orthogonal to the existing one). Specifically, a task correla-
tion guided Gating Diversity Controller (GDC) is proposed
to adaptively adjust the diversity of gates for the new task
based on class-specific prototypes. GDC computes a cross-
task class-to-class prototypical correlation matrix to depict
the inter-task affinity and hereby activates more gates for
the task2 when the domain gap between task1 and task2

is significant, and vice versa.
To verified its effectiveness, our proposed ROSETTA is

evaluated on both task-based [34] and class-based [23] con-
tinual object detection scenarios. For task-based settings,
our method equipped with Faster R-CNN backbone outper-
forms the state-of-the-art benchmarks by 11.8 mAP and 3.4
mAP on COCO and VOC for COCO→VOC, 5.8 mAP and
5.7 mAP on KITTI and Kitchen for KITTI→Kitchen. As
for the class-incremental detection, our method surpasses
the state-of-the-art method by 2.2 mAP for the “10+10”
setting on VOC. Furthermore, comprehensive experiments
demonstrate that our proposed gating mechanism success-
fully achieve an equilibrium between sharing knowledge
and exploiting exclusive knowledge for multiple tasks by
capturing their prototypical cross-task correlation.

2. Related Work
Continual Object Detection Continual learning [2, 6, 17,
24, 28] studies the problem of how an intelligent system
sequentially learns from a stream of tasks. The ultimate
goal of continual learning is to gradually digest new knowl-
edge and preserve the acquired knowledge. Most existing
studies on continual learning in visual system focus on con-
tinual image classification [3, 7, 12, 24, 35, 42] which aims
to alleviate catastrophic forgetting for continually recogniz-
ing single object in an image. In comparison, object de-
tection [31, 32, 41] is a high-level computer vision task in-
volving object localization and object recognition, which
has not been explored totally in the continual learning sce-
nario. Due to the diverse sizes and numbers of objects in
each image, continual object detection is a more challeng-
ing task than continual image classification. Existing works
on continual object detection can be divided into two cat-
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Figure 2. Pipeline of ROSETTA. (We take the Sparse R-CNN backbone as an example in this figure.) A non-gated detector is used
to guide the learning of the gated detector via feature-level knowledge distillation. Class-specific prototypes are generated as the mean
ROI (Region-of-Interest) feature of each class. A memory bank is used to store the historical gate lists and their corresponding prototypes.
The gating diversity controller (GDC) captures the prototypical cross-task correlation based on the stored gate lists and prototypes, and
then automatically adjusts the diversity of gates for the current task. Best viewed in color

egories: storing parts of samples as exemplars for experi-
ence replay [23] and knowledge distillation [34, 45]. [23]
stores a balanced set of exemplars and fine-tunes the model
after each incremental step. [45] leverages knowledge dis-
tillation for both object localization and object classifica-
tion. [34] further exploits attentive feature distillation to dis-
till important knowledge via both top-down and bottom-up
attentions. In this work, we explore a different way for con-
tinual object detection without using exemplars via sparse
and dynamic gating mechanism.
Gating Mechanism Dynamic inference methods [5, 22,
27, 47, 48] change network architecture based on the input
data. As a general approach to achieve dynamic inference,
gating mechanism takes in an intermediate feature map and
outputs a binary vector as the decision of the candidate
paths. It has been generally used to choose over different
channels in dynamic pruning methods [4,8,10,13,19,21,29]
and dynamic slimmable network [25]. Such strategy has
also been used in other conditional inference methods in-
cluding dynamic depth [47–49] and dynamic routing [50].
Gating mechanism is also applied in continual image clas-
sification for dynamic inference based on the inputs from
different tasks [1, 36, 40, 44]. Differing from these works
that rely on gradient estimation or other techniques for opti-
mization of the binary gate, we use dynamic soft gates dur-
ing training time and then discretize to static binary ones for
inference.

3. Methodology
3.1. Continual Object Detection and its Challenges

Continual Object Detection The goal of continual ob-
ject detection is to obtain an object detector performing
well on T sequential Tasks. For the tth task, the dataset

Dt = {Xt, Y t} is provided to train the object detector,
where Xt and Y t denote the input images and the corre-
sponding annotations, respectively. The categories to be
recognized at time t are denoted as a set Ct.

Problem of Catastrophic Forgetting Catastrophic forget-
ting is a phenomenon that models suffer from rapid perfor-
mance degradation on previously learned tasks [17]. This
usually occurs when a model is continuously transferred
among multiple datasets when the old data in history can
not be accessed for review. Lots of works have explored
to mitigate catastrophic forgetting for the problem of con-
tinual image classification, while a more delicate strategy
is required for continual object detection due to the variety
of numbers, sizes and classes of the objects of interests in
different datasets [34].

In this section, we propose a new method for con-
tinual object detection to better tackle the problem of
catastrophic forgetting via pRotOtypical taSk corrElaTion
guided gaTing mechAnism (ROSETTA). As illustrated
in Fig. 1 and Fig. 2, ROSETTA can memorize multiple se-
quentially learned knowledge by storing the weights of one
unified object detector, without any exemplar replay. For
convenience of computing cross-task correlation, a memory
bank is used to store each task’s gate list and class-specific
prototypes. Thanks to the gating strategy, knowledge of the
previously seen tasks can be queried by their correspond-
ing gates and retrieved by activating sub-models’ channel
weights. Moreover, a task correlation guided Gating Di-
versity Controller (GDC) is introduced to capture the cross-
task correlation according to the stored gate lists and proto-
types in memory banks and then make ROSETTA dynami-
cally determine the gating diversity. In the following parts,
elements of our proposed ROSETTA will be elaborated.

9257



class 
embeddings

input feature map 𝑓!"

𝑐!×ℎ!×𝑤!
|𝐶"|×𝑛

𝑐!×1

Average Pooling

Conv2D

output feature map 𝑓!#$"

fc

𝑐!×𝑛

𝑐!×1

𝑐!#$×ℎ!#$×𝑤!#$

task embedding 𝑒"

max pooling

MLP

𝑐!#$×1

dynamic soft gate 𝑔!
",$

𝑐!#$×ℎ!#$×𝑤!#$

Figure 3. Our proposed gated convolutional module (training
stage). Class embeddings (word embeddings of the class labels)
of the current task is fed into a fully connected layer and a max
pooling layer to obtain task embedding et. An MLP takes its in-
puts as task embedding et and input feature map f t

l to generate
the dynamic soft gate gc,tl .

3.2. Task-aware Gated Object Detector
As illustrated in Fig. 3, our proposed gating mechanism

is applied to the convolutional layers of an object detector,
which activates the sub-model of a specific task. Given an
input feature map f t

l ∈ Rcl×hl×wl

of the lth layer for task
t, a convolutional operation F t

l is performed and a gating
module Gl generates the activated channels:

f t
l+1 = Gt

l(f
t
l , C

t)⊙ (F t
l (f

t
l )), (1)

where ⊙ denotes the operation of channel-wise multiplica-
tion, f t

l+1 ∈ Rcl+1×hl+1×wl+1

is the output feature map of
gated convolution, F t

l (f
t
l ) ∈ Rcl+1×hl+1×wl+1

is the out-
put of convolution, Gt

l(f
t
l , C

t) = [g1,tl , g2,tl , ..., gc
l+1,t

l ] rep-
resents channel gates of the lth layer, gc,tl ∈ [0, 1]. The
learnable task embedding et is generated based on class
embeddings Ct, which is the concatenation of word em-
beddings [37] of the classes of current task. By introducing
class embeddings Ct, the gated module can know exactly
which categories of objects need to locate and recognize.
Such meta-information provides a global contextual guid-
ance for the gated module and makes it generate different
gates when two tasks have similar images (input feature
maps f t

l ) but different classes to be detected, e.g., class-
incremental detection on VOC.

Previous works on gating mechanism [1, 25, 36, 44] em-
ploy binary gates, i.e. gc,tl ∈ {0, 1}, to control the selec-
tion of sub-models in both training and inference stages,
which results in the difficulty of back-propagation. Empir-
ically we found that training with binary gates easily col-
lapses on complex and large-scale detection tasks. Inspired
by the widely used continuous relaxation strategy in neural
architecture search (NAS) [9, 33, 51], we propose a soften-
and-discretize strategy for our gate learning to overcome

the convergence hardship. Concretely, dynamic soft gates
are generated by our gated module during training stage and
then discretized to be static binary gates for inference stage
via choosing appropriate thresholds γc,t

l :

γc,t
l = E(x,y)∼Dt

val
[gc,tl ], (2)

where Dt
val is the validation set of the tth task, c denotes

the cth channel of the lth layer and gcl is the corresponding
channel gate mentioned above.

The static binary gates are obtained by thresholding as
follows:

ĝc,tl = I[gc,tl ≥ γc,t
l ], (3)

where I[·] is an indicator function. It should be noticed
that the dynamic soft gates are input-dependent while the
static binary gates are input-independent and applicable to
all samples in a task in inference stage. Similar to the cou-
pling problem of discrete architecture encoding and the sub-
model weights [16, 33] in NAS (retraining or fine-tuning
weights is needed), the activated channel weights and the
discretized binary gates may not well accommodate to each
other. To address this issue, we slightly fine-tune the newly
activated channel weights to adapt it to the binary gates. Ul-
timately, the gated output feature for inference time is given
as:

f t
l+1 = ĝt

l ⊙ (F t
l (f

t
l )), (4)

where ĝt
l = [ĝ1,tl , ĝ2,tl , ..., ĝc

l+1,t

l ] are binary gates.
In addition to the soften-and-discretize strategy, sparsity

constraint [1] and knowledge distillation [20] are incorpo-
rated to guide the learning of our sparse gated model. The
sparsity loss encourages a smaller size of the sub-model in
each task and reserves more inactivated channels for future
tasks:

Lsparsity = E(x,y)∼Dt

[
1

L

L∑
l=1

∥Gl(f
t
l , C

t)∥1
cl+1

]
, (5)

where L is the number of layers. Distinct from existing
distillation-based continual learning methods [34, 39, 45,
53], we use feature-level knowledge distillation to avoid the
training collapse of the sparse gated model rather than alle-
viating catastrophic forgetting. As shown in Fig. 2, the dis-
tillation loss is leveraged to let the gated student model gen-
erate similar feature maps to the non-gated teacher model:

Lkd =
1

L

L∑
l=1

MSE(f t
l , f̃

t
l ), (6)

where MSE is the mean square error between feature maps
from student and teacher models, f̃ t

l is the feature map of
teacher model, i.e. f̃ t

l = F̃ t
l−1(f̃

t
l−1), F̃

t
l−1 is a traditional

convolutional operation without gated module.

3.3. Task Correlation Guided Gating Diversity
With the help of the aforementioned task-aware gated

module, existing knowledge can be fully stored in sub-
models’ weights and easily retrieved by their binary gates.
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When we move to solve the subsequent tasks, the previously
activated channel weights will be frozen and the other inac-
tivated ones will be still learnable. The sub-model for a new
task can select parts of frozen channel weights of previous
tasks to facilitate and promote its learning process, which
can be seen as a scheme of knowledge sharing among tasks.
In this way, the problem of catastrophic forgetting in con-
tinual object detection can be solved by the gating mech-
anism proposed in Sec. 3.2. However, we observe perfor-
mance degradation when learning on the subsequent tasks
if domain gaps are significant. We find knowledge shar-
ing provided by gating mechanism benefits the subsequent
task if the domain gap is small, e.g., COCO→VOC. But
it limits the performance gain when tasks have obviously
different foreground objects and backgrounds, e.g., KITTI
is an outdoor autonomous driving dataset and Kitchen con-
tains indoor kitchen scenes. We attribute this phenomenon
to the unawareness of cross-task correlation and propose the
Prototypical Task Correlation Gating Mechanism to achieve
dynamic balance between sharing existing knowledge and
exploiting exclusive knowledge (i.e. identifying the exclu-
sive knowledge compared to the existing one).

To further exploit the potential of inactivated channels
for a new task and enhance the ability to digest new knowl-
edge, we introduce a gating diversity loss to allow more
channel gates to be activated during training the new task.
The diversity loss Ldiversity is in the form of entropy:

Ll,t
diversity = qtl log q

t
l + (1− qtl ) log(1− qtl ), (7)

qtl =

∑mt
l

i=1 g
c,t
l I[gc,tl ≥ η]∑mt

l
i=1 g

c,t
l

, (8)

where mt
l is the total number of previously inactivated chan-

nels in layer l reserved for task t, I is an indicator function,
η is a hyper-parameter threshold. qtl in Eq. (8) is an esti-
mated ratio of the newly activated gates for task t in layer
l. The gating diversity loss in Eq. (7) is a negative entropy
corresponding to such estimated ratio qtl . Minimizing the
gating diversity loss means more gates will be activated if
necessary while the saturation of channels is avoided thanks
to the property of entropy.

Taking the correlation between different tasks into ac-
count, it can be intuitively assumed that few exclusive
knowledge (newly activated gates) are necessary when two
tasks are similar or almost identical, and vice versa. Going
one step further, our ROSETTA is expected to automati-
cally determine whether more gating diversity is needed for
a new task. Hence, a task correlation guided Gating Diver-
sity Controller (GDC) is integrated to adaptively adjust the
gating diversity based on class-specific prototypes. For task
t, the prototype of the ith class pt

i is stored in the memory
bank as the mean RoI (Region-of-Interest) feature of class i,
which is generated by an object detector. The class-to-class

prototypical correlation matrix Mm→n ∈ R|Cm|×|Cn| can
be used to depict the class-to-class correlation (distance) be-
tween task m and task n (m ≤ n):

Mm→n
i,j = MSE(pm

i , pn
j ), i ∈ Cm ∧ j ∈ Cn, (9)

where Ct denotes the categories to be recognized for task
t. Based on Mm→n, we can define the class-to-task cor-
relation between the jth class of task n and the mth task
(pm = [pm1 , pm2 , ..., pmCm ]) as:

R(pn
j ,p

m) =

 min
i∈Cm

Mm→n
i,j , m < n

min
i∈Cm,i̸=j

Mm→n
i,j , m = n.

(10)

The task-to-task correlation between task m and task n can
be induced by the average of the class-to-task correlations:

R(pn,pm) =
1

Cn

∑
j∈Cn

R(pn
j ,p

m),m ≤ n. (11)

Based on the prototypical task correlation R(pn,pm),
the gating diversity controller (GDC) is used to give a
weight for the diversity loss in Eq. (7) and maintain an equi-
librium between sharing knowledge and exploiting exclu-
sive knowledge:

ϕ(pn,pm) = max{R(pn,pm)−R(pm,pm)

R(pn,pm)
, 0}. (12)

The controller in Eq. (12) provides a weight in the range of
[0, 1], which is a greater value when the knowledge transfer-
ring from task m to task n is more difficult and then more
exclusive channels for task n should be activated.

By combining Eq. (7) and Eq. (12), the cross-task cor-
relation guided gating diversity loss for task t (t > 1) is:

Ldiversity =
1

L

1

(t− 1)

L∑
l=1

t−1∑
i=1

ϕ(pt,pi)Ll,t
diversity. (13)

To conclude, incorporating the cross-task correlation
guided gating diversity loss into the continual learning
pipeline of our task-aware gated object detector can achieve
better equilibrium between acquiring new knowledge and
preserving old knowledge by adaptively adjusting the di-
versity of channel gates.

4. Experiments
4.1. Experimental Setting
Datasets In general, there are two kinds of experimental
settings for continual detection: task-incremental object de-
tection [34] and class-incremental object detection [23]. In
terms of task-incremental object detection, Di and Dj (i ̸=
j) are two independent datasets. As for class-incremental
object detection, the categories of objects we expect to de-
tect is incrementally observed in a dataset, i.e. Ct ⊂ Ct+1.
In brief, the former setting is dataset-level incremental de-
tection and the latter one is in a class-level fashion. Without
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loss of generality, we will evaluate our model for both these
two case of continual object detection. Following the con-
tinual object detection settings in [34] and [23], we conduct
experiments on COCO [30], Pascal VOC [11], KITTI [14]
and Kitchen [15]. For task-incremental object detection, the
datasets we use are COCO-VOC and KITTI-Kitchen, fol-
lowing the settings in [34]. COCO and VOC have similar
domains, and 20 categories of these two datasets are co-
incident. KITTI is an outdoor autonomous driving dataset
while Kitchen contains indoor kitchen scenes. Therefore,
domains of KITTI and Kitchen are significantly different
and their categories are totally disjoint, which makes con-
tinual object detection on KITTI-Kitchen more challenging
than COCO-VOC. For class-incremental continual object
detection, ROSETTA is validated following the incremen-
tal protocol in [23]. The datasets for incremental detection
come from Pascal VOC 2007 [11] and three settings (“10
+ 10”, “15 + 5”, “19 + 1”) are used for evaluation. We
split Pascal VOC into two tasks as an incremental task se-
quence. For example, “10 + 10” means that a detector is
firstly trained on the images only with the annotations of the
first 10 categories, and then trained on the those containing
the other 10 classes.

Implementation Details Our experiments are conducted
on 8 GPUs with batch size of 16 and implemented by
PyTorch [38]. Without loss of generality, our ROSETTA
can be equipped different object detector backbones. In
our experiment, we choose two representative object de-
tectors as our backbones: Faster R-CNN [41] and Sparse
R-CNN [46]. Faster R-CNN is a commonly used detector
which heavily relies on dense object candidates. Sparse R-
CNN is a recently proposed detector without NMS, which
has a sparse-in sparse-out paradigm with a higher efficiency.
For Faster R-CNN backbone, we use the same training
scheme as [34] and generate our baseline results of joint
training and fine-tuning. As for Sparse R-CNN, we use its
default hyper-parameters with 100 proposal boxes. Specifi-
cally, we use 3× training schedule (36 epochs) on COCO
and VOC and the learning rate is set to 2.5 × 10−5 for
early training stages, divided by 10 at epoch 27 and 33,
respectively. On account of the small sizes of KITTI and
Kitchen, we train the Sparse R-CNN for 9k iterations in-
stead. Our gated module proposed in Sec. 3.2 is applied
to the last three stages of the ResNet50 [18] backbone for
both Faster R-CNN and Sparse R-CNN while the first two
stages are fixed during training. We first pre-train a non-
sparse detector without gated module and use it to guide the
training of the gated detector with distillation loss. As men-
tioned in Sec. 3.2, our gated model is further fine-tuned for
2 epochs for better co-adaptation between the binary gates
and the channel weights. The Pascal VOC mean average
precision (mAP) is used as our evaluation metric follow-
ing [34].

COCO-VOC

Methods COCO → VOC VOC → COCO

Joint Training (Faster R-CNN) 48.8 81.6 81.6 48.8
Fine-tuning (Faster R-CNN) 23.2 79.5 74.7 47.1

LwF Detection† [45] 26.6 73.0 -
Feature Distillation† [43] 26.9 72.4 -
Attention Distillation† [52] 28.5 73.0 -
EWC† [24] 32.2 73.4 -
MAS† [2] 32.7 73.4 -
AFD† [34] 36.8 75.2 -

EWC [24] 27.2 75.0 67.0 44.4
MAS [2] 28.1 74.8 69.0 43.9
AFD [34] 27.8 77.1 75.4 45.1
ROSETTA-Faster R-CNN(Ours) 48.6 80.5 77.5 46.5

Joint Training (Sparse R-CNN) 52.9 83.2 83.2 52.9
Fine-tuning (Sparse R-CNN) 35.7 81.2 74.9 49.9

ROSETTA-Sparse R-CNN(Ours) 49.5 82.3 79.5 48.3

KITTI-Kitchen

Methods KITTI → Kitchen Kitchen → KITTI

Joint Training (Faster R-CNN) 55.0 83.7 83.7 55.0
Fine-tuning (Faster R-CNN) 7.7 82.2 13.5 54.2

LwF Detection† [45] 39.4 69.9 59.9 54.7
Feature Distillation† [43] 35.0 69.4 62.7 54.4
Attention Distillation† [52] 39.8 71.0 64.2 52.8
EWC† [24] 48.3 65.5 68.4 52.8
MAS† [2] 42.8 71.7 67.7 55.6
AFD† [34] 48.1 72.4 68.6 53.4

EWC [24] 15.8 65.8 10.7 53.4
MAS [2] 8.9 70.3 11.5 54.0
AFD [34] 36.6 72.0 20.5 50.5
ROSETTA-Faster R-CNN(Ours) 53.9 78.1 78.4 54.7

Joint Training (Sparse R-CNN) 55.5 81.8 81.8 55.5
Fine-tuning (Sparse R-CNN) 20.2 79.8 18.6 53.6

ROSETTA-Sparse R-CNN(Ours) 53.3 78.3 78.2 54.5

Table 1. Comparisons with existing methods for task-incremental
object detection, in terms of mAP (%). Arrows indicate the or-
der of learning. Methods storing exemplars for experience replay
are denoted by ‘†’. ‘-’ indicates that results are not given by [34]
and no public codes are provided. Results of ROSETTA equipped
with Faster R-CNN and Sparse R-CNN backbones are both shown
in this table. The best results with Faster R-CNN backbone are
denoted in boldface.

4.2. Comparison with Existing Methods
For task-incremental object detection, we compare our

ROSETTA with AFD [34], LwF Detection [45], Feature
Distillation [43], Attention Distillation [52], EWC [24],
MAS [2], the joint training and fine-tuning baselines. In
terms of joint training which is usually seen as the empir-
ical upper bound of continual learning, data of all tasks
are accessible during training the object detector. As for
fine-tuning, all tasks are sequentially trained without ad-
ditional constraints. For class-incremental object detec-
tion, the methods we compare include ILOD [45], Faster
ILOD [39], ORE [23]. The performance of our ROSETTA
with Faster R-CNN and Sparse R-CNN backbones (termed
as “ROSETTA-Faster R-CNN” and “ROSETTA-Sparse R-
CNN” respectively) are given in Tab. 1 and Tab. 2.
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10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

All 20 68.5 77.2 74.2 55.6 59.7 76.5 83.1 81.5 52.1 79.8 55.1 80.9 80.1 76.8 80.5 47.1 73.1 61.2 76.9 70.3 70.51
First 10 79.3 79.7 70.2 56.4 62.4 79.6 88.6 76.6 50.1 68.9 0 0 0 0 0 0 0 0 0 0 35.59
New 10 7.9 0.3 5.1 3.4 0 0 0.2 2.3 0.1 3.3 65 69.3 81.3 76.4 83.1 47.2 67.1 68.4 76.5 69.2 36.31

ILOD [45] 69.9 70.4 69.4 54.3 48 68.7 78.9 68.4 45.5 58.1 59.7 72.7 73.5 73.2 66.3 29.5 63.4 61.6 69.3 62.2 63.15
ILOD + Faster R-CNN 70.5 75.6 68.9 59.1 56.6 67.6 78.6 75.4 50.3 70.8 43.2 68.1 66.2 65.1 66.5 24.3 61.3 46.6 58.1 49.9 61.14
Faster ILOD [39] 72.8 75.7 71.2 60.5 61.7 70.4 83.3 76.6 53.1 72.3 36.7 70.9 66.8 67.6 66.1 24.7 63.1 48.1 57.1 43.6 62.16
ORE [23] 63.5 70.9 58.9 42.9 34.1 76.2 80.7 76.3 34.1 66.1 56.1 70.4 80.2 72.3 81.8 42.7 71.6 68.1 77 67.7 64.58

ROSETTA-Faster R-CNN 74.2 76.2 64.9 54.4 57.4 76.1 84.4 68.8 52.4 67.0 62.9 63.3 79.8 72.8 78.1 40.1 62.3 61.2 72.4 66.8 66.80

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

First 15 74.2 79.1 71.3 60.3 60 80.2 88.1 80.2 48.8 74.6 61 76 85.3 78.2 83.4 0 0 0 0 0 55.03
New 5 3.7 0.5 6.3 4.6 0.9 0 8.8 3.9 0 0.4 0 0 16.4 0.7 0 41 55.7 49.2 59.1 67.8 15.95

ILOD [45] 70.5 79.2 68.8 59.1 53.2 75.4 79.4 78.8 46.6 59.4 59 75.8 71.8 78.6 69.6 33.7 61.5 63.1 71.7 62.2 65.87
ILOD + Faster R-CNN 63.5 76.3 70.7 53.1 55.8 67.1 81.5 80.3 49.6 73.8 62.1 77.1 79.7 74.2 73.9 37.1 59.1 61.7 68.6 61.3 66.35
Faster ILOD [39] 66.5 78.1 71.8 54.6 61.4 68.4 82.6 82.7 52.1 74.3 63.1 78.6 80.5 78.4 80.4 36.7 61.7 59.3 67.9 59.1 67.94
ORE [23] 75.4 81 67.1 51.9 55.7 77.2 85.6 81.7 46.1 76.2 55.4 76.7 86.2 78.5 82.1 32.8 63.6 54.7 77.7 64.6 68.51

ROSETTA-Faster R-CNN 76.5 77.5 65.1 56.0 60.0 78.3 85.5 78.7 49.5 68.2 67.4 71.2 83.9 75.7 82.0 43.0 60.6 64.1 72.8 67.4 69.17

19 + 1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv mAP

First 19 77.8 81.7 69.3 51.6 55.3 74.5 86.3 80.2 49.3 82 63.6 76.8 80.9 77.5 82.4 42.9 73.9 70.4 70.4 0 67.34
Last 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 3.2

ILOD [45] 69.4 79.3 69.5 57.4 45.4 78.4 79.1 80.5 45.7 76.3 64.8 77.2 80.8 77.5 70.1 42.3 67.5 64.4 76.7 62.7 68.25
ILOD + Faster R-CNN 60.9 74.6 70.8 56 51.3 70.7 81.7 81.5 49.45 78.3 58.3 79.5 79.1 74.8 75.7 42.8 74.7 61.2 67.2 65.1 67.72
Faster ILOD [39] 64.2 74.7 73.2 55.5 53.7 70.8 82.9 82.6 51.6 79.7 58.7 78.8 81.8 75.3 77.4 43.1 73.8 61.7 69.8 61.1 68.56
ORE [23] 67.3 76.8 60 48.4 58.8 81.1 86.5 75.8 41.5 79.6 54.6 72.8 85.9 81.7 82.4 44.8 75.8 68.2 75.7 60.1 68.89

ROSETTA-Faster R-CNN 75.3 77.9 65.3 56.2 55.3 79.6 84.6 72.9 49.2 73.7 68.3 71.0 78.9 77.7 80.7 44.0 69.6 68.5 76.1 68.3 69.64

Table 2. Comparisons with existing class-incremental object detectors with Faster R-CNN backbone on three different settings: “10 + 10”,
“15 + 5”, “19 + 1”. For example, “First 15” means training on the first 15 classes of Pascal VOC 2007 with Faster R-CNN backbone and
“New 5” refers to fine-tuning on the new 5 classes. The best results are denoted in boldface.

Task-incremental object detection Here we divide task-
incremental object detection into two case: (1) domains of
tasks are relatively similar, (2) domains are significantly
different. These two cases are corresponding to our exper-
iments conducted on COCO-VOC and KITTI-Kitchen, re-
spectively. Results are given in Tab. 1. Although ROSETTA
does not need any exemplar for experience replay, it also
outperforms state-of-the-art methods including exemplar-
based methods which are denoted by ‘†’. Thanks to the
gating mechanism, ROSETTA can better obviate the prob-
lem of catastrophic forgetting, even in the case of a sig-
nificant domain gap. Specifically, on Kitchen→KITTI and
KITTI→Kitchen, the performance of other methods on
task1 dramatically drop while our ROSETTA-Faster R-
CNN can alleviate the catastrophic forgetting to a great ex-
tent. For example, on KITTI→Kitchen, ROSETTA-Faster
R-CNN achieves 17.3 mAP and 6.1 mAP improvements on
KITTI and Kitchen compared to AFD [34], respectively.
Equipped with Sparse R-CNN, ROSETTA-Sparse R-CNN
outperforms our fine-tuning baseline on task1, validating
its effectiveness of avoiding catastrophic forgetting.

Class-incremental object detection For the setting of
class-incremental object detection, we mainly compare our
ROSETTA with other incremental detectors with a fair
Faster R-CNN backbone, in terms of three settings (“10
+ 10”, “15 + 5”, “19 + 1”) following [23]. As shown

in Tab. 2, our ROSETA-Faster R-CNN performs well on
the class-incremental tasks against the state-of-the-art in-
cremental detectors [23,39,45]. Notably, ROSETTA-Faster
R-CNN surpasses ORE [23] by 2.2 mAP on the setting of
“10 + 10”.

COCO → VOC → KITTI → Kitchen Average
Fine-tuning 4.3 16.3 45.9 87.0 38.4
ROSETTA(Ours) 49.5 82.3 62.5 87.3 70.4

KITTI → COCO → VOC → Kitchen Average
Fine-tuning 24.9 5.9 24.6 85.2 35.2
ROSETTA(Ours) 53.3 48.9 80.3 84.5 66.8

Table 3. Results of sequential training on 4 tasks.

Lsparsity Lkd Ldiversity KITTI → Kitchen Gates
only task1 overlap only task2 not used

✗ ✗ ✗ 51.7 70.2 6.8% 48.3% 9.4% 35.5%
✓ ✗ ✗ 51.0 70.5 6.1% 26.4% 1.2% 66.3%
✓ ✓ ✗ 53.3 73.3 9.6% 32.9% 8.1% 49.4%
✓ ✓ ✓ 53.3 78.3 14.3% 28.2% 20.3% 37.2%

Table 4. Ablation studies on KITTI→Kitchen.

4.3. Results on Four Sequential Tasks
To verify the capability of solving multiple tasks, we

compare ROSETTA to the fine-tuning baseline with the
same Sparse R-CNN backbone on two task-incremental se-
quences: COCO → VOC → KITTI → Kitchen and KITTI
→ COCO → VOC → Kitchen. The sequential results
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shown in Tab. 3 illustrate that our ROSETTA outperforms
the fine-tuning strategy by a large margin (32 mAP and 31.6
mAP in average of four tasks, respectively).

4.4. Ablation Study
The effect of Lsparsity, Lkd and Ldiversity To verify the
effectiveness of each module in our proposed ROSETTA,
we conduct ablation experiments on KITTI→Kitchen with
Sparse R-CNN backbone to ablate Lsparsity Lkd and Ldiversity.
As shown in Tab. 4, our baseline model, i.e. the trivial gated
detector proposed in Sec. 3.2, can alleviate the catastrophic
forgetting while two tasks both occupies lots of channel
gates with a great overlap of 48.3%. Thanks to the sparsity
constraint, we obtain sparser models for both task1 and
task2. Moreover, knowledge distillation helps the gated
module achieve better convergence due to the guidance of
non-gated teacher. In Tab. 4, Lkd benefits the gate learn-
ing of both task1 and task2 and we observe performance
improvement on both two tasks. By introducing our pro-
posed task correlation guided gating diversity loss Ldiversity,
ROSETTA can automatically capture the significant domain
gap between KITTI and Kitchen. Therefore, more exclusive
knowledge is exploited for task2 (20.3% only for task2)
and less gates are overlapped by two tasks. With the gat-
ing diversity constraint on task2, we observe a remarkable
improvement of 5.0 mAP on Kitchen.

Pascal VOC

KI
TT
I

Figure 4. Visualization of the normalized prototypical correlation
matrix of VOC→KITTI, i.e. MVOC→KITTI. Darker color indicates
higher similarity between the classes of these two tasks.

4.5. Cross-task Analysis
Cross-task correlation To understand how ROSETTA
captures the cross-task correlation, we visualize the nor-
malized class-to-class prototypical correlation matrix of
VOC→KITTI, i.e. MVOC→KITTI. For convenience, the vi-
sualized matrix in Fig. 4 is its transpose. As illustrated
in Fig. 4, ROSETTA is able to find out the correct category
correspondences between KITTI and VOC. For example,
“cyclist” means people engaged in cycling. Thus, in Fig. 4,
the class of “cyclist” in KITTI is close to “cycle”, “motor-
bike” which has similar appearance and semantics to “cy-
cle” and “person” in VOC.
Gate analysis In Fig. 5, we provide the statistical infor-
mation of the learned binary gates on KITTI-Kitchen and
COCO-VOC. Here colors and the corresponding percentage

Figure 5. Analysis of gates for task-incremental detection.

represent the proportion of channel gates activated for dif-
ferent tasks. Since domains of COCO and VOC are similar,
the gates learned on task1 are almost inherited by task2.
By comparison, our ROSETTA automatically finds that it
needs to activate more channels for task2 by observing the
domain gap between KITTI and Kitchen.

5. Conclusion and Discussion
In this paper, we propose a sparse and dynamic frame-

work for continual object detection via pRotOtypical taSk
corrElaTion guided gaTing mechAnism (ROSETTA) to
memorize previous knowledge and further promote learn-
ing future tasks by knowledge sharing. We propose a task-
aware gated module and integrate it with the backbone of
object detectors. In this way, the gated detector is capa-
ble of avoiding catastrophic forgetting by storing the sub-
models’ weight and the corresponding binary gates. To
further promote learning subsequent tasks, we propose a
task correlation guided gating diveristy controller to capture
the cross-task correlation. Comprehensive experiments on
COCO-VOC, KITTI-Kitchen and class-incremental detec-
tion on VOC and sequential learning of four tasks verifies
the superiority of our ROSETTA on both class-based and
task-based continual object detection.
Potential negative social impact Our method has no eth-
ical risk on dataset usage and privacy violation as all the
benchmarks are public and transparent.
Limitation With regards to the limitation of our work, we
only focus on one kind of task (modality) for the continual
learning system i.e object detection in the visual modality.
As our expectation, we aim to extend our ROSETTA to a
more general continual system which can deal with different
kinds of tasks and modalities in future work.
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