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Abstract

Current Knowledge Distillation (KD) methods for se-
mantic segmentation often guide the student to mimic the
teacher’s structured information generated from individ-
ual data samples. However, they ignore the global se-
mantic relations among pixels across various images that
are valuable for KD. This paper proposes a novel Cross-
Image Relational KD (CIRKD), which focuses on transfer-
ring structured pixel-to-pixel and pixel-to-region relations
among the whole images. The motivation is that a good
teacher network could construct a well-structured feature
space in terms of global pixel dependencies. CIRKD makes
the student mimic better structured semantic relations from
the teacher, thus improving the segmentation performance.
Experimental results over Cityscapes, CamVid and Pascal
VOC datasets demonstrate the effectiveness of our proposed
approach against state-of-the-art distillation methods. The
code is available at https://github.com/winycg/CIRKD.

1. Introduction

Semantic segmentation is a crucial and challenging task
in computer vision. It aims to classify each pixel in the input
image with an individual category label. The applications
of segmentation often focus on autonomous driving, virtual
reality and robots. Although popular state-of-the-art seg-
mentation networks, such as DeepLab [3, 5], PSPNet [51]
and OCRNet [47], achieve remarkable performance, they
often need high computational costs. This weakness makes
them difficult to be deployed for real-world scenarios over
resource-limited mobile devices. Therefore, a series of
lightweight segmentation networks are proposed, such as
ESPet [24], ICNet [50] and BiSeNet [46]. Moreover, model
compression is also an alternative field to pursue com-
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(a) Intra-image relational KD. (b) Cross-image relational KD.

Figure 1. Overview of intra-image (left) and our proposed cross-
image relational distillation (right). The circles (® or e) with the
same color denote pixel embeddings from the identical image. t;
and s; represent the pixel embeddings of the i-th pixel location
tagged in an image from the teacher and student, respectively. The
dotted line (-~ —) shows the similarity relationship between two
pixels. The circles and lines construct a relational graph.

pact networks, mainly divided into quantization [37], prun-
ing [2,43] and knowledge distillation (KD) [16,30,41].
This paper investigates KD to improve the performance
of a compact student network under the guidance of a high-
capacity teacher network for semantic segmentation. A
broad range of KD approaches [16, 18, 41, 48] have been
well studied but mostly for image classification tasks. Un-
like image-level recognition, the segmentation task aims at
dense pixel predictions, which is more challenging. Pre-
vious researches [18,22] have found that directly utilizing
classification-based KD methods to deal with dense predic-
tion tasks may not achieve desirable performance. This is
because strictly aligning the coarse feature maps between
the teacher and student networks may lead to negative con-
straints and ignore the structured context among pixels.

Recent works attempt to propose specialized KD meth-
ods [14,20,21,30,35,40] for semantic segmentation. Most
focus on mining correlations or dependencies among spa-
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tial pixel locations because segmentation needs a structured
output. Typical knowledge can be local pixel affinity [40],
global pairwise relations [14,20] and intra-class pixel vari-
ation [35]. Such methods often perform better than the tra-
ditional point-wise alignment in capturing structured spatial
knowledge. More recently, Shu et al. [30] revealed that each
channel represents a category-specific mask and thus pro-
posed Channel-Wise KD (CWD) [30]. CWD achieves state-
of-the-art distillation performance and demonstrates the im-
portance of channel-level information for dense prediction
tasks. However, previous segmentation KD methods often
guide a student to mimic the teacher’s structured informa-
tion generated from individual data samples. They ignore
cross-image semantic relations among pixels for knowledge
transfer, as shown in Fig. 1.

Based on this motivation, we propose Cross-Image Re-
lational Knowledge Distillation (CIRKD) for semantic seg-
mentation. The core idea is to construct global pixel re-
lations across the whole training images as meaningful
knowledge. A good pre-trained teacher network could of-
ten generate a well-structured pixel embedding space and
capture better pixel correlations than a student network.
Based on this property, we transfer such pixel relations from
teacher to student. Specifically, we propose pixel-to-pixel
distillation and pixel-to-region distillation to fully exploit
structured relations across various images. The former aims
to transfer similarity distributions among pixel embeddings.
The latter focuses on transferring pixel-to-region similar-
ity distributions complementary to the former. The region
embedding is generated by averagely pooling pixel embed-
dings from the same class and represents that class’s fea-
ture center. The pixel-to-region relations indicate the rela-
tive similarities between pixels and class-wise prototypes.

A naive way for constructing cross-image relations is
to derive embeddings from the current mini-batch. How-
ever, the batch size of the segmentation task is often small,
limiting the network to capture broader pixel dependencies.
Motivated by previous self-supervised learning [31,38], we
introduce a pixel queue and a region queue in the mem-
ory bank to store abundant embeddings for modelling long-
range pixel relations. The embeddings in queues are con-
sistent during the distillation process, since they are gener-
ated from the pre-trained and frozen teacher network. We
regard the teacher and student pixel embeddings from the
current mini-batch as anchors. We randomly sample con-
trastive embeddings from the queues to model pixel-to-pixel
as well as pixel-to-region similarity distributions. Then we
align such soft relations via KL-divergence from the student
to teacher.

CIRKD guides the student network to learn the global
property of relative pixel structures across training im-
ages from the teacher, further improving the segmenta-
tion performance. We evaluate our method over popular

DeepLabV3 [5] and PSPNet [51] architectures on three seg-
mentation benchmark datasets: Cityscapes [7], CamVid [1]
and Pascal VOC [9]. Experimental results indicate that
CIRKD outperforms other state-of-the-art distillation ap-
proaches, demonstrating the value of transferring global
pixel relationships in semantic segmentation.

The main contributions are summarized as follows:

e We propose cross-image relational KD to transfer
global pixel relationships. We may be the first to build
pixel dependencies across global images for segmen-
tation KD.

e We propose pixel-to-pixel and pixel-to-region distilla-
tion with the memory bank mechanism to fully explore
structured relations for transfer.

e Our CIRKD achieves the best distillation performance
among state-of-the-art methods on the public segmen-
tation datasets.

2. Related Work

Semantic Segmentation. Fully Convolutional Net-
works (FCN) [23] creates a seminal paradigm for end-
to-end dense feature learning for semantic segmentation.
Since contextual pixel dependencies are essential for seg-
mentation performance [36], capturing long-range rela-
tionships becomes a critical topic. DeepLab [3] applies
atrous convolution to enlarge the receptive field for learn-
ing broader context. DeepLabV3 [4] assembles convolution
blocks with various atrous rates in parallel to capture multi-
scale contexts. PSPNet [51] proposes a pyramid pooling
module to exploit different-region-based context aggrega-
tion. RefineNet [19] preserves high-resolution predictions
by long-range residual connections for the down-sampling
process. More recently, SegFormer [39] utilizes a structured
Transformer encoder to model global context information.
However, such high-performance segmentation networks
with expensive computational costs are difficult to be de-
ployed over resource-limited mobile devices.

Efficient segmentation networks attract wide attention
due to the need for real-time inference. Most works at-
tempt to design lightweight networks with cheap opera-
tions. ENet [26] is equipped with early downsampling,
small decoder size and filter factorization. ESPNet [24]
factorizes the standard convolution into the spatial pyra-
mid of dilated convolution. ICNet [50] builds a cascade
structure to balance the efficiency between low-resolution
and high-resolution features. BiSeNet [46] combines a spa-
tial path and a context path to process features efficiently.
Beyond designing a segmentation framework, lightweight
backbone networks [29, 45, 49], e.g. MobileNet [29] and
ShuffleNet [49], can also implement acceleration.

Knowledge Distillation. The core idea of KD is to
transfer meaningful knowledge from a cumbersome teacher
into a smaller and faster student. Most current KD meth-
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ods deal with image classification networks, mainly divided
into probability-based, feature-based and relation-based ap-
proaches. Probability-based KD [16, 52] transfers class
probabilities produced from the teacher as soft labels to su-
pervise the student. Feature-based KD focuses on interme-
diate feature maps [28] or their refined information [15,48]
as knowledge. Relation-based KD [10, 25, 27, 32, 42, 44]
aligns correlations or dependencies among multiple in-
stances between the student and teacher networks. Our
CIRKD is related to SEED [10] that both of them are con-
trastive distillation manners with a shared memory bank.
However, these image-level KD methods are often unsuit-
able for pixel-wise semantic segmentation [18,22].

Recent KD methods for semantic segmentation often en-
code contextual pixel affinity as knowledge. Xie et al. [40]
align local similarity maps constructed from 8 neighbour-
hood pixels between the student and teacher networks. He
et al. [14] transfer non-local pairwise affinity maps with an
autoencoder to minimize the discrepancy of features. Liu et
al. [20,22] perform a pairwise similarity distillation among
pixels and an adversarial distillation of score maps. Wang
et al. [35] distill intra-class feature variation to learn more
robust relations with class-wise prototypes. Beyond spatial
distillation, Shu et al. [30] propose channel-wise distillation
to guide the student to mimic the teacher’s semantic masks
along the channel dimension. Though achieving desirable
performance, these approaches only consider pixel depen-
dencies within an individual image, ignoring global pixel
relations across various images.

3. Methodology
3.1. Preliminary

Notations of Semantic Segmentation Framework.
Unlike traditional image classification, semantic segmenta-
tion is a pixel-wise dense classification task. A segmenta-
tion network needs to classify each pixel in the image to an
individual category label from C' classes. The network can
be decomposed of a feature extractor and a classifier. The
former generates a dense feature map F € R¥*Wxd where
H, W and d denote the height, width and number of chan-
nels, respectively. We can derive H x W pixel embeddings
along the spatial dimension. The latter further transforms
the F' into a categorical logit map Z € R¥*WxC The con-
ventional segmentation task loss is to train each pixel with
its ground-truth label using cross-entropy:

H W
1
Ltask = HxW ;;CE(U(Zh,w>7yh,w)- (1)

Here, C'E denotes the cross-entropy loss, ¢ denotes the
softmax function and yy, ., denotes the ground-truth label
of the (h, w)-th pixel.

Pixel-wise Class Probability Distillation. Motivated
by Hinton’s KD [16], a direct method is to align the class
probability distribution of each pixel from the student to the
teacher. The formulation is expressed as:

e 2 3 Kt

h=1w=1

t

Lia = a( Zhaw Z9)- @

Here, 0(Zj, ,,/T) and o(Zj, ,,/T) represent the soft class
probabilities of the (h,w)-th pixel produced from the stu-
dent and teacher, respectively. K L denotes the Kullback-
Leibler divergence, and 7 is a temperature. Following pre-
vious works [20,35], T' = 1 is good enough.

3.2. Cross-Image Relational Knowledge Distillaton

Motivation. Although the training objectives of L;q sk
and L4 are widely used in semantic segmentation, they
only deal with pixel-wise predictions independently but ne-
glect semantic relations between pixels. Some segmenta-
tion KD methods [14,20,35] attempt to capture spatial rela-
tional knowledge by modelling pixel affinity. Nevertheless,
these KD methods only construct the relationships among
pixels within a single image, regardless of the semantic de-
pendencies among pixels across global images. This paper
demonstrates that cross-image relational knowledge is also
valuable for conducting teacher-student-based KD.

Our CIRKD makes use of pixel embeddings beyond a
single image. Inspired by the recent memory-based con-
trastive learning [6, 31, 34, 38], we may retrieve pixel em-
beddings of other images from the current mini-batch or
an online memory bank. This paper considers both of two
manners to model relationships among pixels, the details of
which are shown as follows.

3.2.1 Mini-batch-based Pixel-to-Pixel Distillation

Given a mini-batch {x,, } _,, the segmentation network ex-
tracts N structured feature maps {F, € RIXWxd}N
from N input images. We preprocess each pixel embed-
ding in F,, by ls-normalization. For easy notation, we re-
shape the spatial dimension of {F, € RHE>XWxd1N_ g
{F, € RN | where A = H x W. For the i-th im-
age x; and the j-th image x;, i,j € {1,2,--- ,N}, we
can calculate the cross-image pair-wise similarity matrix
Si; = F,‘FjT € RAXA | The relational matrix S;; captures
the cross-image pair-wise correlations among pixels.

We guide the pair-wise similarity matrix of Sj; produced
from the student to align that of Sw produced from the
teacher. The distillation process is formulated as:

A
LPQP( 7,]7 Z:

S

”‘” Tl )| o e ”‘“ ). ©3)
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Figure 2. Overview of our proposed memory-based pixel-to-pixel distillation and pixel-to-region distillation.

Here, S;j|,,. denotes the a-th row vector of S;;. We nor-
malize each row similarity distribution of S;; to a probabil-
ity distribution with a temperature 7 by softmax function o.
The magnitude gaps would be removed between the student
and teacher networks due to the softmax normalization. K L
is used to align each row-wise probability distribution. We
perform pixel-to-pixel distillation every two of N images:

N N
1
Lbatch,p2p = W Z Z Lp2p(sfj7 Sﬁ]) “4)

i=1 j=1

We show the illustration of mini-batch-based pixel-to-pixel
distillation in the supplement.

3.2.2 Memory-based Pixel-to-Pixel Distillation

Although mini-batch-based distillation could capture cross-
image relations to some extent, it is difficult to model de-
pendencies among pixels from global images, since the
batch size per GPU of segmentation task is often small, e.g.
1 or 2. To address this problem, we introduce an online
pixel queue that can store massive pixel embeddings in the
memory bank generated from the past mini-batches. It al-
lows us to retrieve abundant embeddings efficiently. The
usage of memory bank dates back to self-supervised learn-
ing [31,38]. This is because a large number of negative
samples are pivotal for unsupervised contrastive learning,
and the mini-batch size limits available contrastive samples.

In the context of the dense segmentation task, each im-
age would contain a vast number of pixel samples, and most
pixels in the same object region are often homogeneous.
Therefore storing all pixel embeddings may learn redun-
dant relational knowledge and slow down the distillation
process. Moreover, saving several last batches to the queue
may also damage the diversity of pixel embeddings. Thus
we maintain a class-aware pixel queue Q, € RE*Npxd
where N, is the number of pixel embeddings per class and d
is the embedding size. For each image in the mini-batch, we
only randomly sample a small number, i.e. V' (V' < N,), of
pixel embeddings from the same class and push them into
the pixel queue Q,,. The queue is progressively updated un-
der the “first-in-first-out” strategy as distillation proceeds.

Inspired by [10], we adopt a shared pixel queue between
the student and teacher networks and store pixel embed-
dings generated from the teacher during the distillation pro-
cess. Given an input image x,,, the generated pixel embed-
dings of the student and teacher networks are F3 € R4*4
and F!, € RA*4, respectively. Each pixel embedding of F¥
and F!, is preprocessed by l>-normalization. We regard F$
and F, as anchors and sample K, contrastive embeddings
{vr € R}/, randomly from the pixel queue Q,,. Here,
we adopt a class-balanced sampling since the numbers of
pixels from various classes often conform to a long-tailed
distribution. For easy notation, V,, = [v1,v2, -+ ,vk,] €

. . K .
RE»*d j5 a concatenation of {vy,},*, along the row dimen-
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sion. Then we model the pixel similarity matrix between
the anchors and contrastive embeddings for the student and
teacher as P* and P*:

P*=F;V, e RV P =F V] e R">Fr (5)

The teacher network often shows a better pixel similarity
matrix than the student. We force the student’s P° to mimic
the teacher’s P? for penalizing the difference. Similar to
Section 3.2.1, we apply softmax normalization on each row
distribution of P* and P*? and perform pixel-to-pixel distil-
lation via KL-divergence loss. It is formulated as follows:

A s t
1 Pa: Pa:
Lemeryzop = 5 3 KLo(—2) lo(—2)). ©
a=1

T

After each iteration, we push V' teacher pixel embed-
dings per class into the pixel queue Q,,. Because the teacher
is pre-trained and frozen, it can provide consistent feature
embeddings during the distillation process. Therefore, we
can naturally avoid the inconsistent problem between the
anchor and dequeued features appeared in previous con-
trastive learning [12,17,33].

3.2.3 Memory-based Pixel-to-Region Distillation

Discrete pixel embeddings may not fully capture image
content. Thus we introduce an online region queue that can
store massive more representative region embeddings in the
memory bank. Beyond pixel-to-pixel distillation, we further
construct pixel-to-region distillation to model the relations
between pixels and class-wise region embeddings across
global images. Each region embedding represents the fea-
ture center of one semantic class in an image. We formulate
the region embedding of class c by averagely pooling all the
pixel embeddings belonging to class c in a single image.

We maintain a region queue Q, € RE*Nrxd during
the distillation process, where N, is the number of region
embeddings per class and d is the embedding size. For
each iteration, we sample K, contrastive region embed-
dings {ry € R?};", from Q, in a class-balanced manner.
For easy notation, V,. = [r1,72, - ,7x,] € RE-*disa
concatenation of {7 }1", along the row dimension. Given
an input image x,,, we model the pixel-to-region similarity
matrix from F$ € R4*? and F%, € RA*4 (o region embed-
dings V,. as R® and R%:

R =F:V] c R>E R =FI V] e RVE (7)
Similar to the Equ. (6), we distill normalized pixel-to-

region similarity matrix between the student and teacher
networks via KL-divergence loss:

A s t
1 Ra: Ra:
Lmemory,pQr = Z ZKL(U( 7_’ )||J( 7_7 )) (8)

a=1

Algorithm 1 Cross-Image Relational KD (CIRKD)

Initialize the pixel queue Q, and the region queue Q,

with random unit vectors.

while the student network has not converged do
Sample a mini-batch.
Generate the student and teacher pixel embeddings.
Compute the mini-batch-based pixel-to-pixel distilla-
tion loss Lyqtch_p2p-
Sample contrastive pixel and region embeddings from
the pixel queue Q,, and the region queue Q,.
Compute the memory-based pixel-to-pixel loss
Lmemory p2p and pixel-to-region 10ss Ly,emory_p2r-
Update the student w.r.t the overall loss Lorrir p-
Enqueue the current teacher pixel and region embed-
dings to Q,, and Q,.
Dequeue the earliest pixel and region embeddings
from Q, and Q.

end while

For each mini-batch, we push all teacher region embeddings
into the region queue Q,. The overview of our proposed
memory-based distillation is shown in Fig. 2.

3.3. Overall Framework

We summarize our mini-batch-based pixel-to-pixel,
memory-based pixel-to-pixel and pixel-to-region distilla-
tion together to train the student network. We also employ
the conventional pixel-wise cross-entropy task loss Liqsk
(Equ. (1)) and class probability KD loss Lxg (Equ. (2)) as
the basic losses. The overall loss is formulated as:

Lerrep =Ltask + Lia + oaLpatch_p2p
+ BLmemory,p2p + '-YLmemory,pQT- (9)

Here, «, 8 and -y are weights coefficients. We set a = 1,
B = 0.1 and v = 0.1. Empirically, we find our CIRKD are
not sensitive to coefficients when «, 8,y € [0.1,1]. When
the student and teacher networks mismatch the embedding
size, we attach a projection head to the student network.
It can map the student’s pixel embeddings to match the
teacher’s dimension. The projection head is composed of
two 1 x 1 convolutional layers with ReLU and batch normal-
ization. It would be discarded at the inference phase with-
out introducing extra costs. In Algorithm 1, we use pseudo-
code to illustrate the overall training pipeline of CIRKD.

4. Experiments
4.1. Experimental Setup

Dataset. We employ three popular semantic segmenta-
tion datasets to conduct our experiments. (1) Cityscapes [7]
is an urban scene parsing dataset that contains 5000 finely
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annotated images, where 2975/500/1525 images are used
for train/val/test. The segmentation performance
is reported on 19 classes. (2) CamVid [1] is an au-
tomotive dataset that contains 367/101/233 images for
train/val/test with 11 semantic classes. (3) Pas-
cal VOC [9] is a visual object segmentation dataset that
includes 20 foreground object categories and one back-
ground class. We adopt the augmented data with extra an-
notations provided by [11]. The resulting dataset contains
10582/1449/1456 images for train/val/test.

Evaluation metrics. Following the standard setting, we
employ mean Intersection-over-Union (mloU) to measure
the segmentation performance.

Network architectures. For all experiments, we use
the segmentation framework DeepLabV3 [5] with ResNet-
101 (Res101) backbone [13] as the powerful teacher net-
work. For student networks, we use various segmentation
architectures to verify the effectiveness of distillation meth-
ods. Specifically, DeepLabV3 and PSPNet [51] with dif-
ferent backbones of ResNet-18 (Res18) and MobileNetV2
(MBV2) [29] are adopted.

Training details. Following the standard data augmen-
tation, we employ random flipping and scaling in the range
of [0.5,2]. All experiments are optimized by SGD with a
momentum of 0.9, a batch size of 16 and an initial learning
rate of 0.02. The number of the total training iterations is
40K. The learning rate is decayed by (1 — <= —)0-9 fol-
lowing the polynomial annealing policy [4]. For crop size
during the training phase, we use 512 x 1024, 360 x 360
and 512 x 512 for Cityscapes, CamVid and Pascal VOC,
respectively.

Evaluation details. We evaluate the segmentation per-
formance under a single scale setting over the original im-
age size following the general protocol [30].

Compared distillation methods. We compare our pro-
posed CIRKD with state-of-the-art segmentation distillation
methods: SKD [20], IFVD [35] and CWD [30]. We re-run
all methods using author-provided code. All methods use
the same pre-trained teacher DeepLabV3-ResNet101.

Hyper-parameters setup. The hyper-parameters are
mainly from the pixel and region queues. For the pixel
queue, we set N, = 20K for each class and enqueue
V' = 16 pixels per class for each image. For the region
queue, we set N, = 2K for each class. For each mini-
batch, we sample K, = 4096 pixel embeddings from the
pixel queue and K, = 1024 region embeddings from the
region queue to compute similarity matrices.

4.2. Experimental Results
4.2.1 Results on Cityscapes

In Table 1, we compare our proposed CIRKD against state-
of-the-art distillation methods on Cityscapes in terms of the
validation and test mloU performance. We can observe

Params (M) | FLOPs (G) \ZIIIOU (:.l/fe)st

2371.71G | 78.07 77.46

Method

T: DeepLabV3-Res101 61.1IM

S: DeepLabV3-Res18 7421 7345
+SKD [20] 7542  74.06
+IFVD [35] 13.6M 572.0G 75.59 74.26
+CWD [30] 75.55 74.07
+CIRKD (ours) 76.38 75.05
S: DeepLabV3-Res18* 65.17 6547
+SKD [20] 67.08 66.71
+IFVD [35] 13.6M 572.0G 65.96 65.78
+CWD [30] 67.74 67.35
+CIRKD (ours) 68.18 68.22
S: DeepLabV3-MBV2 73.12  72.36
+SKD [20] 73.82 73.02
+IFVD [35] 32M 128.9G 73.50 72.58
+CWD [30] 74.66 73.25
+CIRKD (ours) 75.42 74.03
S: PSPNet-Res18 72.55 72.29
+SKD [20] 7329 7295
+IFVD [35] 12.9M 507.4G 73.71  72.83
+CWD [30] 7436 73.57
+CIRKD (ours) 74.73  74.05

Table 1. Performance comparison with state-of-the-art distil-
lation methods over various student segmentation networks on
Cityscapes. * denotes that we do not initialize the backbone with
ImageNet [8] pre-trained weights. FLOPs is measured based on
the fixed size of 1024 x 2048. The bold number denotes the best
result in each block. We tag the teacher as T and the student as S.

that all structured KD methods improve student networks
under the teacher’s supervision. CIRKD achieves the best
segmentation performance across various student networks
with similar or different architecture styles. It reveals that
CIRKD does not rely on architecture-specific cues. More-
over, our method outperforms the best completing CWD
with an average 0.60% validation mloU gain and 0.78%
test mloU gain across four student networks. The results
demonstrate that distilling cross-image relations guides the
student to achieve better segmentation performance than
intra-image pixel affinity [20, 35].

As illustrated in Fig. 3, we also show the performance
of individual class IoU scores over the student network.
We can observe that our CIRKD achieves better class IoU
scores than baseline (w/o distillation) and CWD consis-
tently, especially for those categories with low IoU scores.
For example, our method obtains 10.4% and 9.4% rela-
tive improvements on Wall than baseline and CWD, respec-
tively. We further show the qualitative segmentation results
visually in Fig. 4. We can observe that our CIRKD pro-
duces more consistent semantic labels with the ground truth
than baseline and CWD, indicating more meaningful pixel
dependencies are captured.

T-SNE visualization of learned feature embeddings on
the student network by CWD and our proposed CIRKD
is shown in Fig. 5. Compared to the CWD, the network
trained by CIRKD shows a well-structured pixel-wise se-
mantic feature space. The visual result suggests that learn-
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Figure 3. Illustration of individual class IoU scores over the student network DeepLabV3-ResNetl8 with baseline (w/o distillation),
state-of-the-art CWD and our proposed CIRKD on Cityscapes test set. Our CIRKD can consistently improve individual class IoU scores
compared to the baseline and CWD, especially for those challenging classes with low IoU scores.

(b) Student

(e) GT

(a) Image (c) CWD (d) Ours

Figure 4. Qualitative segmentation results on the validation set
of Cityscapes using the DeepLabV3-ResNet18 network: (a) raw
images, (b) the original student network without KD, (c) channel-
wise distillation, (d) our method and (e) ground truth.

ing cross-image pixel relations from the teacher network
would help the student achieve better intra-class compact-
ness and inter-class separability, thus improving segmenta-
tion performance.

4.2.2 Results on CamVid

In Table 2, we evaluate various distillation methods on
CamVid. Our CIRKD achieves the best performance con-
sistently. It outperforms the state-of-the-art CWD by 0.50%
and 0.73% mloU gains over DeepLabV3 and PSPNet, re-
spectively.

(a) State-of-the-art CWD [30]. (b) Our CIRKD.

Figure 5. T-SNE visualization of learned features embeddings on
the validation set of Cityscapes over the DeepLabV3-ResNet18
network trained with CWD (left) and our proposed CIRKD (right).

Method Params (M) | FLOPs (G) | Test mIoU (%)
T: DeepLabV3-Res101 61.1IM 280.2G 69.84
S: DeepLabV3-Res18 66.92
+SKD [20] 67.46
+IFVD [35] 13.6M 61.0G 67.28
+CWD [30] 67.71
+CIRKD (ours) 68.21
S: PSPNet-Res18 66.73
+SKD [20] 67.83
+IFVD [35] 12.9M 45.6G 67.61
+CWD [30] 67.92
+CIRKD (ours) 68.65

Table 2. Performance comparison with state-of-the-art distillation
methods over various student segmentation networks on CamVid.
FLOPs is measured based on the test size of 360 x 480.

4.2.3 Results on Pascal VOC

Beyond scene-parsing datasets, we also evaluate our
CIRKD on Pascal VOC, a representative visual object seg-
mentation dataset. As shown in Table 3, CIRKD achieves
the best performance compared to other segmentation KD
approaches. It surpasses the best completing CWD by
0.48% and 0.79% mloU improvements on DeepLabV3 and
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Method Params (M) | FLOPs (G) | Val mloU (%)
T: DeepLabV3-Res101 61.1M 1294.6G 77.67
S: DeepLabV3-Res18 73.21
+SKD [20] 73.51
+IFVD [35] 13.6M 305.0G 73.85
+CWD [30] 74.02
+CIRKD (ours) 74.50
S: PSPNet-Res18 73.33
+SKD [20] 74.07
+IFVD [35] 12.9M 260.0G 73.54
+CWD [30] 73.99
+CIRKD (ours) 74.78

Table 3. Performance comparison with state-of-the-art distillation
methods over various student segmentation networks on Pascal
VOC. We report the FLOPs based on the crop size of 512 x 512
since the validation set does not have a fixed input size.

Loss Baseline Distillation

Lia - v v 7 7 7 7
Lbatch,pr - - v - - - v
Lmemory,pr - - - v - v v
Linemory_p2r - - - - v v v
mloU (%) 73.12 7426 7487 75.11 7494 7526 75.42

Table 4. Ablation study of distillation loss terms on Cityscapes
val. Baseline denotes the cross-entropy loss Liqsk (Equ. (1)).

PSPNet, respectively. The results demonstrate the scalabil-
ity of our CIRKD to work reasonably well on visual object
segmentation.

4.3. Ablation Study and Parameter Analysis

We conduct thorough ablation experiments of our pro-
posed CIRKD on the Cityscapes validation set, a stan-
dard benchmark for semantic segmentation. For all exper-
iments, we choose DeepLabV3-ResNetl01 as the teacher
and DeepLabV3-MobileNetV2 as the student by default.

Ablation study of loss terms. As shown in Table 4,
we examine the contribution of each distillation loss. The
conventional KD loss L4 improves the baseline by 1.14%.
Applying cross-image relational KD losses of Lygtch_p2p,
Lemory p2p and Lipemory p2r lead to 0.61%, 0.85% and
0.68% mloU gains over Lyg4, respectively. The results
show two conclusions: (1) Pixel-to-pixel distillation is
more informative than the pixel-to-region counterpart. (2)
Memory-based pixel-to-pixel distillation is better than the
mini-batch-based counterpart, since the former can capture
broader pixel dependencies from much more images than
the latter. Finally, applying all losses together maximizes
the segmentation performance, reducing the gap between
the student and teacher from 4.95% to 2.65%.

Impact of the queue size. We investigate the impact
of memory sizes of the pixel queue and region queue. As
shown in Fig. 6, distillation performance increases as the
sizes of the pixel queue and region queue grow. This is
because a larger queue could provide more abundant and
diverse embeddings for capturing long-range dependencies.
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Figure 6. Impact of the (a) pixel queue size N, per class and (b)
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region embeddings K, on Cityscapes val.

The results also show the distillation performance may also
saturate at a certain memory capacity.

Impact of the temperature 7. Temperature 7 is used
to calibrate the similarity distribution for relational KD. A
more significant temperature 7 brings a smoother distribu-
tion. As shown in Fig. 7a, we investigate the impact of 7 in
our CIRKD and find 7 = 0.1 is the best choice.

Impact of the number of contrastive embeddings. As
shown in Fig. 7b and Fig. 7c, we examine the number
of contrastive embeddings to calculate pixel-to-pixel and
pixel-to-region similarity matrices. The distillation perfor-
mance increases as K, and K, grow, because the similarity
distribution with a larger dimension would encode broader
pixel dependencies. The upper bound of distillation perfor-
mance may saturate at ;, = 4096 for pixel-to-pixel distil-
lation and K, = 1024 for pixel-to-region distillation.

5. Conclusion

This paper presents a novel cross-image relational KD
to transfer global pixel correlations from the teacher to the
student for semantic segmentation. Compared to previous
KD approaches, our method helps students learn broader
pixel dependencies from the teacher. Experiments on public
segmentation datasets demonstrate the effectiveness of our
CIRKD. We hope our work can inspire future research to
explore global pixel relationships for segmentation KD.
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