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Abstract

In response to the explosively-increasing requirement of
annotated data, Novel Class Discovery (NCD) has emerged
as a promising alternative to automatically recognize un-
known classes without any annotation. To this end, a model
makes use of a base set to learn basic semantic discrim-
inability that can be transferred to recognize novel classes.
Most existing works handle the base and novel sets using
separate objectives within a two-stage training paradigm.
Despite showing competitive performance on novel classes,
they fail to generalize to recognizing samples from both
base and novel sets. In this paper, we focus on this gen-
eralized setting of NCD (GNCD), and propose to divide
and conquer it with two groups of Compositional Experts
(ComEx). Each group of experts is designed to character-
ize the whole dataset in a comprehensive yet complemen-
tary fashion. With their union, we can solve GNCD in an
efficient end-to-end manner. We further look into the draw-
back in current NCD methods, and propose to strengthen
ComEx with global-to-local and local-to-local regulariza-
tion. ComEx1 is evaluated on four popular benchmarks,
showing clear superiority towards the goal of GNCD.

1. Introduction

A key to the success of deep learning is huge amounts
of curated data with elaborate annotations [12, 25, 31]. De-
spite being expensive and cumbersome to collect, the anno-
tated data plays an indispensable role since deep models are
notoriously known to be data-hungry. In this regard, Semi-
Supervised Learning (SSL) [4,5,39] sheds some light on the
dilemma. Requiring only a small amount of annotations,
SSL addresses unannotated data using pseudo-labeling or
consistency regularization, yet limited to known classes
from existing annotations. To recognize unknown classes
never seen in training, Zero-Shot Learning (ZSL) [9, 28, 37]

*Corresponding authors.
1Code: https://github.com/muliyangm/ComEx.

resorts to extra annotations to learn transferable attributes
among known and unknown classes, which in turn exacer-
bates the need for annotations.

We consider a new task setting that naturally addresses
the limitations of both SSL and ZSL, namely Novel Class
Discovery (NCD) [15, 16]. As shown in Fig. 1a, NCD as-
sumes two sets of samples with disjoint classes — a base
set containing labeled samples of base classes, and a novel
set containing unlabeled samples of novel classes. The goal
of NCD, besides correctly classifying base2 samples, is to
recognize novel classes out of unlabeled samples using no
extra knowledge. In practice, the base and novel sets are of-
ten subsets of a same dataset, and thus share similar visual
knowledge that can be transferred to discover novel classes.

In view of this, most existing NCD methods [15, 16, 24,
46–48] adopt a two-stage paradigm: a supervised training
stage on the base set to learn basic semantic discriminabil-
ity, and a fine-tuning stage on the novel set to discover novel
classes by clustering unlabeled samples. To compensate
the lack of supervised information, the two aforementioned
SSL techniques are often employed to strengthen clustering
performance — using pseudo labels estimated in the novel
set as clustering targets, and enforcing consistency between
different transformations of a same input. Despite being
competitive on discovering novel classes, these methods in-
evitably suffer from performance degradation on the base
set due to separate objectives for base and novel classes.
This can be problematic for deployment on a system han-
dling data from both sets. A most recent work [13] identi-
fies this problem and proposes a unified objective for NCD.
Although yielding promising results on either base or novel
set, this method struggles to generalize to the union of the
two sets, i.e., testing on both base and novel samples, show-
ing it is still not yet ready for real-world deployment.

In this paper, we focus on the generalized setting of
NCD (GNCD), aiming at designing a unified model that
works well on both base and novel sets, especially on their
union. This is challenging due to the uneven properties of

2We interchangeably use base / labeled, and novel / unlabeled.
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Figure 1. (a) A training batch for Novel Class Discovery (NCD). (b) A batch-class view of NCD. We can decompose a batch of training
samples with batch-wise and class-wise perspectives. “Cls.” is short for “Classes”. (c) Batch-wise experts, dealing with respective sub-
batches, yet aware of both base and novel classes. (d) Class-wise experts, handling a whole batch of samples, but with class-wise expertise.

the two sets. As shown in Fig. 1b, we seek to leverage
the compositional nature of base and novel sets by viewing
GNCD within a batch-class perspective. By respectively
decomposing base and novel sets according to batches and
classes, we propose to divide and conquer GNCD with two
groups of Compositional Experts (ComEx). As illustrated
in Figs. 1c and 1d, each group of experts characterizes
the whole dataset in a comprehensive yet complementary
way — with batch-wise experts (Fig. 1c) capturing separa-
bility between base and novel classes, and class-wise ex-
perts (Fig. 1d) modeling discriminability within each set
of classes. With their union, we can achieve our goal of
GNCD in an end-to-end manner (see Sec. 3.1). Inside the
experts, we regard the weights of each clustering head as a
series of global cluster centers, such that our experts can be
powered by sophisticated pseudo-labeling technique [1, 8],
which actually induces a global-to-local alignment between
global cluster centers and local training samples. We argue
that this pure global-to-local formulation can be vulnerable
to local changes (e.g., color, background), resulting in unfa-
vorable clustering performance. To this end, we introduce
local consistency into pseudo labels by aggregating neigh-
borhood information according to soft similarities, i.e., a
local-to-local aggregation (see Sec. 3.2), which offers clear
performance boost on novel classes.

To sum up, our contributions are threefold:

• Our work is among the first attempts that focus on the
generalized setting of NCD, and proposes to divide and
conquer it using compositional experts that character-
ize the data in a unique yet complementary manner;

• We interpret pseudo-labeling as a global-to-local alig-
nment between cluster centers and training samples,
and propose to strengthen pseudo labels with local-to-
local aggregation among neighborhood samples;

• We show in extensive experiments the superiority of
our proposed method against several state of the arts,

and push the limits of NCD into the challenging gen-
eralized setting that is of greater practical significance.

2. Related Work
Novel Class Discovery. The aim of Novel Class Discovery
(NCD) [15, 16] is to utilize the knowledge of base classes
to discover novel classes by forming clusters on novel sam-
ples. Typically, NCD takes both labeled (base classes) and
unlabeled (novel classes) samples, performing supervised
classification and unsupervised clustering on them, respec-
tively. NCD is in concept related to Zero-Shot Learning
(ZSL), Semi-Supervised Learning (SSL), and unsupervised
clustering, but is also significantly different from them. In
particular, ZSL [3, 9, 28, 30, 37, 40, 43] aims to recognize
novel classes never seen in training, relying on auxiliary
semantic attributes to infer class relations, which are ab-
sent in NCD. SSL [2,4,5,29,33,39] also follows a labeled-
and-unlabeled training paradigm, with the assumption that
all unlabeled samples are from the classes of labeled sam-
ples, while NCD assumes no class-overlap between labeled
and unlabeled samples. Compared to unsupervised cluster-
ing [1, 7, 22] that incorporates no extra supervision, NCD
makes use of a base set to exploit semantic guidance for
better clustering performance on the novel set.

To address NCD, early works [20, 21] mainly focus on
estimating pairwise similarities among novel samples us-
ing the prediction ability learned on the base set. These
pairwise similarities are then used to train a clustering
model for recognizing novel classes. In a later work [16],
NCD training is standardized within a two-stage procedure:
1) a fully-supervised training stage on base samples, and
2) a fine-tuning stage on novel samples. This two-stage
training procedure is adopted by most of the follow-up
works [13, 15, 24, 46–48]. Specifically, Han et al. [15] fur-
ther amplified the first training stage using a self-supervised
pretext task. Moreover, they resorted to ranking statistics
for measuring pairwise similarities between novel samples;
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Figure 2. Schematic of our proposed ComEx. We sample a batch of images from both base and novel sets for training; in this figure we
only show one image in each set for brevity. The images are passed into a shared encoder, and then fed into the two groups of experts to
obtain predictive outputs. Note that both groups of experts share a same target for each input. “CE” is short for the cross-entropy loss.

the same metric is also adopted in [24, 46]. Zhong et al.
proposed to augment the pairwise similarities among novel
samples using neighborhood contrastive learning [47], or
generated virtual samples [48] with MixUp [45]. Benefit-
ing from the optimal transport style pseudo-label assign-
ment [1, 8], Fini et al. [13] managed to unify the learning
of both base and novel classes using a single cross-entropy
loss. They also proposed a “task-agnostic” testing proto-
col that measures the generalization ability when not know-
ing which class subset a testing sample is from, forming the
idea of Generalized NCD (GNCD), which is of greater prac-
tical significance, yet far from being solved. In this paper,
we follow [13] to tackle the more challenging GNCD prob-
lem, with our proposed compositional experts simultane-
ously capturing separability between base and novel classes,
and discriminability within them.

Unsupervised Clustering. Our work is closely related to
unsupervised clustering [14, 38, 41, 44], which aims to par-
tition an unlabeled dataset into different clusters given no
semantic supervision. To this end, a common choice is
neighborhood aggregation [11, 22, 35, 49], which is based
on the assumption that data points within a neighborhood
feature space likely share a same semantic label. By enforc-
ing neighborhood consistency and average entropy maxi-
mization, one can achieve clustering as well as avoiding
cluster collapse. Another line of works resort to pseudo-
labeling for simultaneously learning feature representations
and clustering. Caron et al. [7] showed that k-means steps
can naturally produce pseudo labels for unsupervised rep-
resentation learning. Asano et al. [1] advanced pseudo-
labeling by considering it as an optimal transport prob-
lem, which can be effectively solved using the Sinkhorn-
Knopp algorithm [10]. This formulation was further devel-
oped into a powerful self-supervised learning method [8]
by contrasting pseudo-label assignments between different

augmentations of an image. In this paper, we also resort
to this pseudo-labeling strategy [1,8] for uniformly training
on both base and novel classes. By further looking into the
pseudo-labeling behavior, we propose to strengthen its orig-
inal global-to-local alignment with local-to-local aggrega-
tion based on similarities between neighborhood samples.

3. Approach

We present in this section our proposed ComEx. We start
with the problem definition of NCD, followed by the overall
look of our solution, and its detailed formulation.

Problem Definition. In NCD, training data are divided into
a base set and a novel set. The base set Db = {(xi, yi)}N

b

i=1

contains samples xi associated with corresponding labels
yi from Cb classes. The novel set Dn = {xj}N

b+Nn

j=Nb+1
con-

tains unlabeled samples xj fromCn novel classes, in which
Cn is known a prior. Classes in base and novel sets are
non-overlapped. The aim of NCD is to discover unknown
classes in the novel set, i.e., by partitioning Dn into Cn

clusters using the knowledge learned from Db. Other than
that, in this paper we focus on the more challenging GNCD
problem, in which a testing sample comes from both sets,
yet we do not know in advance which set it is from.

Overall Framework. Our goal is to learn a mapping from
the image space X = {xi}N

b+Nn

i=1 to the joint label space
Y = {l}C

b+Cn

l=1 . At each training step, we sample a batch of
images from both Db and Dn. As shown in Fig. 2, for each
input x, we pass it to a shared image encoder Φ(·) to ex-
tract its visual feature, i.e., z = Φ(x). The visual feature is
then fed into two groups of experts (batch- and class-wise)
for deriving the predictive outputs, which are then trained
with the cross-entropy loss. For samples from Db, we di-
rectly use their ground-truth labels as training targets; for
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those from Dn, we use pseudo-labeling to generate the tar-
gets, which will be introduced in Sec. 3.2. Note that all
experts are composed of shallow-layer MLPs, only requir-
ing a small amount of extra computational resources. For
inference, we simply combine the outputs of these experts.

3.1. Compositional Experts

As shown in Figs. 1c and 1d, we design the composi-
tional experts in batch-wise and class-wise, respectively.
Our design follows the “known unknown” [42] principle,
i.e., each expert should know when it does not know, which
facilitates their cooperation by eliminating unwanted con-
flicts. This principle enables each group of experts access-
ing to the whole dataset, allowing them to capture compre-
hensive yet complementary information.

Batch-wise Experts. Each batch-wise expert deals with its
corresponding sub-batch of samples. For an input xi ∈Db,
we directly feed its extracted feature zi into the base-batch
expert — parameterized by a linear classifier ϕb(·) with
Cb+ Cn output neurons — to obtain the predictive out-
put, i.e., ŷϕbi = ϕb(zi). Likewise, taking as input the vi-
sual feature zj of xj ∈ Dn, the novel-batch expert first
projects zj into a low-dimensional representation zϕj us-
ing a MLP, and then passes it to another linear classifier
ϕn(·) (also with Cb+Cn output neurons) to get the output,
i.e., ŷϕnj =ϕn(zϕj ), z

ϕ
j = ϕ′n(zj). Note that both features

zi, z
ϕ
j and the weights of linear classifiers ϕb(·), ϕn(·) are

ℓ2-normalized when computing the predictive outputs.
We use a standard cross-entropy loss to train the two

experts. After obtained the batch-wise expert output ŷϕ∈
RCb+Cn

of an input x, the cross-entropy loss is defined as

Lce(ŷϕ,y) = −y log σ(ŷϕ/τ) , (1)

where y ∈RCb+Cn

is a one-hot label with its first Cb and
last Cn elements corresponding to base and novel classes,
respectively; σ(·) is a softmax function, and τ is the temper-
ature parameter [19]. This loss naturally holds for base sam-
ples; for novel samples without ground-truth labels, we gen-
erate pseudo labels as their training targets (see Sec. 3.2).

By designing, each batch-wise expert handles disjoint
part of the dataset. In other words, for base-batch expert,
the last Cn elements of its output ŷϕb should always being
suppressed — to prevent erroneously predicting a base class
into novel classes; the same with the firstCb elements of the
novel-batch expert output ŷϕn. Although the cross-entropy
loss in Eq. (1) implicitly achieves this goal by setting these
targets to all zeros, it makes no distinction between base and
novel classes. Similar to [6], we introduce extra regulariza-
tion to explicitly suppress the non-target outputs:

Lreg(ŷϕ) =
(∑

c∈Ỹ
(ŷϕc )

2
) 1

2

, (2)

where Ỹ={1, 2, · · · , Cb} for outputs from the novel-batch
expert, Ỹ={Cb+1, Cb+2, · · · , Cb+Cn} for outputs from
the base-batch expert, and ŷϕc is the c-th element of ŷϕ.

Class-wise Experts. As shown in Fig. 2, the class-wise ex-
perts are applied to whole batch of training samples. Sim-
ilar to the base-batch experts, the base-class expert is also
implemented as a linear classifier ψb(·), but with Cb out-
put neurons; its output is written as ŷψb= ψb(z), where
ŷψb ∈ RCb

. Likewise, the novel-class expert also first
projects z to a low-dimensional zψ , and then pass it to an-
other linear classifier ψn(·) (with Cn output neurons) to
get the output, i.e., ŷψn = ψn(zψ), zψ = ψ′n(z), where
ŷψn∈ RCn

. Visual features and linear classifiers are also
ℓ2-normalized, similar to the batch-wise experts.

A straightforward way to train the two class-wise experts
is using separate cross-entropy losses. However, this breaks
our “known unknown” principle such that the learned class
prototypes of the two experts inevitably mingle with each
other in the output space, which gives rise to unwanted con-
flicts when aggregating them for inference. This is also em-
pirically verified in [13]. In view of this, we instead use a
single loss that regularizes the joint class space:

Lce
(
[ŷψb, ŷψn],y

)
, (3)

in which both variables of the cross-entropy loss are in
RCb+Cn

, and we leave the construction of target y to
Sec. 3.2. We have also tried to apply extra regulariza-
tion on class-wise experts to explicitly suppress the non-
target outputs similar to Eq. (2), e.g., base-class expert out-
puts of novel samples. This turned out to be harmful in
experiments, and an explanation can be that rigidly zero-
ing outputs of a certain amount of inputs results in over-
sensitiveness to data.

3.2. Training Targets

Now we introduce how training targets are constructed,
i.e., y in Eqs. (1) and (3). For a given input x, both batch-
and class-wise experts share the same target y ∈ RCb+Cn

.
As shown in Fig. 2, when xi is from the base set Db, with
its ground-truth label as yi, the target yi is constructed as its
one-hot representation, i.e., the yi-th element of yi being 1
and the restCb+Cn−1 elements being all zeros, also written
as yi = [ybi ,0]. When xj is from the novel set Dn, due to
the lack of ground-truth label, we construct the target yj
by setting its first Cb elements to all zeros, and the rest Cn

ones using pseudo-labeling, i.e., yj = [0,ynj ].

Pseudo-Labeling. We follow [1, 8, 13] to generate pseudo
labels for samples in Dn. By regarding the weight parame-
ters of each linear classifier ϕn(·), ψn(·) in novel-batch and
novel-class experts as a series of global cluster centers (or
class prototypes), our goal is to equally partition a batch of
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samples to these cluster centers, as well as maximizing the
similarities between visual features and cluster centers.

Taking the novel-batch expert as an example, we assem-
ble the visual features of a batch of novel samples into a
matrix Z=[zϕ1 ; . . . ; z

ϕ
Bn ]∈RBn×d, where Bn is the num-

ber of novel samples in a batch and d is the feature dimen-
sion. The weight parameters of the linear classifier ϕn(·),
corresponding to Cn novel classes, are taken as the cluster
centers W = [w1; . . . ;wCn ] ∈ RCn×d. Our goal can be
achieved by solving

maxY∈P tr(YWZ⊤) + ϵH(Y) , (4)

where Y=[yϕn1 ; . . . ;yϕnBn ]∈RB
n×Cn

+ should equally map
Bn novel samples to Cn cluster centers while achieving
maximum similarities, P is a search space ensuring each
cluster center to be selected at least B

n

Cn times on average,
H(·) is the entropy function used to control the smoothness
of Y, and ϵ is a trade-off parameter. We refer the reader
to [1, 8] for more details. The solution Y to Eq. (4), which
can be calculated using the iterative Sinkhorn-Knopp algo-
rithm [10], is taken as soft pseudo labels for the Bn novel
samples. The target yψn for the novel-class expert can be
calculated the same way.

Local Aggregation. The above pseudo-labeling method,
powered by optimal transport, can be seeing as a global-to-
local alignment between cluster centers and training sam-
ples. This method, however, lacks consideration of lo-
cal relations among different data samples, which may
result in vulnerability to local changes, such as colors
and backgrounds. Inspired by neighborhood-based cluster-
ing [22,35,49] and semi-supervised learning [2,29] methods
that aggregate k-nearest neighbors (k-NNs), we propose a
local-to-local aggregation strategy to strengthen the consis-
tency among neighborhood samples.

To this end, we maintain an offline first-in-first-out
queue [17] to allow cross-batch aggregation in training. As
shown in Fig. 3, the queue stores features and pseudo la-
bels of most recent Nq novel samples into a dictionary
Q = {zqk : y

q
k}N

q

k=1, where zq is the mean of zϕ and zψ ,
and yq is the mean of yϕn and yψn. For each novel sample
x in training, we calculate softmax-normalized similarities
between its visual feature z̄ (mean of zϕ and zψ) and each
queue feature zq:

sk =
exp(z̄ · zqk/τ)∑Nq

k=1 exp(z̄ · zqk/τ)
, (5)

where both z̄ and zq are ℓ2-normalized. Instead of selecting
k-NNs, we use a softer manner for aggregation:

yn = α
yϕn+yψn

2
+ (1− α)

∑Nq

k=1
sky

q
k , (6)

SK

SK

Novel-Batch Expert

Novel-Class Expert

Offline Queue

+ +

Figure 3. Construction of queue Q. Given visual feature z of
an input image, the novel-batch/class expert first projects it into a
low-dim feature, and then outputs predictive logits, which are used
to generate pseudo labels. Low-dim features and pseudo labels of
most recent Nq samples are preserved in the queue as the mean of
two experts. “SK” is short for the Sinkhorn-Knopp algorithm, and
the gradient stops when calculating pseudo labels in training.

which integrates pseudo labels of neighborhood samples in
the queue into the current training sample according to sim-
ilarities, and α ∈ [0, 1] is a hyperparameter controlling the
intensity of local aggregation.

Our final training target yn explicitly encourages lo-
cal consistency among novel samples while maintaining
a global alignment between samples and cluster centers.
Eq. (6) can also be interpreted as a “query-key-value” atten-
tion [36] with a shortcut, which allows a flexible informa-
tion flow among neighborhood samples and cluster centers.

3.3. Overall Objective

All the four experts are jointly trained in an end-to-end
manner. The overall training loss can be written as

L(x,y) = Lce(ŷϕ,y) + Lce(ŷψ,y) + Lreg(ŷϕ) , (7)

where ŷϕ = ŷϕb,y = [yb,0] for x ∈ Db; when x ∈
Dn, we have ŷϕ = ŷϕn,y = [0,yn]; for both cases,
ŷψ = [ŷψb, ŷψn]. At each training step, we follow re-
cent works [13, 47, 48] to first generate two views v1,v2

for each input image x using data augmentations. Accord-
ingly, our model outputs two predictions associated with
two targets y1,y2. To encourage consistency across views,
we adopt the swapped prediction strategy [8,13] by training
with L(v1,y2)+L(v2,y1) for each input. For inference,
we simply combine the outputs of four experts:

ŷ = ŷϕb + ŷϕn + [ŷψb, ŷψn] , (8)

in which the first two terms correspond to the contribution
of batch-wise experts, and the last term corresponds to that
of the class-wise ones.
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Dataset → CIFAR10 CIFAR100-50

Evaluation protocol → Task-aware Task-agnostic Task-aware Task-agnostic

# ϕ(·) Lreg ψ(·) Q Base Nov. All Base Nov. All Base Nov. All Base Nov. All

1 ✓ 96.6 91.2 93.9 90.0 89.8 89.9 79.6 49.9 64.8 74.6 49.0 61.8
2 ✓ ✓ 96.2 92.6 94.4 93.3 89.7 91.5 79.8 49.7 64.8 75.1 48.8 62.0
3 ✓ ✓ 96.4 93.1 94.8 90.5 91.0 90.8 79.9 53.1 66.5 74.8 52.3 63.6

4 ✓ 96.6 91.1 93.9 93.0 88.9 91.0 79.4 50.2 64.8 71.2 48.2 59.7
5 ✓ ✓ 96.3 93.0 94.7 93.0 90.2 91.6 79.9 52.7 66.3 71.2 51.4 61.3

6 ✓ ✓ 96.6 91.1 93.9 94.8 90.6 92.7 79.6 50.1 64.9 74.5 49.9 62.2
7 ✓ ✓ ✓ 96.3 92.7 94.5 94.4 91.8 93.1 79.8 50.3 65.1 75.2 49.9 62.6
8 ✓ ✓ ✓ 96.3 93.1 94.7 94.8 92.4 93.6 80.1 53.7 66.9 75.0 53.3 64.2
9 ✓ ✓ ✓ ✓ 96.7 93.2 95.0 95.0 92.6 93.8 80.2 54.2 67.2 75.3 53.5 64.4

Table 1. Ablation study of ComEx. Results are reported in classification/clustering accuracy (%) on base/novel set. We use task-aware (a2,
a3) and task-agnostic (b1) protocols for evaluation. Best results are highlighted in each column. “Nov.” is short for “Novel”.

Subset → Base Novel

Dataset ↓ Images Classes Images Classes

CIFAR10 25K 5 25K 5
CIFAR100-20 40K 80 10K 20
CIFAR100-50 25K 50 25K 50
ImageNet 1.25M 882 ≈30K 30

Table 2. Datasets statistics in terms of base/novel subsets.

4. Experiments

Datasets. We evaluate our proposed ComEx on three
widely-used NCD benchmark datasets, i.e., CIFAR10 [26],
CIFAR100 [26], and ImageNet [12]. As shown in Tab. 2,
each dataset is split into two subsets, namely a base set
and a novel set. The base set contains labeled images of
base classes, while the novel set contains unlabeled im-
ages of novel classes (non-overlap with the base classes).
We conduct experiments on four different data splits of the
three datasets as shown in Tab. 2, in which CIFAR100-
50 was newly introduced in [13] for a more challenging
evaluation on novel classes, and the rest three splits are
widely adopted in former works. We assume the number
of novel classes known a priori during training following
recent works [13,15,24,46–48]. This assumption facilitates
our focus on designing a unified model for both base and
novel classes. Note that if necessary, we can also opt for the
off-the-shelf method [16] to estimate novel class numbers.
Other than the class numbers, no supervision is used for the
novel set during training.

Evaluation Metrics. Following [13], we evaluate our pro-
posed method using two protocols: (a) task-aware, in which
the subset (i.e., base or novel set) of each testing sample is
known in advance; and (b) task-agnostic, in which the sub-
set information is unknown. In experiments, the base/novel

set is further divided into training and testing splits. For the
task-aware protocol, we can evaluate the performance on
(a1) training split of the novel set, (a2) testing split of the
novel set, and (a3) testing split of the base set. In contrast,
for the task-agnostic protocol, the evaluation takes place in
(b1) both testing splits of the base and novel sets.

Typically, most recent works [24, 47, 48] only evaluate
their methods on (a1) with a transductive learning fashion.
In contrast, we also involve evaluations on (a2), (a3), and
(b1) to meet the aim of Generalized NCD as we discussed
in Secs. 1 and 2. In particular, to evaluate the classification
performance on the base set, we simply measure the classi-
fication accuracy. For evaluating the clustering performance
on the novel set, we adopt clustering accuracy following re-
cent works, which is defined as

Acc = max
g∈P(Cn)

1

N

∑N

j=1
1{yj = g(ŷj)} , (9)

where yj and ŷj are respectively ground-truth label and
cluster assignment prediction for each novel sample xj ; N
is the total number of novel samples for testing; P(Cn) de-
notes the set of all possible permutations of Cn elements,
and g is an arbitrary permutation. The optimal permutation
g∗ can be obtained using the Hungarian algorithm [27].

Implementation Details. We use a ResNet-18 [18] as the
image encoder for fair comparisons with the existing works.
The base-batch and base-class experts, i.e., ϕb(·) and ψb(·),
are both linear classifiers with Cb+Cn and Cn output neu-
rons, respectively. The novel-batch and novel-class experts
are both composed of an MLP that maps 512-dimensional
visual features to 256-dimensional ones with 2048 hidden
units, followed by a linear classifier that outputs Cb+Cn or
Cn dimensional logits, respectively. We follow [7, 13, 23]
to use over-clustering and multi-head clustering strategies
for better clustering performance. For image augmentations

14273



Dataset → CIFAR10 CIFAR100-20 CIFAR100-50

Method ↓ Base Novel All Base Novel All Base Novel All

KCL [20] 79.4 60.1 69.8 23.4 29.4 24.6 – – –
MCL [21] 81.4 64.8 73.1 18.2 18.0 18.2 – – –
DTC [16] 58.7 78.6 68.7 47.6 49.1 47.9 30.2 34.7 32.5
RS+ [15] 90.6 88.8 89.7 71.2 56.8 68.3 69.7 40.9 55.3
UNO [13] 93.6† 89.9† 91.8† 73.2 73.1 73.2 71.5 50.7 61.1

ComEx (Ours) 95.0+1.4 92.6+2.7 93.8+2.0 75.2+2.0 77.3+4.2 75.6+2.4 75.3+3.8 53.5+2.8 64.4+3.3

Table 3. Comparison with state of the arts. Results are reported in classification/clustering accuracy (%) on testing split of base/novel set
using task-agnostic (b1) evaluation protocol. Best and second-best results are highlighted in each column. †Our reproduced result.

we use moderate random crop, flip, jittering, and grey-scale
following [13]. Please see Appendix for more details.

4.1. Ablation Study

We ablate our proposed ComEx to evaluate the effec-
tiveness of each proposed module, including the batch-wise
experts (denoted by ϕ(·) for brevity), the class-wise experts
(ψ(·)), the regularization Lreg in Eq. (2), and the queue Q
for local aggregation defined in Eqs. (5) and (6). The ab-
lation study is conducted on the testing split of both base
and novel sets, using task-aware (a2, a3) and task-agnostic
(b1) evaluation protocols. The results are summarized in
Tab. 1. As can be seen, in general, each proposed module
contributes to the full model. We present below detailed
discussions with respective to two different aspects, namely
the effect of different experts (as well as the regularization
Lreg) and the effect of the queue for local aggregation.

Effect of Experts. We evaluate the effect of batch-wise ex-
perts ϕ(·) by disabling the class-wise ones ψ(·), and vice
versa. Specifically, for each group of experts, we can in-
spect the performance of an individual expert (e.g., the base-
or novel-batch expert ϕb(·), ϕn(·)) using task-aware evalu-
ations; their collaborative performance can be evaluated us-
ing the task-agnostic protocol. In Tab. 1, we report in #1–3
the performance of solely using batch-wise experts, in #4–
5 the performance of only using class-wise experts, and in
#6–9 the performance of using both groups of experts, in
which #9 is our full model.

We can observe that each group of experts performs sta-
bly across datasets. Interestingly, compared to the class-
wise experts, in #1–3 the batch-wise experts demonstrate
much stronger performance with task-agnostic evaluation
protocol on CIFAR100-50, which leads to surprisingly high
accuracy over current state of the arts (see Tab. 3). This is
explainable since CIFAR100-50 contains much more novel
classes to be clustered, which results in ambiguous bound-
aries between base and novel classes, making task-agnostic
evaluations much more difficult. The good performance of
batch-wise experts is attributed to our all-class-aware de-
sign, which explicitly induces separability between the two

Method ↓ CF10 CF100-20 CF100-50 ImgNet

k-means [32] 72.5±0.0 56.3±1.7 28.3±0.7 71.9
KCL [20] 72.3±0.2 42.1±1.8 – 73.8
MCL [21] 70.9±0.1 21.5±2.3 – 74.4
DTC [16] 88.7±0.3 67.3±1.2 35.9±1.0 78.3
RS [15] 90.4±0.5 73.2±2.1 39.2±2.3 82.5
RS+ [15] 91.7±0.9 75.2±4.2 44.1±3.7 82.5
OpenMix [48] 95.3 – – 85.7
DualRank [46] 91.6±0.6 75.3±2.3 – 88.9
Joint [24] 93.4±0.6 76.4±2.8 – 86.7
NCL [47] 93.4±0.5 86.6±0.4 – 90.7
UNO [13] 92.6±0.5† 85.0±0.6 52.9±1.4 90.6

ComEx (Ours) 93.6±0.3 85.7±0.7 53.4±1.3 90.9

Table 4. Comparison with state of the arts. Results are reported
in clustering accuracy (%) on training split of the novel set using
task-aware (a1) evaluation protocol. Best and second-best results
are highlighted in each column. “CF” is short for “CIFAR”, and
“ImgNet” is short for “ImageNet”. †Our reproduced result.

sets of classes — by guiding each batch-wise expert to learn
from what it knows, and to reject what it does not know.
With the regularization Lreg on non-target outputs we can
observe further benefit towards this goal.

In contrast, the class-wise experts have particular exper-
tise in the two sets of classes, which allows them to concen-
trate on their own specialties, and thus perform favorably in
task-aware evaluations. By combining the two groups of
experts, we can see further benefits thanks to their com-
plementary abilities. This is especially obvious with the
most challenging task-agnostic protocol, which evaluates
not only separability between base and novel classes, but
also discriminability within them.

Effect of Local Aggregation. We further evaluate the effect
of our local aggregation strategy defined in Eqs. (5) and (6).
By definition, this strategy alters the training target of each
sample by aggregating neighborhood information preserved
in an offline queue Q. We report in Tab. 1 the results of
performance with/without the queue. We can observe clear
performance boosts on novel classes in both task-aware and
task-agnostic evaluations when adding the queue. This veri-
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Figure 4. t-SNE [34] visualizations of ComEx on testing split of both base and novel sets of CIFAR10. (a) Initial feature space at training
epoch 0. (b) Feature space after 200 training epochs. (c) Output space of batch-wise experts. (d) Output space of class-wise experts.

fies our assumption that incorporating local-to-local consis-
tency provides further clustering benefits on top of global-
to-local alignments. In experiments we observe that a mod-
erate queue size of Nq = 500 is good enough for local ag-
gregation. We also provide in Appendix the results using
different queue size and different α in Eq. (6).

4.2. Comparison with State of the Arts
We compare our proposed ComEx with the current

state-of-the-art NCD methods, i.e., KCL [20], MCL [21],
DTC [16], RS [15], RS+ [15] (RS with incremental classi-
fier), OpenMix [48], DualRank [46], Joint [24], NCL [47],
and UNO [13]. We report in Tab. 3 results of task-agnostic
evaluations (b1), which is our major concern in this work;
methods without task-agnostic evaluations are absent in this
table. As the protocol used in most current works, the re-
sults of task-aware evaluations on training split of the novel
set (a1) are also reported in Tab. 4. Note that we report our
reproduced results of UNO [13] on CIFAR10 using their
officially debugged code (see Sec. C.1 in Appendix).

In Tab. 3, our proposed ComEx outperforms the current
state of the arts with a clear margin, validating the efficacy
of our proposed dividing-and-conquering solution. Specif-
ically, CIFAR100-50 sees greater performance boost, indi-
cating that current methods are easily misled by ambiguous
boundaries between base and novel classes as discussed in
Sec. 4.1. In contrast, our proposed ComEx works well on
both sets of classes, benefiting from the comprehensive yet
complementary abilities of two groups of experts. On the
other hand, in Tab. 4 ComEx still yields competitive results
with the traditional evaluation protocol only focusing on the
training split of novel set. However, ComEx is inferior to
MixUp [45] based methods [47, 48] which rely on synthe-
sized strong negative samples during training. This strategy
naturally benefits their NCD performance on the training
split, which may arguably further improve ComEx likewise.

4.3. Qualitative Results
We provide in Fig. 4 the qualitative results of our pro-

posed ComEx on testing split of CIFAR10. Figs. 4a and
4b show feature space (output of image encoder) visualiza-
tions before and after training. Since the image encoder is
pre-trained on five base classes, at epoch 0 all samples are
roughly grouped around these base classes, while at epoch
200 the ten classes are well separated in the feature space.

In Figs. 4c and 4d we show output space visualizations by
combining the outputs of each group of experts. In general,
both batch- and class-wise experts produce separable out-
puts of the ten classes. Although Figs. 4c and 4d seem sim-
ilar due to simplicity of the dataset, we can still observe that
class-wise experts (Fig. 4d) yield clearer decision bound-
aries compared to batch-wise experts (Fig. 4c). This corre-
sponds to our design purpose since each class-wise expert
sees only a part of all classes, thus tends to produce (over-)
confident outputs. This property facilitates recognizing im-
ages in most cases, yet may be harmful when facing hard
samples as denoted in the red box in Fig. 4d. On the con-
trary, batch-wise experts are less-confident of their predic-
tions due to exposed to more classes, thus can in turn tol-
erate hard samples by allowing local groupings as denoted
in Fig. 4c. Again, our proposed ComEx leverages the com-
prehensive yet complementary abilities of both groups of
experts, leading to superior GNCD performance.

5. Conclusion
We present in this paper ComEx, namely Compositional

Experts, for the task of Generalized Novel Class Discov-
ery (GNCD). Our goal is to generalize the recognition abil-
ity of traditional NCD to both base and novel sets. We
show that current methods are far from achieving this goal,
and propose to divide and conquer it with two groups of
experts that characterize comprehensive yet complemen-
tary information of the data. We also introduce local-to-
local aggregation to complement the widely-used global-to-
local pseudo-labeling strategy, which considerably boosts
the performance on recognizing novel classes. ComEx is
evaluated on four GNCD benchmarks, demonstrating clear
superiority against current state-of-the-art approaches. As
future works, we plan to push the limits of GNCD to large-
scale applications across different data regimes.
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