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Abstract

As lovely as bunnies are, your sketched version would
probably not do it justice (Fig. 1). This paper recognises
this very problem and studies sketch quality measurement
for the first time — letting you find these badly drawn ones.
Our key discovery lies in exploiting the magnitude (Lo
norm) of a sketch feature as a quantitative quality metric.
We propose Geometry-Aware Classification Layer (GACL),
a generic method that makes feature-magnitude-as-quality-
metric possible and importantly does it without the need for
specific quality annotations from humans. GACL sees fea-
ture magnitude and recognisability learning as a dual task,
which can be simultaneously optimised under a neat cross-
entropy classification loss. GACL is lightweight with theo-
retic guarantees and enjoys a nice geometric interpretation
to reason its success. We confirm consistent quality agree-
ments between our GACL-induced metric and human per-
ception through a carefully designed human study. Notably,
we demonstrate three practical sketch applications enabled
for the first time using our quantitative quality metric.

1. Introduction

Everybody can sketch, the debate is on how well. With
the proliferation of touchscreen devices, the urge to sketch
is ever more pronounced. This is not to mention the broad
range of sketch-enabled applications — from recognition
[10,26,46,64], parsing [24,45,63], recreating [8, 16,28,50],
to leveraging sketch as a query modality for image search
[3,29,38,42,43] and visual content manipulation [5,20,57,

], or even enabling a drawing agent that excels human at
a Pictionary-like sketching game [2].

This paper recognises this very “how well” problem and
proposes a learnable metric that for the first time tells us
just how badly drawn my bunny (or any other sketch) is —
so from the collection of bunny sketches in Fig. 1(a) to an
ordered list of bunnies from worse to best in Fig. 1(b). As
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Figure 1. (a) Not every free-hand bunny sketch is of equal quality.
(b) We contribute an annotation-free solution (GACL) for discrim-
inating quality between bunny (and many other category) sketches.
We show quality discovery under GACL supports reasonable level
of quality examination from humans.

interesting as the problem sounds in its own right, it also
underpins many facets of sketch research at large. These
include but not limited to (i) disentangling human factor in
model prediction, i.e. whether the model is bad or the sketch
is; (ii) facilitating better representation learning, i.e. making
data-driven models less prone to overfit by learning against
specific quality level; (iii) sketching assistance applications,
e.g. helping users to move towards a better bunny.

Quantifying sketch quality is non-trivial. The first ob-
stacle is the fatal lack of existing sketch datasets annotated
with human quality ratings. This essentially renders most
of the recent works on image quality assessment that pre-
dicts human opinion scores inapplicable [31,47,52,68]. The
sketch-specific trait as a vector representation of sequential
coordinates also sets it apart from another line of works on
trying to model human-interpretable image quality directly
from low-level statistical distortions [1,21, 58, 66] — com-
pared with visual artefacts such as noise, blur and compres-
sion, sketch quality is more of a subjective interpretation of
holistic visual concepts.
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In this paper, we provide the first stab at learning a
sketch-specific quality score (metric) without the reliance
on human quality annotations. Core to our technical solu-
tion is the insight that such a score is inherent to the feature
space geometry underlying a recognition task (Fig. 6). We
first single out the orderless feature geometry learned off a
typical Softmax formulation (Eq. 4) to be the main culprit
for the failed quality discovery. This is because Softmax
will constantly push sketch features to be close to the class
centre and thus undermines any potential geometry forma-
tion. The intuition is then that a real-valued feature magni-
tude can already induce a quality metric, if the underlying
feature geometry can satisfy the following property: the bet-
ter quality a sketch, the closer its feature to the class centre.

We revisit Softmax propose a quality-informed alterna-
tive named Geometry-Aware Classification Layer (GACL).
GACL implements quality score as feature magnitude (Lo
norm) and treats its learning alongside recognition as a dual
task. This then importantly gives rise to the geometry con-
straints said above, where the monotonic increase of sketch
quality score is positively correlated with easy recognisabil-
ity, i.e. closer to a class centre. To encourage the integrity
of learned feature magnitude, we enforce its optimisation to
be convex and that a global optima is guaranteed. We also
show that under mild mathematical approximation, sketch
quality score under GACL is a de facto margin value to
the class decision boundary, yielding a nice semantics to
the quality defined (that the better the quality, the farther
away a sketch is from its class decision boundary). We de-
velop four specific instantiations of GACL and conduct hu-
man study respectively to provide some assurance on the or-
dering of the quality scores learned. Asking humans to de-
vise a strictly-pairwise global ordering is however not feasi-
ble [12,25], especially when sketch quality perception can
be highly subjective. For that, we resort to the psychol-
ogy literature [11, 15,51] and adopt a set-based approach
where human gets to rank coarsely at set-level other than in-
dividual sketches. Results off 12,800 trials (40 participants
each doing 320 trials) have human agreeing with the learned
quality ordering 92.61% of the time on average across 8
carefully selected sketch categories.

Importantly, we showcase the practical benefits of mod-
elling sketch quality in three applications: (i) quality-aware
sketch recognition that contributes the new state-of-the-art
recognition performance; (ii) quality-guided sketch gen-
eration that pushes the envelope of sketch manipulation
task beyond generating conceptually correct sketches; (iii)
quality-enabled sketch attribution that helps sketch practi-
tioners to identify malicious user input.

2. Related Work

Sketch research. Apart from constantly raising the perfor-
mance bar on various sketch perceptual tasks, recent com-

puter vision works for human sketch data have been addi-
tionally focusing on two unique aspects: (i) pixel/vector di-
chotomy: should sketch be processed as raster pixel im-
age [39,44,57,64] or vector graphic [16,26,36,49] com-
piled as a sequence of points, or the combination of both
[50,53,61,62]7 Current explorations suggest that better per-
formance is often obtained when the two modalities are en-
coded cooperatively as one unified representation for either
generative or discriminative task. (ii) “can’t sketch” reality:
unlike clicking a tag or typing a search keyword, sketching
is a slow and skilful process. Users can be worrying about
inaccurate results because of their poor renderings and con-
sequently not motivated enough to sketch at the first place.
Existing solutions include allowing users to stop early in a
sketching episode so that their goals can be achieved with
earliest/easiest strokes [2, 3,23] or a real-time drawing as-
sistant that lowers rendition barriers [34,48, 60]. We study
a new sketch problem of computational quality modelling,
which can potentially benefit many ongoing sketch research
— from improving discriminative performance (Sec. 4.2) to
introducing a beautification objective into existing genera-
tive models (Sec. 4.3).

Image quality assessment. Existing literature on image
quality assessment (IQA) draws a distinction between ap-
proaches that require an input reference and those do not.
Referenced-based algorithms [18,21, 66] assume the avail-
ability of pristine and distorted image pairs so that the qual-
ity gap can be measured, where the no-reference or blind
IQA [59,65,67] loosens the pairing constraint by instead ex-
ploiting from a carefully curated image set processed with
several known fixed distortion types (e.g. noise, blurring,
corruptions and compression artefacts). One particular line
of blind IQA works [13,33,52,68] is how to accurately pre-
dict subjective human quality ratings provided by datasets
like AVA [37] and LIVE [14], which is not applicable here
due to the lack of a similarly annotated dataset. We too ap-
proach sketch quality assessment as a blind IQA problem
and propose a novel solution by leveraging sketch feature
magnitude as a promising quality metric to bypass the labo-
rious and expensive human annotation step.

Margin-based learning. Margin is an important concept
for representation learning before the deep learning wave
(e.g. SVM [7] is also known as soft margin classifier), and
even more so when deep learning sweeps across computer
vision fields today (e.g. contrastive [17] or triplet ranking
loss [56]). Most relevant to ours is the idea of encapsulat-
ing margin into a Softmax-based classification model. By
modifying the vanilla Softmax via the insertion of an ei-
ther fixed or adaptive margin, many representative Softmax
variants have been proposed [9, 27, 30, 35, 54, 55] to boost
feature discriminativeness with the same goal of ensuring
within-class variation is smaller than between-class differ-
ence. We have shown analytically that quality score learned
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under our framework corresponds to the instance-specific
margin to the class decision boundary, and which gives us
an intuitive explanation on the seemingly black box magic
of GACL from a feature space geometry view (Sec. 3.4).

3. Methodology

The goal of this paper is to obtain a score-based met-
ric ¢(+) that quantifies sketch quality. Given sketch sam-
ple x; with category label y; € {1,2,...,C}, our key find-
ing is that, during the training of a sketch recognition net-
work f(-) and under certain mild conditions, sketch feature
magnitude (Ls norm) can automatically encode the compu-
tational metric ¢(-) needed for quality discrimination, ie.
¢ = q(z;) = ||f(x;)||2- We will first introduce neces-
sary preliminaries before describing our proposed method
for ¢(+) to be a good proxy for quality discovery.

3.1. Preliminaries and Discussions

In a conventional Softmax-based classification layer, the
training objective for a sample x; being classified as its
ground truth category y; is formulated as:

ewg; f(zb)+Byl

Ly (z;) = —log o
veif(Ii)-ﬁ-Byi + ¥ eWyTj f(zi)+By;
j=1,j#i

ey
where f(z;) € R? is the extracted deep feature of the i-th
sketch sample belonging to the class y;. W € R¥*C de-
notes the weights of all C' class centres with B € R as bias
terms. We transform VVyj; f () to [[W,, |[]|f(z4)]| cos 0,
where 0; , . is the angle (i.e. cosine distance) between f(z;)
and Wyj. For ease of analyse, we further eliminate the bias
term and set ||V, || to 1. This gives us a modified Softmax
formulation as follows:

ellf (@)l cos0s 4,

Lam(z;) = —log =
ellf@olleostiy, 1 3 llf@)llcostiy,

J=1,j7#i
2

Assume that each class has the same number of samples
and that all samp~les are well-separated, we could obtain the
lower bound of L, as (details in the supplementary):

Lom > log(1 + (C — 1)e~o=allf @l 3)

Astute readers may already notice the catastrophic implica-
tion under the loss function Ly,,: the optimisation process
can be dominated towards maximising ||f(z;)|| and com-
pletely independent of 6 at its worst, derailing from the very
goal of categorisation. Indeed, Eq. 3 tells us that the min-
imisation process of Lg,,(x;) can take place on ||f(x;)||
only. Solving this problem, however, requires more than
an naive unit normalisation of || f(z;)||. To see this clearer,

imagine the extreme ideal case where a sample is infinites-
imally close to its centre. As such, the gradient of L, (z;)
w.r.t the ground-truth label y; is 1 — M(;ﬁ (0.931
when C=100, 0.993 when C=1000), which means that the
model will undesirably back-propagate large gradients even
when samples are well separated. To get around this seem-
ingly opposing role of feature magnitude, similar compro-
mise is often undertook, where ||f(z;)|| is first cancelled
out from the formulation (i.e. ||f(z;)|| = 1) and replaced
with a global scalar s to simulate its critical effect for nu-
merical stability under cross-entropy loss optimisation. We
are now ready to write down a normalised version of Soft-

max as enjoyed by many existing works [9, 30, 54,55]:
oS cos iy,
Lnorm.sm = — 10g c 4)
oS cos Oi,y; 4 Z o508 ei,yj
J=1j#1

where the exact value of s is empirically set.

One problem with Eq. 4 is its inclination to treat every
sketch sample equally recognisable — all cos6; ,, is opti-
mised towards the same optimum of being as close to the
class centre as possible. This loss of instance discrimina-
tion comes against to how we perceive human sketch data
in practice, where people can draw dramatically different
bunnies while retaining recognisability (Fig. 1). These bun-
nies are certainly not of equal quality, and nor should their
feature distances be the same to the class centre. A natural
question to ask is then that instead of over-simplifying the
role of feature magnitude || f(-)|| to a constant scalar, can we
exploit it to encourage the establishment of quality seman-
tics within the same class so that cos ; ,, > cos ;. when
x; is of significantly better quality than x;? We give an
affirmative answer to this question. We show by carefully
tuning the interplay between ||f(-)|| and cos @ into a uni-
fied framework (Sec. 3.2), || f(+)|| promotes a quality-aware
feature geometry space and that turns itself into a promising
quality indicator as verified in our empirical evaluation.

3.2. Geometry-Aware Classification Layer

Eq. 4 presents a magnitude-agnostic classification loss.
We aim to inject feature magnitude || f(z;)|| as a learnable
variable into Eq. 4 so that it adaptively works with the clas-
sification objective cos®;,, and consequently induces an
instance-discriminative feature space geometry that permits
quality discovery. For that, we introduce a new formula-
tion upon Eq. 4 by replacing s cos 6; ,, with a compound
function A(g;, 0,,)'. We name it Geometry-Aware Classifi-

cation Layer (GACL). Denoting ch:l)j i 2 %u; a5 R,

IFor notation simplicity, we use g; and 6y, to represent || f(z;)|| and
0;,, respectively.
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GACL transforms Eq. 4 to:

LGACL(C]ia eyi) = —log TA@.0) . b ()
The success of GACL thus relies critically on the design
choice of A(g;,8,,), for which we define three necessary
constraints for its success.

Geometry constraint. If ¢; is a good proxy for quality
measurement, it should be larger than ¢; when 6, is geo-
metrically lying closer to the class centre than that of 0, ,
Le. (Qi - qj)(eyi - eyj) <O0.

Condition on A(g;,0,,). Given two sketches with differ-
ent value pairs of (g;,6,,) and (q;,0,,), we assume that
both has reached optimal recognisability/optimisation equi-
librium — Lgacr(g:,0y,) = Laacr(q;,0y,). We perform
a Taylor expansion of the left-hand side:

Lcacr(qi,0y,) = LoacL(gs,0y,)+

(6)
(@i — qj) Vq Laacr + (0y, —0y,) Vo LaacL

where we have dropped higher order terms. To ensure (g; —

q;)(0y, —0y,) < 0, it is then easy to obtain the condition to

which A(g;, 0,,) must satisfy:
VqA(gi; 0y,)

>0 @)

Co-optimisation constraint. A prerequisite for the geom-
etry constraint to hold is to ensure that 6,, can be properly
optimised. Indeed, only when §,,, remains a valid learnable
objective can it stand to the quality semantics we project —
the easier the recognition, the better the quality. Unfortu-
nately, Eq. 3 tells us this doesn’t come easily as the train-
ing dynamics can be completely dominated by ¢; and thus
become less irrelevant with the optimisation of ¢,,. We al-
leviate this issue by asking that any updates on ¢; won’t
consequently harm its recognisability learning.

Condition on A(g;,6,,). We use one step of gradient de-
scent to model the effect of update on g; to 0,,:

4 =q — &g Laacr(qi, 0y,)

(®)
92/1 = 0.7!1 - 5 Y LGACL((]i, le)

qz:QQ

where ¢ is the learning rate. Our goal is then
to ensure the non-destructive ¢; learning for 6,,, i.e.
VoLcacr (¢, 9y¢)|qi:q; > 0. This translates to the con-
straints on A(g;, 8,,) as:

i

VHA(qiv 9.%)

Optimality constraint. Assuming the value range of ¢; is
bounded in [ly, u,], we require that L acr, always has an
optimal solution ¢ between [y, u,] in order to prescribe a
valid quality metric.

—— ©)

Condition on A(g;,0,,). We assume Lgacy is a con-
vex function of ¢; (ie. VoLaacr(¢i,0y,) > 0 =
ng(qi, 6,,) < 0), which naturally yields to a global op-
tima. The existence of an optimal solution ¢} in [l,, u,]
then translates to the following condition to be held:
VqLGACL(lq79yi) < 0 and VqLGACL(Uq;Gyi) > 0 (be-
cause the first derivative of Lg ¢, to g; is monotonically
non-decreasing). Given \/,Lgacr =

A(gi, 0y,) and a5
straints on A(g;, 6,,) by requiring \74A(l4,6,,) > 0 and
VaA(ug, 0y,) <0.

R
T At g V4
> 0, we obtain our last con-

3.3. GACL Instantiations

Aiming towards a thorough inspection, we provide four
different types of instantiations” of A(g;,6,,) with each
of which functions on a different conceptual space: (i)
scale: A(gi,0y,) = (1 — gi)scosBy,; (i) multiplicative
angular: A(g;,0y,) = scos(q;0y,); (iii) additive angular:
A(gi,0y,) = scos(8y, + ¢;); (iv) cosine: A(g;,0y,) =
scos By, — qi;

It’s easy to prove that the first two conditions on
A(qg;,0,y,) are met among the four instantiations (see sup-
plementary for details). The tricky part is the guarantee of
the optimality of ¢;, which is bounded under two specific
values {l,, u,} and calls for more efforts to satisfy. Rather
than handcrafting the possible values of {l,, u,} in the lens
of microscope, we propose a more principled strategy by
introducing a score regulariser G(g;):

R

_quA(qiﬁyi)Jr)\quG(qi)

(10)
Since the value of —m Vq A(gs, 0y,) always re-

Velaacr =

mains positive in all instantiations, we simply need to set
V¢G(ug) = 0 to meet /qLgacr(ug,6y,) > 0. We im-
plement G(g;) as qi + u%zqi and then focus on achieving
VeLlcacr(lg,8y,) < 0 for each instantiation scenario in
the following discussion.

A(g;,0y,) = (1 — q;)scos 8,,. Rewriting Eq. 10 gives
us:

Rscos by,
Velcacr = At + R AgVqGlgi) (D
We know 0 < % < 1. It is then sufficient to
ensure \/qLgacr(lg,0y,) <0if Ay 74 G(l;) < —s. And
since V4G(¢i) = —z» + 5z, we conclude by requiring
—slg%ug?

Ag > 7T We set [, = 0.1,u4 = 0.3, s = 64 in our
implementation.

2We apply a linear scaling on ¢; in practice to make it work in the
proper value range [lq, uq], which is omitted here for simplicity.
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R sin(gifly,) + Ag Vq G(ai)
(12)
We conduct similar analysis as above, where given 0 <

Rsin(qi0y,)
7&(%,9“):1% <1,0<6,, <7, weenforce \; v, G(ly) <

—S8T 2'lL 2
—% = )\g > W to meet VqLGACL(lqvoyi) < 0.
We setl; = 1.1, u4 = 1.25, s = 64 in our implementation.
A(q;,0y,) = scos (0, + g;) . Rewriting Eq. 10 gives
us:

Rs .
Velcacr = AW L R sin(0y, + ¢:) + Ay Vq G(a:)
(13)
2 2
Similarly, we require A\, 7, G(l,) < —s = A\, > %

to meet \/,Lgacr(ly,0y) <0. Wesetl, = 0.45,u, =
0.65, s = 64 in our implementation.
A(qi,0y,) = scosB,, — q;. Rewriting Eq. 10 gives us:

Velcacr = AT + Ay Vg G(a:) (14)

qiveyi) + R

2. 2
Similarly, we require Ay 74 G(ly) < —1 = X, > —s2e,
q q

to meet \/,Laacr(ly,0y) <0. Wesetl, = 0.35,u, =
0.8, s = 64 in our implementation.

3.4. Demystifying ¢; as Quality Metric

In this section, we provide a different perspective to the
role of g; that comes with a nice geometrical interpretation:
Under mild approximation, g; is the feature distance to class
decision boundary, echoing well as a dual task with 6, (i.e.
co-optimisation), which is the feature distance to class cen-
tre. Quality discrimination is then encoded in ¢; from such
geometrical semantic establishment, as illustrated in Fig. 2.
To see clearly how ¢; represents the distance to the deci-
sion boundary, we first review how Softmax is derived as
a classification objective. A general formulation to classify
an instance x; among C classes is:

max(m#ax{cos 0y, } —cost,,,0) (15)
JF#i

which is the raw “hardmax” implying that the target logit
score should be greater than the rest. By smoothing the two
max functions with mathematical approximations’, we ar-
rive at the normalised softmax in Eq. 4. The problem with
Eq. 15 is that it completely disregards the within-class fea-
ture distribution, where samples are treated equally so long
as they belong to the same class label, and thus undermines
any potential quality discovery. Our assumption is that sam-

ples with better quality should be pulled farther away from

3(i) LogSumExp(z) for max(z); (ii) SoftPlus(x) for max(z, 0).
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Figure 2. Geometrical interpretation of ¢; under GACL. Through
rigorous proof, we show that ¢; is de facto the distance to the
class decision boundary, helping to form a well-structured within-
class feature distribution geometry for quality discovery (Exam-
ples marked with green bullet points indicate best quality).

the decision boundary and pushed close to the class cen-
tre. This equates to establishing the geometrical order, i.e.
quality discrimination, for within-class feature space. We
embed an instance-adaptive margin m; into Eq. 15 (in re-
semblance to the idea of maximum margin in SVMs):

max(m;xx{cos 0y, } — cos Oy, +m;,0) (16)
VE)

Similarly, by replacing the two max functions with their
soft approximations, we obtain the soft version of Eq. 16:

cos Oy :
log(l + QIOg(Z]C:Lj;ﬂ e Yi)—cos 9yi+m7¢) ~
geor v —ms (17)

cos0,. —m; c cos 0y .
e + D i1 € J

— log

Now we can see that apart from global normalisation term
s, Eq. 17 is exactly our GACL framework with A(g;, 0,,)
instantiated as scosf,, — ¢;, where feature magnitude g;
becomes m;. We omit the elaborations for proving other
three A(g;, 6,,) instantiations and believe the discussions
above can serve our purpose in providing intuitions on why
GACL permits quality discovery: the synergistic interplay
between ¢; and 6, yields the feature space geometry that

importantly gives rise to the notion of quality.

4. Experiments

Settings. We evaluate our approach on the largest human
free-hand sketch dataset to date, QuickDraw [16], which
is collected via an online game and where the players are
asked to sketch a given category name in less than 20 sec-
onds. QuickDraw contains 345 object categories with each
containing 70k, 2.5k, 2.5k samples for training, validation
and testing respectively. We follow the tradition [41, 62]
of using 7k samples per category for training and all test-
ing data for evaluation (862k sketches in total). We im-
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Figure 3. Qualitative visualisation of ¢(-) for test samples of different object categories. Dashed lines indicate the mean percentage values
among four instantiations of GACL in Sec. 3.3. Shaded area highlights the individual difference. More details in text.

plement f(-) as a two-layer BILSTM [19] with 1024 hid-
den units, and classification head W with MLPs of dimen-
sion 2048-1024-345. Adam [22] optimiser is adopted with
initial learning rate le-3 and a per-epoch cosine annealing
schedule for gradient warm restarts [32]. We train each in-
dividual trial for 10 epochs with a batch size of 256, and
pre-process vector sketch data to absolute coordinates nor-
malised within range [0, 1]. Lastly, we denote our four in-
stantiations of GACL (Sec. 3.3) as Ours-Sca, Ours-Mul,
Ours-Add and Ours-Cos respectively.

4.1. GACL Supports Sketch Quality Discovery

For empirical evaluation of ¢(-), we select 8 out of 345
categories in QuickDraw based on the complexity, variety
and semantic richness rules outlined in [24]. In Fig. 3, we
first qualitatively visualise their distribution of ¢(-) under
different GACL instantiations and demonstrate some exem-
plary sketch samples separated apart by dramatically differ-
ent ¢ values. It can be seen that ¢(-) encodes sketch quality
discriminatively in a reasonable way to viewers. Samples
corresponding to smaller ¢ values are often aesthetically
less pleasing, hard to recognise or simply incomplete and
unreliable sketch data. On the other hand, ¢(-) works from a
wide range of perspectives to interpreting good sketch qual-
ity, including smooth and coherent levels of visual structure
rendering (e.g. umbrella), local conceptual semantics high-
lights (e.g. passport) and holistic visual aesthetics and rich-
ness (e.g. angel). It is also understandable that ¢(-) learned
by Ours-Sca/Ours-Mul/Ours-Add/Ours-Cos are noticeably
different (shading areas) given the different value domains
they are designed to work on. All four GACL instantiations
however show similar trend of score distribution change, in-
dicating the possibility of a unified metric depending on the
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Figure 4. Quantitative results of ¢(-) for test samples of different
object categories. We calculate the percentage of human partici-
pants that resonates with the quality order produced by ¢(-) in a
local set-based ranking approach. (a) 3-quantile setting. (b) 4-
quantile setting.

granularity of quality support evaluated on, as confirmed in
our quantitative evaluation.

It needs more careful inspection when coming to quan-
titatively evaluating sketch quality. The common way of
achieving this by measuring the difference between model
predictions and human ground-truth ratings does not apply
here as we lack of relevant annotations. We further argue
that such approach would be flawed even we recruit human
participants and collect their quality opinions on individual
sketches — it’s hard to obtain objective and accurate scores
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Figure 6. Visualisation of ¢(-) and 0 between models learned un-
der Softmax (Left) and Ours-Cos (Right). Category: Rabbit.

Table 1. Comparison against contemporary sketch recognition
baselines on QuickDraw. Numbers reported are top-1 accuracy.
IJCV’2017 [64] CVPR’2018 [61]

BiLSTM ResNet-50 Sketch-a-net SketchMate
T T7987% 0 7876% 68.71% 19.44%
TOG 2021 [63] CVPR’2020 [41] CVPR’2020 [26] ICCV’2021 [62]
_ SketchGNN_ _ _ SketchFormer _ _ _ SkeichBert | SketchAA _
77.31% 78.34% 80.12% 81.51%
Ours-Sca Ours-Mul Ours-Add Ours-Cos
T 81.77% 0 82.02%  81.97%  82.%2%

with consensus give the subjective and abstract nature of
free-hand sketch data. Inspired by the psychological find-
ings on using set-based approach for more stable human be-
haviour in complex visual tasks [11,51], we evaluate the lo-
cal quality rankings of GACL as a way [12,25] to coarsely
examine its efficacy as a continuous global scale. Specifi-
cally, we recruit 40 participants with each undertaking 320
independent trials. We divide the scores underlying a qual-
ity metric ¢(-) into 3-quantile and form three sketch sets
with each containing random samples from its correspond-
ing score range. Each participant is then required with a bi-
nary action on the question: “do you agree with the quality
order between the presented sketch sets?” In Fig. 4(a), we
plot the percentage of “yes” answers for each category. The
mean percentage of 97.18% with standard deviation 0.38%
among four GACL instantiations confirms the consistent ef-

ficacy of our quality discovery method. We further conduct
a similar four-quantile task (Fig. 4(b)), where participants
agree with the quality rankings 88.04% of all time.

4.2. Quality-Aware Sketch Recognition

One potential benefit of the proposed GACL framework
is to contribute a competitive sketch recognition model as
a byproduct — representation learning is discriminating be-
tween the quality of sketch instances and thus generalises
better by less overfitting on lower quality data as per simi-
lar findings in the recent literature [4,6]. To verify, we first
visualise the relationship between ¢(-) and € in Fig. 6 and
confirm that sketch instances of better quality (larger ¢) tend
to be more easily recognised (smaller #) under Ours-Cos,
while such phenomenon is failed to be observed in mod-
els trained by conventional Softmax loss. We further com-
pare the performance between Ours-Cos and contemporary
sketch recognition baselines in Tab. 1. It can be seen that
our approaches achieve consistently and significantly im-
provements over their no-quality-attended counterpart (vs.
BiLSTM), and even beat the state-of-the-art sketch recog-
nition work of a noticeable margin without any bells and
whistles (vs. SketchAA).

4.3. Quality-Guided Sketch Generation

In this section, we show ¢(-) learned under GACL can
be used to guide sketch generative models towards higher
quality exploration in a post-hoc iterative manner (see sup-
plementary for concrete implementation). A decisive factor
affecting the synthesis outcome is the hyperparameter term
« that balances the weighting between self-reconstruction
and quality improvement — in our setting, a larger o value
prefers the former. We showcase some examples in Fig. 5
between generation process under two distinct o values and
can observe that (i) our learned quality metric ¢(-) is in-
deed a useful drop-in module to enriching existing gener-
ative sketch models with a quality dimension. By sliding
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Figure 7. (a) Comparison between different sketch attributions methods under Fi score. (b) Illustration of malicious and OOD sketch
inputs, which both have very low ¢ values (number in red). OOD sketch, however, can uniquely rise to a significantly larger g value
(number in green) after some simple stroke removal strategy — what malicious sketches can’t. This gives chance to attributing between

OOD and malicious sketch inputs.

along the iteration steps, we can customise the extent of
quality improvement. (ii) the choice of o matters. While a
lower « value generally lead to the generated sketches with
higher ¢ values, it can also result in a new visual imagery
that is completely disconnected with the input (e.g. pig and
rabbit), failing the quality guidance intent. This suggests
one future work direction on exploration of an adaptively
set v value (cf. fixed) to strike a better balance between
quality improvements and identity preservation.

4.4. Quality-Enabled Sketch Attribution

One practical bottleneck for sketch model deployment
today is the general lack of method for user sketch attribu-
tion — when the poor model performance is detected, de-
velopers can not know whether it comes down to model
capacity itself or the malicious* sketch input. In this sec-
tion, we aim to examine to what extent can our learned
q(+) benefits such purpose. Intuitively, if the g value of a
sketch is greater than a threshold value ¢,, we deem it as
a benign user input (better quality) or which otherwise as a
malicious one. We collect human opinions of their binary
decision on whether a given sketch is maliciously intended
or not and form an annotated test set of 2000 sketches with
1,000 for each sketch type as human ground truth. We adopt
Fy score [40] as our evaluation metric for its ability to bal-
ance the performance between precision and recall. Result
in Fig. 7(a) shows that with a raw ¢(-) scorer can achieve
the best F; score of 61.25% for sketch attribution.

With some additional efforts into analysing the attribu-
tion disagreements between our method and human annota-
tors, we arrive at one interesting observation: some irregular
sketches with excessively long and fragmented strokes or ir-
relevant personalised decorations deviating from the main
rendering objective (Fig. 7(b)) are often treated as non-
malicious inputs by human judges, contrary to our model
predictions. We term these sketches as out-of-distribution
(OOD) data and devise a way to prevent our model from
attributing them to malicious inputs. The key insight is that

4Random scribbles that do not conform to any semantic concept.

despite g values for OOD and malicious sketch are all low,
the stroke subset of the former can justify a much larger
q value because it does encapsulate a well recognisable vi-
sual object — just with noisy visual outliers perturbing model
predictions. This means given a sketch input and if its ¢ is
lower than the threshold value ¢,, we can chip in one extra
conditioning step before we decide to categorise it into ma-
licious input or not. Specifically, we simply test one stroke
at a time and remove it from the input if that can lead to a no-
ticeable increase on ¢ value. We treat a sketch as OOD, i.e.
non-malicious input, if there exists a partial composition of
its strokes that reach to a g value more than a pre-set thresh-
old gmax (Fig. 7(b)). We denote such method as ¢{™*(-)
and compare with ¢(-) using two different ¢y, values in
Fig. 7(a). Significant improvements can be observed by tak-
ing into account our modelling on OOD sketch input.

5. Conclusion

We have presented a method for quantifying human free-

hand sketch quality. Without relying on supervision from
human quality opinion annotations for learning, our pro-
posed solution GACL is able to stand up to the test of a hu-
man study by showing human-agreeable results on sketch
quality discrimination. We also demonstrate three practi-
cal use cases benefited from successful sketch quality mod-
elling. We hope our work can be of help to sketch practi-
tioners who seek for further application advancements and
are held back by the lack of a proper quality metric. More-
over, we expect GACL is not constrained to work with vec-
tor sketch of point-based representation only and leave the
exploration of its efficacy for more data modalities (e.g.
raster, 3D) as future work.
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