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Abstract

Knowledge distillation has been applied to image clas-
sification successfully. However, object detection is much
more sophisticated and most knowledge distillation meth-
ods have failed on it. In this paper, we point out that
in object detection, the features of the teacher and stu-
dent vary greatly in different areas, especially in the fore-
ground and background. If we distill them equally, the un-
even differences between feature maps will negatively af-
fect the distillation. Thus, we propose Focal and Global
Distillation (FGD). Focal distillation separates the fore-
ground and background, forcing the student to focus on
the teacher’s critical pixels and channels. Global distilla-
tion rebuilds the relation between different pixels and trans-
fers it from teachers to students, compensating for missing
global information in focal distillation. As our method only
needs to calculate the loss on the feature map, FGD can
be applied to various detectors. We experiment on vari-
ous detectors with different backbones and the results show
that the student detector achieves excellent mAP improve-
ment. For example, ResNet-50 based RetinaNet, Faster
RCNN, RepPoints and Mask RCNN with our distillation
method achieve 40.7%, 42.0%, 42.0% and 42.1% mAP
on COCO2017, which are 3.3, 3.6, 3.4 and 2.9 higher
than the baseline, respectively. Our codes are available at
https://github.com/yzd-v/FGD.

1. Introduction
Recently, deep learning has achieved great success in

various domains [8, 9, 22, 24]. To get better performance,
we usually use a larger backbone, which needs more com-
pute resources and inferences more slowly. To get over
this, knowledge distillation has been proposed [11]. Knowl-

*This work was performed while Zhendong worked as an intern at
ByteDance.

†Corresponding author

Figure 1. Visualization of the spatial and channel attention map
from the teacher detector (RetinaNet-ResNeXt101) and the stu-
dent detector (RetinaNet-ResNet50).

RetinaNet
Res101-Res50

distillation area mAP mAR
fg bg split

× × 37.4 53.9
✓ × 39.3 55.6
× ✓ 39.2 55.8
✓ ✓ × 38.9 55.1
✓ ✓ ✓ 39.4 56.1

Table 1. Comparisons of different distillation areas. fg: fore-
ground. bg: background. split: split the foreground and back-
ground and distill them with different weights.

edge distillation is a method to inherit the information
from a large teacher network to a compact student net-
work and achieve strong performance without extra cost
during inference time. However, most distillation meth-
ods [10, 27, 33, 34] are designed for image classification,
which lead to trivial improvements for object detection.

It is well acknowledged that the extreme foreground-
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background class imbalance is a key point in object detec-
tion [17]. The imbalanced ratio also harms the distillation
for object detection. There are some efforts for this prob-
lem. Chen et al. [3] distributes a weight to suppress the
background. Mimick [15] distills the positive area proposed
by region proposal network of the student. FGFI [28] and
TADF [25] use the fine-grained and Gaussian Mask to se-
lect the distillation area, respectively. Defeat [7] distills the
foreground and background separately. However, where is
the key area for distillation is still not clear.

In order to explore the difference between the features
of students and teachers, we do the visualization of the spa-
tial and channel attention. As the Fig. 1 shows, the differ-
ence between student’s attention and teacher’s attention in
the foreground is quite significant, while that in the back-
ground is relatively small. This may lead to different diffi-
culties in learning the foreground and background. In this
paper, we further explore the influence of the foreground
and background in knowledge distillation on object detec-
tion. We design experiments by decoupling the foreground
and background in the distillation. Surprisingly, as shown in
Tab. 1, the performance of distillation on the foreground and
background together is the worst, even worse than only us-
ing foreground or background. This phenomenon suggests
that the uneven differences in the feature map can negatively
affect distillation. Besides, as shown in Fig. 1, the attention
between each channel is also very different. Thinking one
step deeper, not only are there negative influences between
the foreground and the background, but also between the
pixels and the channels. Therefore, we propose focal distil-
lation. While separating the foreground and background,
focal distillation also calculates the attention of different
pixels and channels in teacher’s feature, allowing the stu-
dent to focus on teacher’s crucial pixels and channels.

However, just focusing on key information is not enough.
It is well known that global context also plays an impor-
tant role in detection. A lot of relation modules have been
successfully applied into detection, such as non-local [29],
GcBlock [2], relation network [12], which have greatly im-
proved the performance of detectors. In order to compen-
sate for the missing global information in focal distillation,
we further propose global distillation. In global distillation,
we utilize GcBlock to extract the relation between different
pixels and then distill them from teachers to students.

As we analyzed above, we propose Focal and Global
Distillation (FGD), combining focal distillation and global
distillation, as shown in Fig. 2. All loss functions are only
calculated on features, so that FGD can be used directly
on various detectors, including two-stage models, anchor-
based one-stage models and anchor-free one-stage models.
Without bells and whistles, we achieve state-of-the-art per-
formances in object detection with FGD. In a nutshell, the
contributions of this paper are:

• We present that the pixels and channels that teacher
and student pay attention to are quite different. If we
distill the pixels and channels without distinguishing
them, it will result in a trivial improvement.

• We propose focal and global distillation, which en-
ables the student not only to focus on the teacher’s crit-
ical pixels and channels, but also to learn the relation
between pixels.

• We verify the effectiveness of our method on various
detectors via extensive experiments on the COCO [18],
including one-stage, two-stage, anchor-free methods,
achieving state-of-the-art performance.

2. Related Work
2.1. Object Detection

Object detection is a fundamental and challenging task
in computer vision. The CNN-based detection networks
with high performance are divided into two-stage [1, 8, 22],
anchor-based one-stage [17, 19, 21] and anchor-free one-
stage detectors [6, 26, 32]. One-stage detectors get the clas-
sification and bounding box of targets on feature maps di-
rectly. In contrast, two-stage detectors utilize RPN and
RCNN head to achieve better results but cost more time.
Prior anchor boxes provide one-stage models with propos-
als to detect targets. However, the number of anchor boxes
is far more than targets, which brings extra computation.
While anchor-free detectors show a way to predict the key
point and location of targets directly. Although there are dif-
ferent detection heads, their inputs are all features. There-
fore, our feature-based knowledge distillation method can
be applied in almost all detectors.

2.2. Knowledge Distillation

Knowledge distillation is a method of model compres-
sion without changing the network structure. It is first pro-
posed by Hinton et al. [11], which uses the output as soft la-
bels to transfer the dark knowledge from a large teacher net-
work to a small student network for the classification task.
Moreover, FitNet [23] proves that the semantic information
from intermediate is also helpful to guide the student model.
There have been many works [10, 27, 33, 34] that improve
the student classifiers significantly.

Recently, some works have successfully applied knowl-
edge distillation to detectors. Chen et al. [3] first apply
knowledge distillation to detection by distilling knowledge
on the neck feature, the classification head, and the regres-
sion head. Nevertheless, distilling the whole feature may
introduce much noise because of the imbalance between
the foreground and background. Li et al. [15] choose the
features sampled from RPN to calculate distillation loss.
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Figure 2. An illustration of FGD, including focal distillation and global distillation. Focal distillation not only separates the foreground and
the background, but also enables the student network to better pay attention to the important information in the teacher network’s feature
map. Global distillation bridges the gap between the global context of the student and the teacher.

Wang et al. [28] propose the fine-grained mask to distill the
regions calculated by ground-truth bounding boxes. Sun
et al. [25] utilize the Gaussian Mask to cover the ground-
truth for distillation. Such methods lack the distillation for
the background. Without distinguishing the foreground and
background, GID [5] distills the areas where the perfor-
mance of the student and teacher is different. Guo et al. [7]
shows that both the foreground and background play im-
portant roles for distillation, and distilling them separately
benefits the student more. Both of their methods distill the
knowledge from the background and get significant results.
However, they treat all the pixels and channels equally.
FKD [35] uses attention masks and Non-local module [29]
to guide the student and distills the relation, respectively.
However, it distills the foreground and background together.

The critical problem of distillation for detection is to
select the valuable area for distillation. The previous dis-
tillation methods treat all the pixels and channels equally
[5,7,25,28] or distill all the areas [35] together. Most meth-
ods lack the distillation of the global context information.
In this paper, we use ground-truth boxes to separate the im-
ages, and then use the attention masks from the teacher to
select crucial parts for distillation. In addition, we capture
the global relations between different pixels and distill them
to the student, which brings another improvement.

3. Method

Most detectors have used FPN [16] to utilize the multi-
scale semantic information. The features from FPN fuse

different levels of semantic information from the backbone
and are used to predict directly. Transferring the knowledge
of these features from the teacher has significantly improved
the performance of the student. Generally, the distillation of
the features can be formulated as:

Lfea =
1

CHW

C∑
k=1

H∑
i=1

W∑
j=1

(
FT
k,i,j − f(FS

k,i,j)
)2

(1)

where FT and FS denote the feature from the teacher and
student, respectively, and f is the adaptation layer to re-
shape the FS to the same dimension as FT . H,W denote
the height and width of the feature and C is the channel.

However, such methods treat all the parts equally and
lack the distillation of the global relations between differ-
ent pixels. To get over the above problems, we propose
FGD, which includes focal and global distillation, as shown
in Fig. 2. Here we will introduce our method in detail.

3.1. Focal Distillation

For the foreground and background imbalance, we pro-
pose focal distillation to separate the images and guide the
student to focus on crucial pixels and channels. The com-
parison of the distillation areas can be seen in Fig. 3.

Firstly we set a binary mask M to separate the back-
ground and foreground:

Mi,j =

{
1, if (i, j) ∈ r

0, Otherwise
(2)
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where r denotes the ground-truth boxes and i, j are the the
horizontal and vertical coordinates of the feature map, re-
spectively. If (i, j) falls in the ground truth, then Mi,j = 1,
otherwise it is 0.

The targets with larger-scale will occupy more loss be-
cause they own more pixels, which will influence the distil-
lation of the small targets. And the ratios of foreground to
background vary greatly in different images. Therefore, in
order to treat different targets equally and balance the loss
of foreground and background, we set a scale mask S as:

Si,j =

{
1

HrWr
, if (i, j) ∈ r

1
Nbg

, Otherwise
(3)

Nbg =

H∑
i=1

W∑
j=1

(1−Mi,j) (4)

where Hr and Wr denote the height and width of the
ground-truth box r. If a pixel belongs to different targets,
we choose the smallest box to calculate the S.

SENet [13] and CBAM [30] show that focusing on cru-
cial pixels and channels helps CNN-based models get better
results. Zagoruyko et al. [34] use a simple way to get the
spatial attention mask and improve the performance of dis-
tillation. In this paper, we apply a similar method to select
focal pixels and channels, and then get corresponding at-
tention masks. We calculate the absolute mean values on
different pixels and different channels, respectively:

GS(F ) =
1

C
·

C∑
c=1

|Fc| (5)

GC(F ) =
1

HW
·

H∑
i=1

W∑
j=1

|Fi,j | (6)

where H , W , C denote the feature’s height, width, and
channel. GS and GC are the spatial and channel attention
map. Then the attention mask can be formulated as:

AS(F ) = H ·W · softmax
(
GS(F )/T

)
(7)

AC(F ) = C · softmax
(
GC(F )/T

)
(8)

where T is the temperature hyper-parameter proposed by
Hinton et al. [11] to adjust the distribution.

There are significant differences between the masks of
the student and teacher. In training process, we use the
teacher’s masks to guide the student. With the binary mask
M , scale mask S, attention mask AS and AC , we propose

Figure 3. Comparison of the distillation areas between our method
(FGD) and other methods. FGFI and GID only distill the areas
in the red bounding box. The areas where GID and FKD distill
are changeable during training. Different colors mean different
weights and the green parts mean the spatial attention pixels.

the feature loss Lfea as follows:

Lfea = α

C∑
k=1

H∑
i=1

W∑
j=1

Mi,jSi,jA
S
i,jA

C
k

(
FT
k,i,j − f(FS

k,i,j)
)2

+β

C∑
k=1

H∑
i=1

W∑
j=1

(1−Mi,j)Si,jA
S
i,jA

C
k

(
FT
k,i,j − f(FS

k,i,j)
)2

(9)

where AS and AC denote the spatial and channel attention
mask of the teacher detector, respectively. FT and FS de-
note the feature maps of the teacher detector and student
detector, respectively. α and β are the hyper-parameters to
balance the loss between foreground and background.

Besides, we use attention loss Lat to force the student
detector to mimic the spatial and channel attention mask of
the teacher detector, which is formulated as:

Lat = γ ·
(
l(AS

t , A
S
S) + l(AC

t , A
C
S )

)
(10)

where t and s denote the teacher and student. l denotes L1
loss and γ is a hyper-parameter to balance the loss.

The focal loss Lfocal is the sum of feature loss Lat and
attention loss Lat:

Lfocal = Lfea + Lat (11)

3.2. Global Distillation

The relation [2,12,29] between different pixels has valu-
able knowledge and is utilized to improve the performance
for detection tasks. And in Sec. 3.1, we utilize Focal Distil-
lation to separate the images and force the student focus on
crucial parts. However, such distillation cuts off the relation
between foreground and background. So here we propose
Global Distillation, which aims to extract the global relation
between different pixels from the feature maps and distill it
from the teacher to the student.

As shown in Fig. 4, we utilize GcBlock [2] to capture
the global relation information in a single image and force
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Figure 4. The Global Distillation with GcBlock. The inputs are
the feature maps from the teacher’s neck and student’s neck, re-
spectively.

the student detector to learn the relation from the teacher
detector. The global loss Lglobal is as follows:

Lglobal =λ ·
∑(

R
(
FT

)
−R

(
FS

))2

R(F ) =F +Wv2(ReLU(LN(Wv1

(

Np∑
j=1

eWkFj∑Np

m=1 e
WkFM

Fj))))

(12)

where Wk, Wv1 and Wv2 denote convolutional layers, LN
denotes the layer normalization, Np is the number of pixels
in the feature and λ is a hyper-parameter to balance the loss.

3.3. Overall loss

To sum up, we train the student detector with the total
loss as follows:

L = Loriginal + Lfocal + Lglobal (13)

where Loriginal is the original loss for detectors.
The distillation loss is calculated just on feature maps,

which can be obtained from the neck of the detectors. So it
can be easily applied to different detectors.

4. Experiments
4.1. Dataset

We evaluate our knowledge distillation method on
COCO dataset [18], which contains 80 object classes. We
use the 120k train images for training and 5k val images
for testing for all the experiments. The performances of
different detectors are evaluated in Average Precision and
Average Recall.

Method mAP APS APM APL

RetinaNet-Res101(T) 38.9 21.0 42.8 52.4
RetinaNet-Res50(S) 37.4 20.6 40.7 49.7
FGFI [28] 38.6 21.4 42.5 51.5
GID [5] 39.1 22.8 43.1 52.3
Ours 39.6 22.9 43.7 53.6
Ours † 39.7 22.0 43.7 53.6

RCNN-Res101(T) 39.8 22.5 43.6 52.8
RCNN-Res50(S) 38.4 21.5 42.1 50.3
FGFI [28] 39.3 22.5 42.3 52.2
GID [5] 40.2 22.7 44.0 53.2
Ours 40.4 22.8 44.5 53.5
Ours † 40.5 22.6 44.7 53.2

FCOS-Res101(T) 40.8 24.2 44.3 52.4
FCOS-Res50(S) 38.5 21.9 42.8 48.6
GID [5] 42.0 25.6 45.8 54.2
Ours 42.1 27.0 46.0 54.6
Ours † 42.7 27.2 46.5 55.5

Table 2. Results of different distillation methods with different
detection frameworks on COCO dataset. T and S mean the teacher
and student detector, respectively. FGFI can only be applied to
an anchor-based detector. † means using inheriting strategy. We
train the FCOS with tricks including GIoULoss, norm-on-bbox
and center-sampling which is the same as GID.

4.2. Details

We conduct experiments on different detection frame-
works, including two-stage models [22], anchor-based one-
stage models [17], and anchor-free one-stage models [26,
32]. Besides, we verify our method on the Mask RCNN [8]
and get significant improvement for instance segmentation.
Kang et al. [14] propose inheriting strategy which initial-
izes the student with the teacher’s neck and head param-
eters and gets better results. Here we use this strategy to
initialize the student which has the same head structure as
the teacher. All the experiments are conducted with mmde-
tection [4] with Pytorch [20].

FGD uses α, β, γ, λ to balance the loss of foreground and
background in Eq. (9), attention loss in Eq. (10) and global
loss in Eq. (12), respectively. And T = 0.5 is used to adjust
the attention distribution for all the experiments. We adopt
the hyper-parameters{α = 5× 10−5, β = 2.5× 10−5, γ =
5×10−5, λ = 5×10−7} for all the two-stage models, {α =
1×10−3, β = 5×10−4, γ = 1×10−3, λ = 5×10−6} for all
the anchor-based one-stage models, {α = 1.6× 10−3, β =
8× 10−4, γ = 8× 10−3, λ = 8× 10−6} for all the anchor-
free one-stage models. We train all the detectors for 24
epochs with SGD optimizer, which the momentum is 0.9
and the weight decay is 0.0001.
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Teacher Student mAP APS APM APL mAR ARS ARM ARL

RetinaNet
ResNeXt101

RetinaNet-Res50 37.4 20.6 40.7 49.7 53.9 33.1 57.7 70.2
FKD [35] 39.6(+2.2) 22.7 43.3 52.5 56.1(+2.2) 36.8 60.0 72.1
Ours 40.4(+3.0) 23.4 44.7 54.1 56.7(+2.8) 37.6 61.5 72.4
Ours† 40.7(+3.3) 22.9 45.0 54.7 56.8(+2.9) 36.5 61.4 72.8

Cascade
Mask RCNN
ResNeXt101

Faster RCNN-Res50 38.4 21.5 42.1 50.3 52.0 32.6 55.8 66.1
FKD [35] 41.5(+3.1) 23.5 45.0 55.3 54.4(+2.4) 34.0 58.2 69.9
Ours 42.0(+3.6) 23.8 46.4 55.5 55.4(+3.4) 35.5 60.0 70.0

RepPoints
ResNeXt101

RepPoints-Res50 38.6 22.5 42.2 50.4 55.1 34.9 59.4 70.3
FKD [35] 40.6(+2.0) 23.4 44.6 53.0 56.9(+1.8) 37.3 60.9 71.4
Ours 41.3(+2.7) 24.5 45.2 54.0 58.4(+3.3) 39.1 62.9 74.2
Ours† 42.0(+3.4) 24.0 45.7 55.6 58.2(+3.1) 37.8 62.2 73.3

Teacher Student Boundingbox AP Mask AP

mAP APS APM APL mAP APS APM APL

Cascade
Mask RCNN
ResNeXt101

Mask RCNN-Res50 39.2 22.9 42.6 51.2 35.4 19.1 38.6 48.4
FKD [35] 41.7(+2.5) 23.4 45.3 55.8 37.4(+2.0) 19.7 40.5 52.1
Ours 42.1(+2.9) 23.7 46.2 55.7 37.8(+2.4) 19.7 41.3 52.3

Table 3. Results of more detectors with stronger teacher detectors on COCO dataset. † means using inheriting strategy, which can only be
applied when the student and teacher have the same head structure.

4.3. Main Results

Our method can be applied to different detection frame-
works easily, so we first conduct experiments on three
popular detectors, including a two-stage detector (Faster
RCNN), an anchor-based one-stage detector (RetinaNet)
and an anchor-free detector (FCOS). We compare with
other two knowledge distillation methods [5, 28] for ob-
ject detection. In the experiments, we choose the detec-
tors with ResNet-50 [9] as the students and the identical
detectors with ResNet-101 as the teachers. As shown in
Tab. 2, our distillation method surpasses the other two state-
of-the-art methods. All the student detectors gain signifi-
cant AP improvements with the knowledge transferred from
teacher detectors, e.g. the RetinaNet based ResNet-50 gets
2.3 mAP improvement on COCO dataset. Furthermore, in
this Res101-Res50 setting, the student detectors even out-
perform the teacher detectors by training with FGD.

4.4. Distillation of more detectors with stronger stu-
dents and teachers

Our method can also be applied between heterogeneous
backbones, e.g. the ResNeXt [31] based teacher detector
distill the ResNet based student detector. Here we conduct
experiments on more detectors and use stronger backbone-
based teacher detectors. And we compare the results with
FKD [28], which is another effective and general distilla-
tion method. As shown in Tab. 3, all the student detec-
tors achieve significant improvements on both AP and AR.

Besides, comparing the results with Tab. 2, we find that
student detectors perform better with stronger teacher de-
tectors, e.g. Retina-Res50 model achieves 40.7 and 39.7
mAP with ResNeXt101 and ResNet101 based teacher, re-
spectively. The comparisons show that student detectors get
the better feature by mimicking the feature maps of stronger
backbones-based teacher detectors.

FGD only needs to calculate the distillation loss on the
feature maps. So we also apply our method to Mask RCCN
for object detection and instance segmentation. And in
this experiment, we use the bounding box labels for the
focal distillation. As shown in Tab. 3, our method brings
2.9 Boundingbox AP gains and 2.4 Mask AP gains, which
proves our distillation method is also effective for instance
segmentation.

4.5. Better feature with FGD

As shown in Tab. 2 and Tab. 3, initializing the student
with the teacher’s neck and head parameters brings another
improvement, which indicates the student gets a similar fea-
ture with the teacher. So in this subsection, we visualize
and compare the spatial attention mask and channel atten-
tion mask from teacher detector, student detector and stu-
dent detector with FGD, which is shown in Fig. 5. Compar-
ing the attention masks between the teacher and student, we
can see they have a big difference in the distribution of pix-
els and channels before distillation, e.g. the teacher detector
focuses more on the fingers and has a larger weight in chan-
nel 241. However, after training with FGD, the student de-
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Figure 5. Visualization of the spatial and channel attention mask from different detectors. Each pixel in the channel attention mask means
a channel. Teacher detector: RetinaNet-ResNeXt101. Student detector: RetinaNet-ResNet50

tector has a similar distribution of pixels and channels with
the teacher detectors, which means the student focuses on
the same parts as the teacher. This also explains how FGD
helps the student detector perform better. Based on a similar
feature, the student detector gets significant improvements
and even outperforms the teacher detector.

4.6. Analysis

4.6.1 Sensitivity study of different losses

In this paper, we transfer the focal knowledge and global
knowledge from the teacher to the student. In this sub-
section, we conduct experiments of focal loss (Lfocal) and
global loss (Lglobal) to investigate their influences on the
student with RetinaNet. As shown in Tab. 4, both the fo-
cal loss and global loss lead to significant AP and AR im-
provements. Furthermore, considering targets with different
sizes, we find Lfocal benefits more to the large size targets
and Lglobal benefits more to the small and medium targets.
Besides, when combining Lfocal and Lglobal, we achieve
40.4 mAP and 56.7 mAR, which indicates the focal loss
and global loss are complementary to each other.

4.6.2 Sensitivity study of focal distillation

In focal distillation, we use the ground-truth boxes to sep-
arate the images and guide the student with the teacher’s
attention masks. In this subsection, we explore the effec-
tiveness of focal distillation.

As shown in Tab. 1, we find distilling just on fore-
ground or background both lead significant improvements.
Here we analyze different error types to investigate their
effectiveness, which is shown in Fig. 6. With the knowl-

Method ReinaNet ResX101-Res50

Lfocal - ✓ - ✓
Lglobal - - ✓ ✓

mAP 37.4 40.2 40.2 40.4
APS 20.0 22.8 22.9 23.4
APM 40.7 44.0 44.3 44.7
APL 49.7 54.0 53.4 54.1

mAR 53.9 56.2 56.4 56.7
ARS 33.1 36.8 37.3 37.6
ARM 57.7 60.3 60.5 61.5
ARL 70.2 72.3 72.2 72.4

Table 4. Ablation study of focal and global distillation.

edge from background, student detectors reduce the false-
positive predictions and get higher mAP. In comparison, the
foreground’s distillation helps students detect more targets
and reduce the false-negative predictions. In conclusion, the
results show that both foreground and background are cru-
cial and have different functions for the student detectors.

In this paper, we utilize the spatial and channel attention
mask of the teacher to guide the student to focus on crucial
parts. Here we conduct experiments with RetinaNet to ex-
plore the effects of each mask, which is shown in Tab. 5.
Each attention mask improves the performance, especially
the spatial attention mask which brings 2.6 mAP gains and
2.2 mAR gains. And the combination of two masks gets the
best result. The experiments show both the attention masks
help the student perform better.
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(a) KD: foreground (b) KD: background

(c) Error of different types analysis

Figure 6. Different error types analyses of foreground and back-
ground distillation. FN: false negative prediction; BG: Back-
ground false positive prediction; Oth: classification errors; Sim:
wrong class but correct supercategory; Loc: localization errors

Method ReinaNet ResNeXt101-Res50

Spatial attention - ✓ - ✓
Channel attention - - ✓ ✓

mAP 37.4 40.0 39.7 40.2
APS 20.0 22.3 22.0 22.8
APM 40.7 44.0 43.5 44.0
APL 49.7 53.6 53.4 54.0

mAR 53.9 56.1 55.8 56.2
ARS 33.1 36.5 35.7 36.8
ARM 57.7 60.2 59.9 60.3
ARL 70.2 72.1 71.8 72.3

Table 5. Ablation study of the spatial and channel attention mask.

4.6.3 Sensitivity study of global distillation

In global distillation, we rebuild the relation between differ-
ent pixels to compensate for the missing global information
in focal distillation and transfer it from the teacher detec-
tor to the student detector. In this subsection, we distill the
student just using the global distillation with GcBlock [2]
or Non-local module [29] on Faster RCNN, which is shown
in Tab. 6. The results show both two relation methods ex-
tract effective global information and bring the student ef-
fective improvement, especially the GcBlock which brings
3.1 mAP improvement.

Methods mAP APS APM APL

baseline 38.4 21.5 42.1 50.3
Non-Local 39.8 22.7 43.1 52.3
GcBlock 41.5 23.4 46.0 55.3

Table 6. Comparison of different global relation methods on Faster
RCNN ResNeXt101-Res50. Here we train the student just with
global distillation.

T 0.3 0.5 0.8 1.0 1.2

mAP 40.1 40.4 40.4 40.2 40.0
mAR 56.4 56.7 56.6 56.5 56.4

Table 7. Ablation study of temperature hyper-parameter T on
RetinaNet ResNeXt101-Res50.

4.6.4 Sensitivity study of T

In Eq. (7) and Eq. (8), we use the temperature hyper-
parameter T to adjust the pixels and channels distribution
of the feature map. The gap between pixels and channels
becomes wider and smaller when T < 1 and T > 1, re-
spectively. Here we conduct several experiments to investi-
gate the influence of T . As shown in Tab. 7, when T = 0.5,
the student gains 0.2 mAP and 0.2 mAR improvement com-
pared with T = 1, which means distillation without distri-
bution adjustment. With T = 0.5, the pixels and channels
of high value are emphasized more and this helps the stu-
dent detector focus on such crucial parts more and perform
better. It is also observed the worst result is just a 0.4 mAP
drop compared with the best result, indicating our method
is not sensitive to the hyper-parameter T .

5. Conclusion

In this paper, we point out the student detector needs to
pay attention to both the crucial parts and global relations
from the teacher. Then we propose Focal and Global Dis-
tillation (FGD) to guide the student detectors. Extensive
experiments on various detectors prove that our method is
simple and efficient. Furthermore, our method is just based
on the feature so that FGD can be applied to two-stage de-
tectors, anchor-based one-stage detectors, and anchor-free
one-stage detectors easily. The analysis shows that the stu-
dent gets a really similar feature with the teacher and ini-
tializing the student with the teacher’s parameters can bring
another improvement. However, our understanding of how
to get a better head is preliminary and left as future works.
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