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Figure 1. Standard clothes such as T-shirts and long-sleeve jackets are well-analyzed in virtual try-on methods, while non-standard clothes
with irregular design and patterns are scarcely reported. Given a target clothing image and the reference person, our method can synthesize
photo-realistic results with accurate clothing shape, regardless of the clothing type. Hard samples including off-shoulder clothes and the
word-shoulder clothes are covered in our framework, while the baseline methods fail to generalize.

Abstract

Virtual try-on aims to transfer a target clothing image
onto a reference person. Though great progress has been
achieved, the functioning zone of existing works is still lim-
ited to standard clothes (e.g., plain shirt without complex
laces or ripped effect), while the vast complexity and vari-
ety of non-standard clothes (e.g., off-shoulder shirt, word-
shoulder dress) are largely ignored.

In this work, we propose a principled framework, Re-
current Tri-Level Transform (RT-VTON), that performs
full-range virtual try-on on both standard and non-standard
clothes. We have two key insights towards the framework
design: 1) Semantics transfer requires a gradual feature
transform on three different levels of clothing representa-
tions, namely clothes code, pose code and parsing code. 2)

� Corresponding author

Geometry transfer requires a regularized image deforma-
tion between rigidity and flexibility. Firstly, we predict the
semantics of the “after-try-on” person by recurrently refin-
ing the tri-level feature codes using local gated attention
and non-local correspondence learning. Next, we design a
semi-rigid deformation to align the clothing image and the
predicted semantics, which preserves local warping simi-
larity. Finally, a canonical try-on synthesizer fuses all the
processed information to generate the clothed person im-
age. Extensive experiments on conventional benchmarks
along with user studies demonstrate that our framework
achieves state-of-the-art performance both quantitatively
and qualitatively. Notably, RT-VTON shows compelling re-
sults on a wide range of non-standard clothes. Project page:

https://lzqhardworker.github.io/RT-VTON/.

1. Introduction

Virtual try-on is a rapidly advancing topic in both
academia and industry with the increasing power of gener-
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ative models. Various pipelines [4, 10, 14, 37, 42] are pro-
posed to build the system, but it remains challenging to
perform full-range try-on with different clothing types in
real-world scenarios. Standard clothes such as T-shirts and
long-sleeve jackets show clear relationship with the refer-
ence person, while non-standard clothes can involve irreg-
ular patterns and design, thus resulting in more ambiguous
corresponding relations. Two typical non-standard types are
the off-shoulder clothes (normal collar with shoulder ex-
posed) and the word-shoulder clothes (a horizontal collar
line towards shoulder). The results on those kinds of non-
standard clothes are scarcely reported in any of the try-on
papers [4, 10, 14, 29, 37, 42].

Earlier works [14, 37] utilize the coarse shape and pose
map to synthesize try-on results with Thin-plate Spline
(TPS) warping. Pioneering methods [10, 17, 42] amelio-
rate the blurry artifacts caused by coarse shape [14, 37] by
firstly predicting the semantic layout with the target cloth-
ing image and then warping the clothing image by regu-
larized TPS, producing better results with sharper bound-
aries. However, these methods [10, 42] still struggle to pre-
cisely depict the “after-try-on” semantics, where the func-
tioning zone is restricted to standard clothes. Another bar-
rier preventing full-range virtual try-on is the misalignment
of the clothing image with the reference person. TPS is a
usual practice as used in [2, 4, 14, 37, 42] to spatially trans-
form the clothing image while preserving the characteris-
tics. However, over-distortion of the clothing image hinders
the TPS-based methods, instigating the increasing prefer-
ence for affine-based algorithms [9,20]. As opposed to TPS,
affine-based methods [9, 20] demonstrate large potential in
generating undistorted results, but the non-rigid part of de-
formation is not involved which fails to mimic the natural
interaction between the clothes and the person. Flow-based
methods [5, 11, 12, 41] embed the maximized capacity in
the deformation modeling which densely predict the pixel-
wise offset field. However, without the ground-truth flow,
optimizing the flow network is only possible with strong
regularization priors such as affine prior, total variance con-
straint, or second-order Laplacian penalty.

To achieve full-range virtual try-on, we propose a prin-
cipled framework, Recurrent Tri-Level Transform (RT-
VTON) which deeply mines the “after-try-on” semantics
by accurately predicting the semantic layout of the refer-
ence person given the target clothing image, and then co-
herently deform the clothing image with our semi-rigid
deformation to balance rigidity and flexibility. Specif-
ically, RT-VTON follows a conventional split-transform-
merge scheme (Fig. 2) as in [4,5,22,41,42]. The first mod-
ule is Semantic Generation Module (SGM), which gradu-
ally transforms the tri-level feature codes to predict the se-
mantic segmentation of the body parts and the clothing re-
gion. As opposed to prior works, our SGM can accurately

capture the correlation between the target clothing image
with the human body, and thus perform full-range try-on
especially for non-standard clothes (see Fig. 1). The sec-
ond module is Clothes Deformation Module (CDM) which
applies a novel semi-rigid deformation to align the target
clothing image according to the semantic output of SGM.
We borrow the widely-used geometric editing technique
from graphics [16, 34] and, for the first time, integrate it
within a differentiable learning-based framework. Finally,
a Try-on Synthesizer Module (TOM) similar to [4,42] fuses
the semantic segmentation, the warped clothes as well as the
non-target body image to synthesize the final try-on output,
where an auxiliary clothes reconstruction loss is used to en-
hance texture preserving.

We summarize our contributions as follows. 1) We pro-
pose a new image-based virtual try-on framework, i.e. RT-
VTON, which accurately depicts the “after-try-on” seman-
tics and thus greatly improve try-on quality and adaptabil-
ity for full-range garment types. 2) A novel Recurrent Tri-
Level Transform is proposed to improve the semantic layout
prediction, which gradually updates three different levels of
clothing representations, namely clothes code, pose code,
and parsing code, by local gated attention mechanism with
non-local correspondence learning. 3) To perform undis-
torted clothes warping, we design a semi-rigid deforma-
tion to align the clothing image with the predicted seman-
tics, which preserves local warping similarity. 4) Exten-
sive experiments demonstrate that the proposed method can
perform realistic virtual try-on for both standard and non-
standard clothes, outperforming the state-of-the-art meth-
ods qualitatively and quantitatively.

2. Related Works
Fashion Analysis and Synthesis. Recently, fashion-related
topics become increasingly popular due to their potential
capability to change our life. Clothing attribute recogni-
tion and prediction [24, 36] attracts much attention to au-
tomatically understand the clothing semantics. Landmark
detection [15,19,25,39] is another fast-growing area that is
fundamental for other fashion-related applications. With the
help of powerful Generative Adversarial Networks (GANs),
Fashion image synthesis [1, 13, 23] is another popular field
attracting both researchers and companies.
Pose-Guided Person Image Generation. Pose-guided im-
age generation aims at synthesizing photo-realistic person
images with specified poses, given target poses and refer-
ence person images, which is first introduced in PG2 [28].
PG2 utilizes a two-stage image-to-image translation net-
work to solve this task. Later, variational U-net [8] com-
bines U-net and Conditional VAE [35] to disentangle ap-
pearance and pose. However, spatial information is ignored
in these methods, which leads to appearance misalignment.
PATN [45] utilizes pose information in progressive atten-
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tion modules, which possesses the appearance coherence
and shape consistency with the input images. GFLA [31]
learns pixel-wise flow and utilizes local attention to warp
the source person image. Recently, SPGNet [27] , a new
two-stage method, utilizes pose and semantic information
to guide person image generation.
Image-based Virtual Try-on. Virtual try-on aims at gen-
erating photo-realistic person in specified clothing image,
given target clothes and the reference person image. Re-
cently, methods based on deep learning, especially Gener-
ative Adversarial Networks (GANs), have received consid-
erable attention. Generally, virtual try-on methods based on
deep learning can be categorized as 3D-based method and
2D-based method. Since it is difficult to collect 3D try-on
data, 2D methods are more widely discussed in academia.
VITON [14], CP-VTON [37] utilize coarse shape of the
body, pose map, and TPS-based warping method to de-
form the clothes and generate a person wearing specified
clothing image. ACGPN [42] proposes a split-transform-
merge scheme to generate the try-on image by adaptively
generating and preserving image contents, achieves photo-
realistic results. DCTON [10] proposes a method following
cycle consistency learning, which stabilizes the try-on im-
age synthesis but may mis-preserve the image contents from
the reference person. PF-AFN [11] is a two-staged model
that adopts knowledge distillation to correct the error in se-
mantic parsing. The distillation trick is definitely a viable
post-processing for our method, but the try-on quality is still
largely dependent on the first one-pass try-on stage, which
is our main focus.

3. Recurrent Tri-Level Virtual Try-On
Framework Overview. To generate photo-realistic try-on
results, Recurrent Tri-Level Transform (RT-VTON) follows
a split-transform-merge scheme, consisting of three mod-
ules: Semantic Generation Module (SGM), Clothes De-
formation Module (CDM), and Try-on Synthesizer Mod-
ule (TOM). We firstly remove the face, upper clothes, and
arm labels from the input parsing to derive partial parse;
the original clothing shape is thus agnostic to the network.
Then SGM predicts the “after-try-on” semantic layout given
the target clothes as well as the reference pose map. With
accurate semantic segmentation, we can adaptively generate
and preserve the image contents by computing the intersec-
tion of skin regions, i.e. residual body. Our key insights
towards the framework are SGM for semantics transfer and
the CDM for geometry transfer.

3.1. Recurrent Tri-Level Transform

Prior works such as CP-VTON [37] and VITON [14] use
coarse body shape as input instead of semantic segmenta-
tion, losing the capability to grasp the fine details of cloth-
ing and non-clothing areas. ACGPN [42] is the first to build

the semantic-based pipeline to generate photo-realistic re-
sults but fails to stabilize the semantic prediction process.
Besides, due to the misalignment of the clothing image
and the reference person, it remains a big challenge to ac-
curately retain the clothing shape after the try-on process.
To address this problem, our Recurrent Tri-Level Trans-
form is based on three levels of clothing representations,
namely clothes code, pose code, and parsing code. Moti-
vated by the real clothes-wearing process of human action,
we try to mimic this process which firstly finds out the long-
range correspondence and then generates the semantic lay-
out. This breaks the traditional pipeline that directly learns
the semantic transformation conditioned on the clothing im-
age as well as the pose map, failing to predict the accurate
semantic layout, especially for non-standard clothes as in
Fig. 4. Our pipeline combines the local gated attention with
global correspondence learning to gradually refine the tri-
level feature codes, which empowers our SGM to predict
the accurate semantic layout for further generation.
Local Gated Attention. We model the local gated atten-
tion mechanism as a self-correcting process that filters the
irrelevant features. The dual attention masks are computed
respectively for the pose code and clothes code from the
parsing code.

Starting form the initial parsing code FS
0 , clothes code

FC
0 and pose code FP

0 , the tth pose code FP
t and the tth

clothes code FC
t are updated by the attention masks from

tth parsing code FS
t . The design of the gated blocks fol-

lows the conventional structure as [28,43]. The widely used
entry-wise sigmoid gating is applied here, formulated as:

MC
t = σ(convS→C(F

S
t−1)),

MP
t = σ(convS→P (F

S
t−1)),

(1)

where the convS→C , convS→P indicate the convolutional
layers. The σ indicates the entry-wise sigmoid function.
Non-Local Correspondence. We try to find the correla-
tion between the clothes code FC

t and the pose code FP
t in

tth block with the correspondence layer proposed in [44].
Specially, FP

t and FC
t are downsampled with convolutional

layers to extract the high-level features, which are later flat-
tened into x′

t
P ∈ RHW×C (pose), and x′

t
C ∈ RHW×C

(clothes), and the correlation matrix Mt
C ∈ RHW×HW is

computed by pair-wise feature correlation,

Mt
C(u, v) =

x̂C
t (u)

T x̂P
t (v)∥∥x̂C

t (u)
∥∥∥∥x̂P

t (v)
∥∥ , (2)

where x̂C
t (u) and x̂P

t (v) indicate the channel-wise central-
ized feature of x′

t
C and x′

t
P . Mt

C(u, v) represents the cor-
responding similarity, in the tth block.

The non-local correspondence matrix Mt
C is then used

to transform the flattened clothes code xC
t from FC

t by

x̄C
t = softmaxv(αMt

C)x
C
t , (3)
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Figure 2. The overall pipeline of our Recurrent Tri-Level Transform (RT-VTON) as well as the detailed tri-level feature codes updating
scheme. The framework firstly removes the face, upper clothes and arm labels from the input parsing to get partial parse, and then we
predict the “after-try-on” semantic layout given the target clothes. By computing the intersection of skin regions, the unchanged body
texture, i.e. residual body, can be extracted as the input of TOM.

where α is a sharpening parameter as used in [44], xC
t is un-

folded with sliding window in actual implementation, and
softmaxv is the softmax operation along the row dimen-
sion. Then we reshape the flattened transformed clothes
code x̄C

t back to get F̄C
t .

Code Update. With the computed attention masks MC
t and

MP
t , the clothes code FC

t and the pose code FP
t are up-

dated by:

FC
t = MC

t ⊙ convC(F
C
t−1) + FC

t−1

FP
t = MP

t ⊙ convP (F
P
t−1) + FP

t−1,
(4)

where ⊙ denotes entry-wise multiplication. Then the high-
level features are extracted to compute the correlation ma-
trix Mt

C , and by applying Eq. 3 we have the transformed
clothes code x̄C

t . We update the parsing code FS
t by:

FS
t = γ(F̄C

t )⊙ FS
t−1 + β(F̄C

t ), (5)

where γ(·) and β(·) indicate the conditional scale and
offset parameter computation, following the Spatial Fea-
ture Transform (SFT) [40] design. Instead of directly re-
lying on the clothing feature, the parsing code is modulated
by the spatially transformed clothes code F̄C

t , that effec-
tively bridges the misalignment between the target clothes
and the reference person. Reconstruction loss is added to
help the correspondence learning by deforming the down-
sampled clothing image, with the clothes on the reference
person as the ground-truth. Fig. 6 demonstrates the effec-
tiveness of non-local correspondence learning to help un-
derstand the “after-try-on” semantics.

3.2. Semi-Rigid Deformation

Having predicted the semantic layout of the “after-try-
on” person, we can deform the clothing image to trans-
fer the texture. The common practice [10, 14] uses Thin-
plate Spline (TPS) [7] to model the spatial deforma-
tion. Motivated by the collinearity of affine transforma-
tion, ACGPN [42] proposes a second-order difference con-
straint to penalize the non-affine part of TPS warping. DC-
TON [10] proposes a homography regularization to stabi-
lize the TPS training, but over-distortion can still be ob-
served as in Fig. 5. Previous methods try to combine the
flexibility of TPS with the rigidity of affine transformation
but fail to find an equilibrium of this trade-off.

To address this problem, we propose a semi-rigid defor-
mation that models the deformation as a learnable Moving
Least Squares [34] problem to balance the trade-off of flex-
ibility and rigidity. The influence of the control points de-
cays quadratically along with the distance, therefore allow-
ing local flexibility while computing the individual affine
transformation parameters for each point. We give a clear
explanation of the Moving Least Squares problem in the
supp. materials. We define the uniformly sampled ini-
tial control points as q and the predicted target points as
q′. Given a point v in the image, we compute different
affine transformations for each v by applying the decaying
weights

wi =
1

|q′i − v|2α
, (6)

where α is a decay parameter with the default value 1 and
i denotes the ith point. By solving the Least Squares prob-
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Figure 3. Illustration of computing As-Similarity-As-Possible
(ASAP) [16] regularization. The warping effect here is only for
easier understanding, which is not the actual deformation result.

lem, we can perform the semi-rigid deformation on our tar-
get clothing image according to the predicted control points
q′. Via applying the spatially decaying weights, the advan-
tage of affine transformation is fully utilized while allowing
local flexibility.
Local Similarity Preservation. We propose imposing
an As-Similarity-As-Possible (ASAP) [16, 26] constraint
which is computed within each quad of the predicted con-
trol points q′. Every quad is split into two triangles. As
shown in Fig. 3, ASAP constraint enforces similarity trans-
form of each triangle by penalizing the deformed triangle
{q′0, q′1, q′2}. We define the relative coordinates q1 {x01, 0}
and q2 {0, y02}, where x01 and y02 are the fixed intervals of
uniformly sampled control points. Then q2 can be defined
by q0 and q1as:

q2 = q0 +
y02
x01

R90
−−→q0q1, (7)

where R90 indicates counterclockwise rotation of 90 de-
grees. Given q′0 and q′1 we can compute the desired position
of q′2:

qdesired
2 = q′0 +

y02
x01

R90

−−→
q′0q

′
1, (8)

and our regularization term can be formulated as:

E{q′2} =
∥∥qdesired

2 − q′2
∥∥2 , (9)

where E{q′2} denotes the error term for q′2. Similarly we
can apply the same mechanism to q′1 for the other triangle
in the same quad,

E{q′1,q′2} =
∑

i∈{1,2}

∥∥qdesired
i − q′i

∥∥2 , (10)

where the error for each quad is summed up to form the final
regularization loss. L1 loss and perceptual loss [18] are ap-
plied to guide the image warping, regularized by the ASAP
constraint. To this end, we have successfully prepared all
the ingredients for the final synthesis.

3.3. Try-on Synthesizer

Given the predicted semantic layout as well as the de-
formed clothing image, the proposed Try-on Synthesizer
Module (TOM) generates the clothed person with the above

input. We adopt a similar adaptive generation and preserva-
tion strategy as addressed in [42] to preserve the non-target
body parts while generating the exposed body texture. To
encourage the network to preserve the warped clothing tex-
ture, RT-VTON reconstructs the deformed clothing input at
the same time, which helps the network encode more iden-
tity mapping clues to preserve the original characteristics.

To train the adaptive preservation and generation, mask
inpainting strategy [42] is applied by randomly removing
the body parts to build the capability of generating the
missing skin while preserving the unchanged pixels (resid-
ual body). We use the masks offered from Irregular Mask
Dataset [21] to randomly remove the face, neck, and arms
while training. During the training, our TOM generates a
triplet {I ′S , CR, α}, where I ′S is the generated clothed body,
CR is the reconstructed warped clothes for auxiliary super-
vision, and α is a composition mask to composite the gen-
erated image with the warped clothes CW by

IS = α⊙ I ′S + (1− α)⊙ CW , (11)

where ⊙ denotes entry-wise multiplication and IS is our
syntheiszed try-on result.

L1 loss, perceptual loss [18] and adversarial loss are ap-
plied for the generation of the clothed body as well as the
warped clothes.The same regularization is applied to α fol-
lowing [37].

During testing, with the semantic layout of the refer-
ence person and the predicted semantic layout, we can fully
preserve the unchanged skin pixels by feeding the residual
body IR to the TOM, defined as

IR = I ⊙Mskin ⊙M ′
skin, (12)

where ⊙ denotes the entry-wise multiplication, I is the in-
put reference person, Mskin is the skin region of the ref-
erence person, and M ′

skin is the skin area of the predicted
semantic layout.

4. Experiments
4.1. Datasets and Comparisons

Experiments are conducted on the standard virtual try-on
benchmark (i.e., VITON dataset) containing about 19,000
image pairs, each of which includes a reference person im-
age and a corresponding target clothing image. After re-
moving the invalid image pairs following [37], it yields
16,253 pairs, resulting in a training set of 14,221 pairs and
a testing set of 2,032 pairs.
Non-standard Clothes Set. For quantitative comparison,
we try to exhaust the non-standard clothes in the test set, re-
sulting in a non-standard clothes set with 48 clothing images
by manual selection, including the off-shoulder clothes, the
word-shoulder clothes, as well as the clothes with complex
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Figure 4. Visual comparison of four virtual try-on methods in a standard to non-standard manner (top to bottom). Four methods perform
quite well for the standard cases without shape changes, but fail drastically when performing large shape transformation towards non-
standard cases. With our Tri-Level Transform and semi-rigid deformation, RT-VTON produces photo-realistic results for the full-range of
clothing types and preserves the fine details of the clothing texture.

laces. Typical non-standard and standard clothes are pre-
sented in Fig. 1 and the differences between standard and
non-standard clothes are obvious to understand by compar-
ison. Due to the scarcity of non-standard clothes, the non-
standard statistics are only for reference.
Comparisons. RT-VTON is compared with three state-of-
the-art methods including CPVTON+ [29], ACGPN [42],
and DCTON [10] with official implementations.

4.2. Experimental Setups

Network Architectures. RT-VTON consists of three mod-
ules, SGM, CDM, and TOM. SGM is composed of Tri-
Level Blocks. The design of feature extraction and down-
sampling before computing the non-local correspondence
matrix follows [44] for robust correspondence modeling.
Notably, the extracted high-level feature can also be used
as the updated clothes code after upsampling for the next
block, which is taken as our actual implementation. CDM
is similarly designed as [37], which is a conventional struc-
ture. We use Res-Unet as [11] to build up our TOM to pre-
serve the input information. All the images are in resolution
256× 192. Gaussian pose heatmap and Gaussian pose seg-
ment map [27] are used in SGM and TOM.
Training Details. Random flipping augmentation of the tar-
get clothes is applied in training SGM. The SGM and CDM
are trained respectively, and the TOM is trained with the
warped clothing images from a pretrained CDM. We use the
same ResNet-based discriminator as [31]. SGM and TOM
are trained with batchsize 4 for 20 epochs while CDM is
trained with batchsize 1 for 20 epochs. ASAP regulariza-
tion weight in the semi-rigid deformation training is set as

0.001. Learning rate is initialized as 0.0002 and we adopt
Adam optimizer with the default hyper-parameters. All the
codes are implemented in PyTorch and trained on 1 Tesla
V100 GPU.
Testing and Evaluation Metrics. Hand segmentation is
pasted back in the test phase to better preserve the finger
details. To prepare the test pairs, for each reference per-
son we randomly assign a target clothing within the dataset
partition. For the full dataset testing when computing the
FID score, we randomly shuffle the human-clothes pairs to
make sure each clothing image is assigned once. For the
non-standard (N.S.) setting, each reference person is ran-
domly assigned with a non-standard clothing image.

4.3. Qualitative Results

Try-On Comparisons. We conduct a visual comparison
experiment in Fig. 4 with three methods, including the state-
of-the-art semantic-based method DCTON [10], together
with ACGPN [42] and CPVTON+ [29]. We can see that
CPVTON+ can only produce blurry results with poor body
part textures, while ACGPN generates a clear and sharp
clothed body. However, ACGPN still fails to generate accu-
rate semantic layout according to the given target clothing
image, especially for non-standard clothes. DCTON im-
proves the semantic consistency, as in Fig. 4 (a, i), which
successfully produces a person wearing long-sleeve clothes
while ACGPN wrongly preserves the structure of the origi-
nal short-sleeve reference person. However, mis-preserved
sleeve borders can be seen in results from DCTON in Fig. 4
(a c, i), which largely harms the visual quality. On the
contrary, RT-VTON can generate accurate “after-try-on” se-
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Figure 5. The visual comparison of the image deformation meth-
ods between the TPS warping and our semi-rigid deformation.
State-of-the-art TPS-based try-on method DCTON is chosen as
our baseline to evaluate the effectiveness of our method.

mantics regardless of the original clothes on the reference
person (as in Fig. 4 (a, i)). Since the clothing part of the
reference person is removed in our method, RT-VTON is
invulnerable to the mis-perserving problem like DCTON.

When compared within the non-standard clothes setting,
RT-VTON can give even better try-on outputs. In Fig. 4 (b,
i), the laces of this sleeveless shirt are accurately preserved,
while ACGPN recognizes it as a short-sleeve and DCTON
also fails to preserve the fine details. From the results in
non-standard clothes, we can see that the existing methods
are unable to generate photo-realistic results while retain-
ing the accurate clothing shape. In Fig. 4 (c-d, i) and (b-d,
ii), only CPVTON+ can somehow preserve the off-shoulder
characteristics, while ACGPN and DCTON generate either
standard short-sleeve or long-sleeve results, overfitting the
standard clothing shapes. Without using semantic segmen-
tation, CPVTON+ directly borrows the structure from the
warped clothes which helps retain the off-shoulder charac-
teristics but also fails to generate clear clothes-body bound-
aries. We can see the trade-off of using semantic layout
comparing CPVTON+ with ACGPN and DCTON, that se-
mantic layout helps greatly in improving image quality as
well as preserving the non-target body part details, but at
the same time, an incorrect segmentation may lead to un-
predictable artifacts. RT-VTON breaks this trade-off by
using the Tri-Level Transform which produces even better
structures than non-semantic methods (CPVTON+) with-
out losing the advantages of the semantic-based pipelines
(ACGPN, DCTON).
Geometry Deformation Comparisons. We also conduct
qualitative experiments on the effectiveness of semi-rigid
deformation. To demonstrate the superiority over the con-
ventional TPS-based methods, we pick the best TPS-based
method, i.e. DCTON as our baseline. As in Fig. 5, we can
see that our semi-rigid deformation can accurately align the
clothing image while preserving the local similarity. The
clothes deformed by DCTON may be over-distorted near
the boundary, as in the fourth column. And we can see
the non-uniform squeezing of the off-shoulder clothes in the

Table 1. Quantitative Comparisons. “N.S.” denotes non-standard.
We show the Fréchet Inception Distance (FID) [30] and user study
results of four methods. FID is the lower the better. User study is
given by the preference ratio for our method, which is the higher
the better. ‘-’ indicates the placeholder. Without the official imple-
mentations of [5,12,17], we give an extra comparison for reference
with their reported numbers in the supp. materials.

Method
FID User Preference

overall N.S. overall N.S.
CPVTON+ [37] 21.29 24.10 82.35% 82.17%

ACGPN [42] 16.46 19.22 73.88% 75.00%
DCTON [10] 16.37 20.42 68.87% 71.67%
RT-VTON 11.66 17.24 - -

fifth column, which may be caused by the difficulty of un-
derstanding the clothes-human relations. From the second
column, we can also see the inherent flexibility of our semi-
rigid deformation by computing the Moving Least Squares
affine parameters.

4.4. Quantitative Results

Quantitative evaluation of try-on task is hard to conduct
as there is no ground-truth of the reference person in the
target clothes. The Fréchet Inception Distance (FID) [30]
is adopted to measure the similarity of data distribution be-
tween the generated results and the reference data. Since
Inception Score (IS) [33] is only effective in dataset similar
to ImageNet [6] as addressed in [3], we do not adopt IS as
our metric to evaluate virtual try-on.

The quantitative results are given in Tab. 1. RT-VTON
achieves the state-of-the-art results in both overall and non-
standard settings by a large margin. In particular, RT-VTON
outperforms CPVTON+, ACGPN and DCTON by 9.63,
4.80 and 4.71 respectively in the overall setting. We can see
the large gap between non-semantic method, CPVTON+
with ACGPN and DCTON. The FID scores of ACGPN and
DCTON are indistinguishable, partly indicating the same
structure limitations that both methods suffer from.

4.5. User Study

Image metric may have limitations in depicting the try-
on quality. To further demonstrate the superiority of our
method, we conduct a user study for the whole test set and
also apply for a non-standard setting. 25 volunteers are in-
vited to our user study. 30 image pairs from either settings
(overall, non-standard) are assigned for each volunteer, con-
taining a reference person, a target clothing image, a result
from RT-VTON and a result from randomly selected base-
line methods. To improve test accuracy, the results of two
methods are random shuffled so the users cannot tell from
the position to prevent casual gaming. From user study in
Tab. 1, RT-VTON outperforms the existing state-of-the-art
methods compellingly in both overall and non-standard set-
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Figure 6. Visual ablation study of Semantic Generation Module
(SGM) in RT-VTON. Tri-Level Transform is compared with plain
encoder-decoder [38] and Unet [32] structure.

Table 2. Ablation study on Semantic Generation Module (SGM).
We compare them in a segmentation reconstruction setting, and
four categories “face, left arm, right arm, upper clothes” are
taken into consideration. Mean IoU (Intersection over Union) is
adopted, which is the higher the better.

Different configuration of SGM Mean IoU (%)
A plain encoder-decoder architecture [38] 86.31

A conventional Unet backbone used in [4, 42] 86.77
Tri-Level Transform (ours) 88.11

tings. Our proposed framework helps both the overall and
the non-standard setting, which explains the close prefer-
ence ratios in two settings.

4.6. Ablation Study

Our ablation studies are conducted mainly on analyz-
ing the effectiveness of our Tri-Level Block in Seman-
tic Generation Module (SGM). Three settings are given
as: 1) full RT-VTON with Tri-Level Transform, 2) RT-
VTON with plain encoder-decoder connected by residual
blocks, following [38], 3) RT-VTON with Unet [32] as
SGM, which is a common backbone in designing the try-
on pipelines [4, 42]. Mean Intersection over Union (IoU)
metric is used to evaluate the semantic prediction for the
same clothes-person pairs, as in Tab. 2. Unpaired try-on re-
sults are also visualized in Fig. 6; we can see clearly that
Unet or encoder-decoder based SGMs are unable to capture
the complex shapes of non-standard clothes; they recognize
the word-shoulder shirt as a usual U-collar shirt. Moreover,
the sling vest (second row) is mistakenly modeled as long-
sleeve shirt due to the uninformative shape clues of the tar-
get clothes. Our full model can combine the advantages of
long-range modeling and local attention to fully utilize the
clothes-human correlation and thus successfully depict the
accurate semantic layout even for non-standard clothes.
Effectiveness of Non-Local Correspondence. Since the
correlation matrix is computed in a downsampled feature
space (16 × 12), we present a patch-based correspondence
in image level by manually selected locations in Fig. 7. It is
clear that the non-local correspondence learning helps cap-

Figure 7. Visualization of our non-local correspondence given
some manually selected positions. Since the correlation matrix is
computed in downsampled feature space, the corresponding points
are shown in patches with the same color.

Figure 8. Visualization of the attention masks in our local gating
mechanism for clothes code (top) and pose code (bottom). TLB1-6
denotes the six Tri-Level Blocks we use in our Semantic Genera-
tion Module (SGM).

ture the non-standard clothing pattern (on the left), which
demonstrates strong relationship of the off-shoulder area
to retain the clothing shape. Moreover, the boundaries of
the sleeves (on the right) are well depicted with the target
clothes which leverages the long-range correlation to recon-
struct the final semantic layout.

Effectiveness of Gated Attention. In Fig. 8, we extract
the attention masks for the six Tri-Level Blocks used in RT-
VTON. The first row shows the masks for the clothes code
and the bottom row covers the masks for the pose code. The
gated attention transfers the feature in a gradual manner,
which coincides nicely with the human intuition. The initial
masks are mixtures of input segmentation, but the clothing
shapes and sleeve boundaries are gradually revealed as the
parsing code is modulated according to the target clothes.
In the last two columns, we can see the clear sleeve bound-
ary of the “after-try-on” person which helps determine the
target clothing shape.

5. Conclusion

In this work, we propose a novel Recurrent Tri-Level
Transform (RT-VTON), which embeds two principled in-
sights in semantics transfer as well as geometry transfer: 1)
Tri-Level Transform which models the long-range depen-
dency with local gated attention to predict accurate seman-
tic layout; 2) semi-rigid deformation which tries to balance
the trade-off of rigidity and flexibility in clothes warping.
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