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Abstract

Deep implicit shape models have become popular in the
computer vision community at large but less so for biomed-
ical applications. This is in part because large training
databases do not exist and in part because biomedical an-
notations are often noisy. In this paper, we show that by
introducing templates within the deep learning pipeline we
can overcome these problems. The proposed framework,
named ImplicitAtlas, represents a shape as a deformation
field from a learned template field, where multiple templates
could be integrated to improve the shape representation ca-
pacity at negligible computational cost. Extensive experi-
ments on three medical shape datasets prove the superiority
over current implicit representation methods.

1. Introduction

Shape modeling is central to medical image analysis, and
many different approaches to surface representation have
been used for this purpose [16, 36]. In recent years, deep
implicit surfaces [8, 38, 44] have emerged as a powerful al-
ternative to more established methods. This is particularly
true in the field of computer vision at large but less so in the
subfield of biomedical imaging.

This is attributable to the specific challenges posed by
biomedical datasets [27, 56]: For manufactured objects,
there are large datasets [0, 31] that can be used for train-
ing purposes of shape models. These do not exist for many
objects of interests in medical imaging, such as the shape
of organs and lesions. Even when medical images and the
corresponding 3D models are available, the models are of
much lower quality due to the complexity and expense of
precise annotation. Furthermore, within a single dataset,
spatial resolution is rarely constant and often anisotropic.
Human errors can result in labeling noise, and organ bound-
aries are often cropped due to the limitations of imaging
process. Fig. 2 illustrates some of these difficulties.

To address these issues, we propose ImplicitAtlas, a data-
efficient implicit shape model for medical imaging. During
training, exemplars represented on discrete grids are taken
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Figure 1. ImplicitAtlas. We propose a data-efficient shape model
for medical imaging. It represents shapes by deforming one of
several learned templates.

as input, the most common representation in the biomed-
ical imaging, and the model outputs a continuous occu-
pancy grid. Here, an implicit function learns multiple tem-
plates, which can undergo non-rigid deformations learned
by another implicit function. As in multi-atlas segmen-
tation [21, 58], the templates make our approach better at
dealing with limited training data and less sensitive to la-
bel noise. Thanks to a straight-through estimator (STE) [3],
multiple templates can be learned in an end-to-end fash-
ion at negligible computational cost. Finally, to improve
the data efficiency further, we introduce a convolutional im-
plicit function [9,45] to extract multi-scale features.

To demonstrate the effectiveness of ImplicitAtlas, we
perform extensive experiments on three medical shape
datasets of liver, hippocampus and pancreas. Our method
outperforms current implicit representation-based meth-
ods [12, 38,45, 72] by considerable margins, especially
when trained in a few-shot learning setting. We also demon-
strate several potential applications, such as shape comple-
tion from user-supplied point annotations and keypoint la-
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Figure 2. Common Artefacts in Biomedical Shapes. As medi-
cal shapes are annotated in image stacks, they are generally rep-
resented in discrete grids. The annotations usually include label
noise and incomplete borders.

beling by the learned dense correspondences. As will be
shown, in spite of the challenges that biomedical datasets
pose, the proposed implicit methods is made very effective
by allowing them to learn multiple templates from training
data, and to choose one to reconstruct a particular organ.

2. Related Work

CNN-based volumetric methods such as U-Net and its
variants [10, 22, 40, 53] now dominate biomedical im-
age segmentation. This is evident from the CHAOS chal-
lenge [29] and Medical Segmentation Decathlon [24] re-
sults. The winners of both competitions used ensembles of
methods relying on volumetric CNNs to handle the tradi-
tional volumetric image segmentation problem. However,
biomedical image segmentation is far from solved in prac-
tice. For instance, it is still difficult to preserve geometric
and topological structures. Meanwhile, volumes can be re-
covered accurately: obtaining high-quality surfaces remains
hard [34].

These challenges highlight the importance of shape mod-
eling in medical image analysis [16, 36], including medical
image segmentation [33, 50,55, 59], computer-aided diag-
nosis [4,59,71], and computational anatomy [5].

Explicit Representations. As shapes in medical imag-
ing are generally annotated on discrete grids from image
stacks—acquired by computed tomography (CT) and mag-
netic resonance imaging (MRI), among others—-most prior
art [33,50, 55,59, 64] relies on voxel representations. As a
3D extension of 2D pixel grid, voxel neural networks could
be developed by extending the corresponding 2D versions
(e.g., 3D UNet [ 1]) with 3D convolutions, or using sophis-
ticated operators [67—69]. Unfortunately, they have high-
memory requirements for a relatively low spatial resolu-
tion. Hence, the use of geometric data structures, such as
point clouds and meshes, have also been explored. Point
clouds are lightweight and flexible in sensing and process-
ing [7,23,48,70]. They are suitable to extract semantic in-
formation [18, 19, 66] but do not capture topology. Recov-
ering the surfaces from point clouds is a non-trivial prob-

lem, which requires refined techniques [15,41]. Triangu-
lated meshes allow memory-efficient processing for high-
fidelity surface reconstruction [14, 28,61, 62] but changing
their topology is non-trivial. There are algorithms designed
for this purpose [37], but they require ad hoc heuristics that
do not generalize well.

Implicit Representations. Recently, implicit representa-
tions [8, 38, 44] has become increasingly popular in deep
learning-based 3D computer vision. They represent a 3D
shape as an isosurface in a continuous 3D field, which is
parameterized by a deep network. Due to their flexibility,
memory efficiency, and ability to represent any topology at
any resolution, implicit representations have been widely
investigated not only for shape, but also appearance [39]
and scene [42] modeling.

However, they have not yet made big inroads in medical
image analysis. On of the few studies in that area can be
found in [49]. But it focuses on refining medical image seg-
mentation produced using existing implicit representation
methods. We instead focus on a high-quality implicit rep-
resentation method to address the difficulty of developing
implicit fields in biomedical imaging area.

This paucity of implicit methods can be attributed to the
specific challenges in biomedical image processing: Large
databases are rarely available and annotations are often im-
precise. Using atlases and templates in shape modeling has
long been known as a good approach to tackle these issues,
and we discuss them below.

Atlases and Templates. Probabilistic atlases are widely
used for atlas-based image segmentation [21, 58] because
they are an excellent mean to deal with the noise in biomed-
ical imagery. With the advent of deep learning, atlases have
been integrated into convolutional neural networks [2, 13,
,54]. All these approaches rely on pre-computed atlases.
They are created by fusing multiple manually annotated im-
ages; the atlases must also be pre-registered to the target im-
ages to align them with the structures of interest. In [60], an
attempt is made to use atlases that could be automatically
aligned and deformed to match the target structures.

On the other hand, templates are used in conjunction
with implicit surfaces in [12, 72]. This involves using an
implicit method to predict deformations around a template,
where the deformation and template are both parameter-
ized implicitly. However, these methods were developed on
large training datasets in mind, and data efficiency is not the
primary focus. Both rely on MLP decoders that do not in-
troduce spatial reductive bias as convolutional ones do [45].
Besides, only a single implicit template can be automati-
cally learned by these methods, and a central argument of
this paper is that it is beneficial to more than one.
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3. Methodology

In this section, we first briefly review deep implicit shape
representations. We then introduce our model, the corre-
sponding architecture, and our training approach.

3.1. Background: Deep Implicit Surfaces

Implicit shape representations [8, 38, 44] model shapes
by mapping 3D coordinates to a shape indicator, typically
occupancy or signed / unsigned distance. In this work, we
use the latter. For a shape S, this mapping is expressed as

F(h,p)=0:R°xR* - R, (1)

where h is a c-dimension latent vector that encodes S,
p(z,y, z) € R? is a query point, and F is implemented by
a deep network that outputs the probability of occupancy
o € [0,1]. o should be close to 1 for p inside S and 0
otherwise. Given a training set, F and the vector h corre-
sponding to each shape can be learned in many ways. Here,
we use an auto-decoding approach as in [38], where the h is
treated as a learnable parameter and jointly optimized with
the parameters of F.

Apart from the methods that directly output shape indi-
cators, there are also studies that regard shapes as deforma-
tion from templates [12,72]. F is a rewritten as a composite
function of T and D, that is,

F(h,p) =T (D(h,p)) , 2)

where D : R¢ x R3 — R? is a function that maps a query
point p to new coordinates p’ and 7 : R® — R is a
learned implicit function that plays the same role as F in
Eq. 1 but learns a single shape. D can be implemented in
several ways, including an additive deformation [12] or a
point-wise affine transformation [72]. In this formulation,
T plays the role of a template because it encodes a shape
prior learned from the training shapes. Notably, as all the
deformed coordinates are aligned with the template, dense
correspondences between shapes can easily be established.

3.2. Model Pipeline

Although earlier than the deep learning era, multi-atlas
techniques [21, 58] are good at dealing with limited data
and label noise. We translate them into our framework as
depicted by Fig. 3 (a). Given the formulation of Eq. 2, we
take 7 to be an Implicit Template Network (T) and D to be
an Implicit Deformation Network, Eq. 2 is rewritten as

F(h,p) =T (t(h),p+D(d(h),p)), 3)

where t and d are separate vectors that are functions of h,
and the output of D is the deformation (instead of the de-
formed coordinates in Eq. 2). Note that 7 now has an addi-
tional argument, which we are going to use select one tem-
plate among several possible ones. This design enables the

learning of multiple templates and improves the representa-
tion capacity of our model over earlier work [12,72].

Template Selection. We introduce a matrix of learnable
parameters T € R™*¢, where m denotes the number of
templates and c is the dimension of the latent vectors. Tem-
plate selection is achieved by picking a row vector t from
T and feeding to the implicit function (7). t is taken to be

t = STE-Softmax(s) - T, 4

s =MLP(h) € R™, @)
where STE-Softmax is a softmax with straight-through es-
timator [3]: the softmax is “hardened” as a one-hot in the
forward pass, but it directly takes the gradient of the one-hot
in the backward pass. This can be regarded as reparameter-
ization [30] for categorical distributions. The STE-Softmax
could be replaced by Gumbel-Softmax [26, 35], which, in
theory, should provide a smoother gradient for categorical
reparameterization. However, in our experiments, it does
not make a difference.

Estimating the Deformation. The variable d of Eq. 3
controls the deformation at the query point p, which we
take to be a point-wise additive deformation: p — p +
D(d(h),p). As medical shapes are represented in discrete
grids, p is implemented as a meshgrid P € RP>HxWx3,
where D x H x W denotes the spatial size.

3.3. Network Architecture

Multi-Layer Perceptrons (MLPs) have been a popular
choice to parameterize the deep implicit functions [8, 12,

,44,72]. Unfortunately, these MLPs tend to be data hun-
gry. We therefore used a convolutional decoder instead, as
in ConvONet [45].

As illustrated by Fig. 3 (b), a latent vector—either t or d
in our approach—is first transformed into multi-scale fea-
ture maps by convolutional and upsampling layers, from
which the query point p obtains its features as a function
of its coordinates via trilinear interpolation [25]. Instead
of only using the final feature map as in [45], we extract
multi-scale features from the feature maps at several res-
olutions as in [9]. Finally, the coordinates along with the
resulting features encoding local and global semantic infor-
mation are concatenated and fed into a small MLP to pro-
duce an output. The multi-scale features make the model
less data-hungry than pure MLPs.

T and D are implemented using the same convolutional
decoder, except for the final layer. There is one output chan-
nel for 7 and three for D. Each convolutional block is a
stack of convolution layer, group normalization [63] and
leaky ReLU activation [65]. The first upsampling layer is
implemented as pixel shuffle [52]. More implementation
details can be found in supplementary materials.
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Figure 3. Overview of ImplicitAtlas. (a) Model Pipeline. The model consists of an Implicit Template Network (7) and an Implicit
Deformation Network (D). Given a latent code h, it selects a latent template t via STE-Softmax to generate a template using 7. It also
produces a latent deformation d to generate a deformation field from the template using D. They are composed to produce an occupancy
field, which is the final output. (b) Network Architecture of the Decoder. Given a latent feature, it builds multi-scale feature maps in a
convolutional manner. For a query coordinate p = (z, y, z), it aggregates both local and global feature by interpolating on the multi-scale
feature maps. Finally, the coordinate and the interpolated features are fed into an MLP for final output.

3.4. Model Training

As we take occupancy formulation, the primary task loss
to minimize is the binary cross entropy,

1
ACTaLsk = _Nzé lOg(O) + (1 _6) : lOg(l - 0) s (5)

where N is the number of sampled points, o and 6 are the
predicted and true occupancy, respectively. Given that we
use an auto-decoding approach [44] to learning the latent
vectors and using that these latent codes from a Gaussian
prior distribution, we add the regularization penalty

Ly = ||h]|2, (6)

where || - ||2 denotes the l3-norm. To further regularize the
model when training with limited data, we define 2 addi-
tional regularization terms: Laplacian Smoothness (L)
and a Deformation Penalty (Lpp), written as:

1
Lrs = Nz > WFws + Fuot — 2Fulla,

we{wz,y,z}

1
Lpp =max|[Dl|2+ 5 > |ID]l2 @)

where F, is short for F(h, (z,y, z))—-and similarly for y
and z—-and D is short for D(h, p). Minimizing £ s favors
a spatially smooth output while minimizing Lpp restricts
the deformations so that 7 has to learn more details.
During training, we uniformly sample a meshgrid Pe
REXHXWX3 of lower resolution than the volume of inter-
est. For the shapes of 1283 in this study, we sample 323

Organ #Known  # Unkown Annotation Modality
Liver 111 20 Portal venous phase CT
Hippocampus 221 39 Mono-modal MRI
Pancreas 238 43 Portal venous phase CT

Table 1. Datasets for the Liver, Hippocampus and Pancreas.
Known (training) and unknown (test) shapes are based on the or-
gan segmentations from the Medical Segmentation Decathlon [1].

meshgrid during training. Each point in the meshgrid is
added with a random noise, and its occupancy ground truth
is sampled in the full-resolution volume of interest. This
sub-griding technique significant reduces the training cost
in terms of both memory and time. Furthermore, as we sam-
ple query points on a uniform grid, computing £, can be
done efficiently using a 3D convolution with a custom ker-
nel. Lpp is calculated over the meshgrid.

4. Experiments

We now evaluate our ImplicitAtlas approach both quan-
titatively and qualitatively.

4.1. Datasets

For our experiments, we use the Medical Segmentation
Decathlon (MSD) [1], which is arguably the largest and
most comprehensive medical image segmentation data set
available to date. It is a collection of 10 medical image
datasets, featuring several organs imaged using many dif-
ferent modalities. To test our approach under many differ-
ent conditions, we experimented with three organs that pose
different challenges: the liver, a big organ with complex de-
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Method Liver (K) Hippocampus (K) Pancreas (K) Liver (U) Hippocampus (U) Pancreas (U)
DSC  NSD | DSC NSD | DSC NSD | DSC NSD | DSC NSD | DSC  NSD
MLP Decoder [38,44] 96.32  95.20 | 93.21 91.50 9483 9555 | 93.12  71.23 | 90.20 63.05 89.46  65.15
+ Template [12,72] 97.77 97.65 | 93.99 92.00 95.89 96.54 | 9426 81.28 | 91.89 67.92 90.32  71.65
Conv Decoder [9,45] 98.47 98.19 | 94.88 92.64 95.54 96.18 | 96.61 86.12 | 93.27 75.87 92.22  80.14
ImplicitAtlas 98.58 98.69 | 96.42 94.72 96.85 97.30 | 96.59 8595 | 93.54 76.99 93.38 81.11
ImplicitAtlas + reg. 98.50 98.33 | 96.09 92.85 96.76  97.03 | 96.72 86.90 | 93.99 77.47 93.31 80.92

Table 2. Reconstruction Accuracy on Known (K) and Unknown (U) Shapes. The accuracy is expressed in terms of the DSC (%, 1) and
NSD (%, 1) metrics. reg.: regularization with Laplacian Smoothness and Deformation Penalty.

tails; the hippocampus, a small organ; the pancreas, a soft
organ that can be seen in diverse poses.

As annotations are available only for the official training
split, we split the data into known (training) and unknown
(test) shapes for each organ. All the organ annotations are
cropped using the bounding-boxes of organ segmentation,
and resized into a fixed size of 1283 via spline interpola-
tion. Tab. | summarizes the basic information about the 3
resulting datasets.

4.2. Baseline Approaches

Most current shape representation methods are trained
on CAD models or scenes, rather than on biomedical
shapes. For a fair comparison, we reimplemented them and
trained them on our datasets. The size of the networks were
chosen to be similar to that we use. We use the same train-
ing and inference procedures in all cases. The following
baseline methods are implemented:

MLP Decoder. Due to the simplicity and flexibility of
MLPs, many algorithms [8, 38, 44] use them as decoders.
Our MLP baseline uses the architecture of DeepSDF [44].

MLP Decoder + Template. Recent algorithms that rely
on templates [12,72] use different MLP-based network ar-
chitectures and deformation formulation. To make the com-
parison meaningful, we implemented a baseline based on
Eq. 3 in which 7 and D are implemented with the same
MLP architecture, which duplicates what is done in [12].

Conv Decoder. The problem is the same with earlier
methods that rely on convolutional implicit fields [9, 45].
To compare, we implemented a baseline based on Eq. 1 that
uses the same architecture of our decoder.

4.3. Representing Known and Unknown Shapes

We first present our experimental procedure, and then
analyze the reconstruction results and ablation studies.

Experimental Setting. As in earlier work [12,44,72], we
first evaluate the representation capacity of our model for
encoding known and unknown shapes. We train three sep-
arate models for the liver, hippocampus, and pancreas. We
then evaluate the quality of reconstructions on the training

and testing set separately. The first is regarded as the set
of the known (K) shapes and the second as the unknown
(U). For the former, the reconstruction is performed during
the training of auto-decoding. For the latter, we optimize
randomly initialized latent code h to reconstruct the shapes
with fixed model weights.

Unless otherwise specified, we use m=5 templates in our
method. A group of fixed loss weights is used for all cases:
103 for Lo, 1073 for L5 and 1072 for Lpp We give
additional details on the training and reconstruction proce-
dures in the supplementary material.

Metrics. To evaluate the shape similarity between the
ground truth and predicted reconstruction, we use Dice
Similarity Coefficient (DSC) and Normalized Surface Dice

(NSD) [43], which are the standard metrics used in the med-
ical imaging literature. They are defined as
~. 2000
psc(o,0) = 19001 (®)
0] + 10|
. 100N B +1006n B
NSD(O,0) = | 20l 11000 ol
|0O| + 00|

where O € RPXHXW and O € RP*H*W are the pre-
dicted reconstruction and ground truth of the volume, re-
spectively, and Bg/) ={x eR3|3IZ €V, ||z—7|2 < T}
denotes the border region of surface 9V at tolerance 7. Here
we take 7 = 1. Conceptually, both DSC and NSD are IoU-
like metrics in [0,1] (higher is better): DSC measures the
volume overlap, while NSD measures the surface overlap.

Results. We compare two versions of ImplicitAtlas, with
and without the regularization terms of Eq. 7, to the base-
lines. The results are reported in Tab. 2. The pure MLP de-
coder underperforms other methods, especially in surface-
based measure (NSD) but it can be improved by using the
template-based method. The convolutional decoder signifi-
cantly boosts the shape representation capacity, which indi-
cates the importance of the spatial reductive bias for medi-
cal shapes. Our approach that relies on multiple deformable
templates improves the performance further. The proposed
regularization terms decreases accuracy on known shapes,
while improving it on unknown shapes in all cases but one.
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Liver (K) Hippocampus (K) Pancreas (K) Liver (U) Hippocampus (U) Pancreas (U)
DSC NSD | DSC  NSD | DSC NSD | DSC NSD | DSC ~ NSD | DSC NSD

98.22  98.01 | 95.62 91.17 96.15 95.62 | 96.52 8543 | 93.18 74.54 90.61 7443
82.65 26.18 | 80.13 30.98 5539 15.66 | 79.24 2242 | 76.82 27.21 51.64 14.16
98.58 98.69 | 96.42 94.72 96.85 97.30 | 96.59 8595 | 93.54 76.99 93.38 81.11

D MT £Lrs Lpp

SSENENENEEEN
NN RN

v 98.53  98.46 | 96.28 93.33 96.81 97.11 | 96.45 8558 | 93.62 77.01 93.01 80.35
v 98.52  98.42 | 96.32 93.10 9691 97.77 | 96.69 86.21 | 93.79 77.13 94.11  82.04
v v 98.50  98.33 | 96.09 92.85 96.76  97.03 | 96.72 86.90 | 93.99 77.47 9331  80.92

Table 3. Ablation Study of ImplicitAtlas Design on Known (K) and Unknown (U) Shapes. D: deformation. MT: multiple templates
(m=5). L5 regularization with Laplacian Smoothness. £p p: regularization with Deformation Penalty. The performance is evaluated in
terms of the DSC (%, 1) and NSD (%, 1) metrics. Note that MT only (without D) denotes static matching on the learned templates.
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Figure 4. Shape Reconstruction and Interpolation. Our implicit shape representation yields reconstructions that are smoother than the
annotations. Furthermore, it allows smooth interpolation from one examplar to another using linearly interpolated latent code h.

In other words, it confers our algorithm better generaliza-
tion properties.

4.4. Qualitative Results

Through visualization, we now provide a qualitative

analysis of ImplicitAtlas + reg. as defined above.
Ablation Study. We conducted an ablation study to ana-

lyze the effectiveness of individual components of Implici- Shape Reconstruction and Interpolation. 1In Fig. 4, we

tAtlas. We report the results in Tab. 3. The multiple tem-
plate (MT) increases the representation capacity on both
known and unknown shapes, especially for more difficult
cases, such as the pancreas. As observed before the regular-
ization terms L1 s and Lpp of Eq. 7 enhance the general-
ization performance on unknown shapes.

Note that the single template version underperforms the
pure convolutional decoder without template in some cases.
For example, compare “D” in Tab. 3 to “Conv Decoder”
in Tab. 2. This indicates that the performance improvement
from the template is dependent on the network architectures
and datasets, as previously noted in [12].

display 2 randomly selected reconstruction per dataset. All
the reconstruction are of high quality, even though the nu-
merical metrics of Tab. 2 are not perfect and in spite of the
training data artefacts depicted by Fig. 2. As our implicit
shape model encodes a shape prior of the training samples,
the reconstruction is much smoother than the manual anno-
tation, which points to the potential use of our method to
post-process human annotations.

We also display an interpolation between 2 samples ob-
tained by linearly interpolating the latent codes. The inter-
polated samples looks valid throughout. Furthermore, the
model even captures the poses, as can be seen in the bottom
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Method Liver (K5) Hippocampus (KS5) Pancreas (K5) Liver (U) Hippocampus (U) Pancreas (U)
DSC  NSD | DSC NSD | DSC NSD | DSC NSD | DSC ~ NSD | DSC NSD
MLP Decoder [38,44] 96.67 96.51 | 93.52 91.31 95.20 95.83 | 88.33 4390 | 83.62 45.07 68.97 27.70
+ Template [12,72] 97.65 97.88 | 94.13 92.29 95.99 96.53 | 89.98 4532 | 84.43 49.33 70.11  31.06
Conv Decoder [9,45] 98.41 98.38 | 95.46 87.73 96.67 97.00 | 91.26 55.13 | 87.10 50.92 71.79  29.15
ImplicitAtlas 98.89 99.53 | 97.02 96.37 97.23 98.14 | 90.64 48.27 | 88.37 54.40 7471  34.87
ImplicitAtlas + reg. 98.71  99.05 | 96.48 93.93 96.90 97.31 | 92.06 57.69 | 89.97 59.39 81.34 46.78

Table 4. Reconstruction Accuracy of Few-Shot Learning using 5 Training Samples. Reconstruction accuracy on the the 5 known
samples (K5) and unknown samples (U) in terms of the DSC (%, 1) and NSD (%, 1) metrics.
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Figure 5. Learned Templates and Shape Generation. For each
organ, we visualize the five templates we use in the top row. In the
bottom rows, we show shapes obtained by sampling random latent
vectors from a Gaussian prior distribution.

row of the figure. This implies that our model learns rich
semantics through limited data.

Learned Templates and Shape Generation. As each
row of T can be interpreted as a latent template vector t,
we can use 7 to visualize them by using 7 (t,-) to create

an occupancy field. We do this for all five templates we
use at the top rows of Fig. 5. In projection, the templates
look similar and their average pairwise DSC (%) are 96.10,
94.89 and 94.15 for the liver, hippocampus and pancreas,
respectively. Nevertheless, as shown in Tab. 3, the existence
of these multiple templates improves the representation ca-
pacity for both known and unknown shapes at a negligible
computational cost.

To generate new shapes, we randomly sample h from
a Gaussian distribution, compute t(h) and d(h) of Eq. 3,
and decode them into occupancy fields. Generation from a
specific template can be achieved by conditioning the t in
the forward pass. The resulting shapes are diverse and valid
in most cases, as shown in the bottom rows of Fig. 5. How-
ever, there are still artifacts such as border effects and holes.
More training samples and sophisticated data augmentation
techniques can be expected to fix this.

4.5. Few-Shot Learning

Experiment Setting. As medical shapes are usually
scarce, we consider an extreme setting on our datasets: Can
we learn an effective shape model from only 5 training sam-
ples? To test this, during training, we only use the first 5
samples of the training set for each organ, while retaining
all the other setting used in Sec. 4.3.

Results. We report the results in Tab. 4. Our method
still significantly outperforms the baselines, especially in
the more challenging cases of the pancreas. With 5 train-
ing samples, the data-hungry nature of MLP becomes ob-
vious: It cannot provide meaningful reconstruction in some
cases. The template and convolutional decoder are both use-
ful, and the proposed regularization terms reliably improves
the reconstruction accuracy.

5. Applications

The deep prior introduced by our models can be of use
for numerous downstream applications in biomedical imag-
ing. In this section, we explore some promising directions.

5.1. Shape Completion from Point Annotations

Clicking is a widespread approach to providing annota-
tions for many biomedical applications, such as, interactive
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Figure 6. Shape Completion from Point Annotations. DSC (7) as a function of point number (64, 256 and 1,024) on unknown shapes.

Figure 7. Establishing Dense Correspondences. As our method
models the shapes as deformation from the learned templates
(middle), correspondence can be easily established. We highlight
5 keypoints in different colors for each case.

segmentation [51], localization [57]. Here we show that Im-
plicitAtlas can generate acceptable shapes from such clicks,
thus making the annotation process less cumbersome. In
our experiments, we sample 64, 256 and 1,024 points close
to the organ boundary of unknown shapes. A randomly ini-
tialized latent code is optimized to reconstruct the shapes by
minimizing an L7, loss to the points. We repeated these
experiments using either our baselines or ImplicitAtlas, and
plot the results in Fig. 6. The shape completion performance
is evaluated by comparing the reconstructed shape with the
ground truth, reported in the DSC metric. Our approach
consistently outperforms the others, especially when using
fewer points. We provide additional details on these exper-
iments in the supplementary materials.

5.2. Dense Correspondences

Keypoint and landmark labeling is an important task in
medical imaging [17,47,73]. As all the deformed points

by our Implicit Deformation Network D are well aligned
with the templates, dense correspondences between multi-
ple shapes can be established easily. In Fig. 7, we highlight
matched keypoints on the three organs. In each cases, we
manually selected 5 keypoints on the template and we check
where these points are sent. The resulting correspondences
are visually acceptable.

The dense correspondences could be applied in many po-
tential applications. For instance, we can create “atlas” us-
ing the implicit function: label the templates into several
sub-parts, and transfer them to all the shape annotations. It
also provides a way to model spatio-temporal changes, e.g.,
tumour growth [32,46].

6. Conclusion and Future Work

We have shown that, in spite of the challenges in biomed-
ical applications, deep implicit surfaces could be made ef-
fective with the proposed method.

In future work, there are many extension directions.
First, the current version of our method works on single or-
gan, while many biomedical applications require multiple
organs / parts. It will be particularly useful to extend Im-
plicitAtlas into a multi-class one in medical imaging area,
where dealing with multiple objects in different poses and
scales will be a challenge. Besides, as the implicit functions
could also be used for appearance modeling, we can extend
ImplicitAtlas to model the joint distribution of shape and
appearance. A implicit model for both shape and appear-
ance will enable a number of novel applications. Last but
not least, it will be interesting to explore new applications
of ImplicitAtlas. The deep prior encoded by the model can
be directly used for improving human annotations or model
predictions. It can also serve as a tool in medical image
segmentation, shape analysis and multi-site generalization.
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