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Abstract

Visual grounding is a task to locate the target indicated
by a natural language expression. Existing methods ex-
tend the generic object detection framework to this prob-
lem. They base the visual grounding on the features from
pre-generated proposals or anchors, and fuse these features
with the text embeddings to locate the target mentioned by
the text. However, modeling the visual features from these
predefined locations may fail to fully exploit the visual con-
text and attribute information in the text query, which limits
their performance. In this paper, we propose a transformer-
based framework for accurate visual grounding by estab-
lishing text-conditioned discriminative features and per-
forming multi-stage cross-modal reasoning. Specifically,
we develop a visual-linguistic verification module to focus
the visual features on regions relevant to the textual descrip-
tions while suppressing the unrelated areas. A language-
guided feature encoder is also devised to aggregate the vi-
sual contexts of the target object to improve the object’s dis-
tinctiveness. To retrieve the target from the encoded visual
features, we further propose a multi-stage cross-modal de-
coder to iteratively speculate on the correlations between
the image and text for accurate target localization. Exten-
sive experiments on five widely used datasets validate the
efficacy of our proposed components and demonstrate state-
of-the-art performance.

1. Introduction

Visual grounding aims to localize the referred object or
region in an image by a natural language expression. This
task has received increasing attention because of its great
potential in bridging the gap between linguistic expressions
and visual perception. The evolution of this technique is
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Figure 1. Our proposed framework for visual grounding. With the
features from the two modalities as input, the visual-linguistic ver-
ification module and language-guided context encoder establish
discriminative features for the referred object. Then, the multi-
stage cross-modal decoder iteratively mulls over all the visual and
linguistic features to identify and localize the object.

also of great importance to other multi-modal reasoning
tasks. In visual grounding, the referred object is generally
specified by one or more pieces of information in the lan-
guage expression. The information may include object cat-
egories, appearance attributes, and visual relation contexts,
etc. Thus, to avoid ambiguity in reasoning, it is crucial to
fully exploit the textual information and model discrimina-
tive visual features for visual grounding.

Existing methods, no matter the two-stage or one-stage
ones, treat visual grounding as a ranking problem on the
detected candidate regions. The two-stage methods [23,24,

,45] generally first detect a set of object proposals and
then match them with the language query to retrieve the top-
ranked proposal. The one-stage approaches [3, 18, 43] di-
rectly fuse the text embeddings with image features to gen-
erate dense detections, from which to choose the one with
the highest confidence score. As these methods are based on
generic object detectors, their inference procedures rely on
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the predictions from all possible candidate regions, which
makes the performance limited by the quality of the pre-
predicted proposals or the configuration of predefined an-
chor boxes. Moreover, they represent the candidate objects
with the region features (corresponding to the predicted pro-
posals) or the point features (of the dense anchor boxes) to
match or fuse with the text embeddings. Such feature repre-
sentations may be less flexible for capturing detailed visual
concepts or contexts mentioned in linguistic descriptions.
This inflexibility may increase the difficulties in recogniz-
ing the target object. Although some methods exploit mod-
ular attention [44], graph and tree [20, 34,40, 41] to better
model the relations between vision and language, their pro-
cessing pipelines are complicated and the performance is
still limited by the object proposal inputs.

Recently, the boom of the transformer in natural lan-
guage processing [0, 32] and computer vision [!, 7] has
shown its powerful modeling capability in both the lan-
guage and vision fields. Motivated by that, TransVG [5]
proposes a transformer-based framework for visual ground-
ing. Taking the visual and linguistic feature tokens as in-
puts, they stack a set of transformer encoder layers to per-
form cross-modal fusion, and directly predict the target lo-
cations. Despite its effectiveness, the shared transformer
encoder layers are in charge of multiple tasks, including en-
coding the visual-linguistic features, identifying the object
instances, and acquiring the final locations, which may in-
creases the learning difficulty and could only achieve com-
promised results. It is also less straightforward to retrieve
the visual features of the target object with their feature fu-
sion mechanism. Thus, we propose to establish a more ded-
icated framework for accurate visual grounding.

In this work, we propose a transformer-based visual
grounding framework that directly retrieves the target ob-
ject’s feature representation for localization. To this end,
as shown in Fig. 1, we first establish the discriminative
feature representations by visual-linguistic verification and
context aggregation, and then identify the referred object
by multi-stage reasoning. Specifically, the visual-linguistic
verification module compares the visual features with the
semantic concepts from textual embeddings to focus on
the regions relevant to the language expression. In paral-
lel, the language-guided context encoder gathers the con-
text features to make the visual features of the target object
more distinguishable. Based on these enhanced features, we
propose a multi-stage cross-modal decoder that iteratively
compares and mulls over the visual and linguistic informa-
tion. This enable us to progressively acquire a better rep-
resentation of the referred object and thereby determine its
location more accurately.

To summarize, our contributions are three-fold: (1) To
establish the discriminative features for visual grounding,
we propose a visual-linguistic verification module to fo-
cus the encoded features on the regions related to the lan-
guage expression. A language-guided context encoder is

further devised to aggregate important visual contexts for
better object identification. (2) To retrieve a more accu-
rate feature representation of the referred object, we pro-
pose a multi-stage cross-modal decoder, which iteratively
queries and mulls over visual and linguistic information
to reduce the ambiguity during inference. (3) We bench-
mark our method on RefCOCO [45], RefCOCO+ [45],
RefCOCOg [23], ReferltGame [16], and Flickr30k Enti-
ties [26]. Our method exhibits significant performance im-
provements over the previous state-of-the-art methods. Ex-
tensive experiments and ablation studies validate the effi-
cacy of our proposed components. Our code is public at
https://github.com/yanglil8/VLTVG.

2. Related Work
2.1. Visual Grounding

Existing methods generally extend the object detection
framework [10,27,28,39,48] to address the visual ground-
ing task. Two-stage methods [12,13,20,33,34,40,44,47,50]
leverage the off-the-shelf detectors to generate a set of pro-
posals from the image in the first stage, and then match them
with the language expression to select the top-ranked pro-
posal. However, these methods heavily rely on the perfor-
mance of the pre-trained detector or proposal generator. If
the referred object is not detected in the first stage, the rank-
ing and selection process in the second stage will also fail
to output the correct detection.

Recently, one-stage approaches [3, 18,42,43] predict the
location of referred object without generating the candidate
proposals in advance. For instance, FAOA [43] encodes the
language expression into a textual embedding and fuse it
into the YOLOV3 detector [27]. The model generates dense
object detections with confidence scores, and select the top-
ranked one as the prediction for the referred object. In or-
der to solve the shortcomings in modeling long language
queries, ReSC [42] proposes a iterative sub-query construc-
tion framework to reduce the referring ambiguity. Despite
their efficiency, the one-stage methods generally utilize the
point feature as the object representation, which may be less
flexible to associate with the detailed descriptions in the lan-
guage expression.

2.2. Visual Transformer

While convolutional neural networks (CNNs) achieved
promising results in various vision tasks [11,28,35-38], the
success of transformers in both vision and language fields
has attracted great attention of the research community, and
the transformer has emerged as a viable alternative to CNNs
in many vision tasks, such as image classification [7], object
detection [1,49], efc. For example, DETR [1] proposes an
end-to-end detection framework based on the transformer
framework. This work utilizes the attention mechanism of
transformer to formulate object detection as a set predic-
tion problem, which obtains outstanding performance. De-
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Figure 2. The overall network architecture of our proposed method. Given the input image and language expression, the feature encoder (a)
first extracts the visual features and textual embeddings, respectively. Then, these features are processed by the visual-linguistic verification
module (c) and language-guided context encoder (d) to produce more discriminative features for the referred object. Finally, the multi-stage
cross-modal decoder (b) leverages all the visual and textual features to iteratively infer the target location.

formable DETR [49] introduces deformable convolution to
reduce the computational cost of DETR. ViT [7] shows that
a transformer-based backbone can achieve excellent perfor-
mance on image classification. All these applications in vi-
sion tasks demonstrate the powerful and general modeling
capabilities of transformer. Motivated by this, we also pro-
pose to utilize transformer to develop a more flexible and
effective visual grounding framework.

There are also works exploiting transformer modules or
attention mechanisms to solve different types of vision and
language tasks [4, 17,22,31]. For example, SCAN [17]
addresses image-text matching by modeling correlations in
the proposal-level. STVGBert [31] correlates the text em-
bedding with the video frame features for video grounding.
In contrast, we focus on visual grounding based on images,
and we model the visual-linguistic correlations pixel-wisely
to focus feature encoding on the semantically related re-
gions for grounding.

3. Method

In this section, we present our proposed framework for
visual grounding. We first introduce the overall network
architecture. Then, we elaborate on our proposed visual-
linguistic verification module, language-guided context en-
coder and multi-stage cross-modal decoder. Finally, we de-
tail the loss function for training.

3.1. The Overall Network

Unlike the previous ranking-based visual grounding
methods, we directly retrieve the object feature represen-

tation for object localization. As shown in Fig. 2, given an
image and a language expression, we first input them into
two separate branches for feature extraction. For the image,
we utilize a convolutional neural network (e.g., ResNet-
50 [11]) with a stack of transformer encoder layers to gen-
erate a 2D visual feature map F,, € RE*H*W  For the
input language expression, we encode it as a sequence of
textual embeddings F; € RY*L with BERT [6] in the
other branch. Then, based on the features of both modal-
ities, we apply the visual-linguistic verification module and
language- gu1ded context encoder to encode discriminative
features £, € RC*H*W for the referred object. The visual-
linguistic verification module refines the visual features to
focus on the regions related to the referring expression,
while the language-guided context encoder gathers infor-
mative visual contexts to facilitate the target-object identi-
fication. Finally, a multi-stage cross-modal decoder is ap-
plied to iteratively mull over the encoded visual and textual
features to more exactly retrieve the object representation
for target localization.

3.2. Visual-Linguistic Verification Module

The input image is encoded first by the convolutional
network and then the follow-up transformer encoder layers
to be a visual feature map F),. This feature map contains
the features of object instances in the image, but has no
prior knowledge about the referred object by the language
expression. Retrieving the representation of the referred ob-
ject without any prior could be distracted by other objects
or regions, causing less accurate localization results. To ad-

9501



dress this issue, we propose the visual-linguistic verifica-
tion module to compute fine-grained correlations between
the visual and textual features and focus features on regions
related to the semantics in the textual description.

As shown in Fig. 2-(c), the visual-linguistic verification
module is based on the multi-head attention [32]. Here, the
visual feature map F,, € RE*H*W serves as the query and
the textual embeddings F; € RE*L acts as the key and
value. With the multi-head attention, the related semantic
features will be gathered (from the textual embeddings) for
each visual feature vector of the visual feature map F,,. The
gathered semantic features are organized as a semantic map
F, € RE*HXW that is spatially aligned with the visual fea-
ture map F),. Thereafter, we project both the feature maps
F, and F} to the same semantic space (via linear projection
and L2 normalization) obtaining F!, and F’, and compute
their semantic correlation as the verification score for each
spatial location (x, y) as:

1— F' , TF/ , 2
ﬂmwaem<( “@ingw)> (1)

where o and o are learnable parameters. The verification
scores model the semantic relevance of each visual feature
to the linguistic expression. Thereby, we are able to estab-
lish more salient feature map F,, for the referred object by
modulating the visual features with the verification scores
pixel-wisely:

F,=F,-S. )
Such modulated visual features F), naturally suppress re-
gions that are irrelevant to the referring expression, making
it easier to recognize and locate the referred object in the
later phases.

3.3. Language-guided Context Encoder

In addition to establishing the semantic correlations be-
tween visual and linguistic representations, modeling the vi-
sual contexts (e.g., the interaction relations and relative po-
sitions) is also crucial for distinguishing the referred target
object from other parts. To this end, we propose a language-
guided context encoder to gather context features under the
guidance of the textual descriptions.

As illustrated in Fig. 2-(d), based on the multi-head at-
tention module (left-most one), we input the visual feature
map F;, as the query to collected the relevant semantic in-
formation from the textual embeddings, producing the fea-
ture map F as the corresponding linguistic representation
for the visual features. Based on F,, we employ another
multi-head attention module to perform language-guided
self-attention for the visual features to encode the involved
visual contexts. Specifically, we take the sum of F), and F,
as the query and key of the multi-head attention module, to
compute the feature correlations in both visual and linguis-
tic representations. For each attention head in the multi-
head attention module, we formulate the attention value

from position 7 to another position j as:

Q=Wg, (F,+F.)

K =Wg (F, + F.)

Q@F(KU%+WER@—jD)
Vil 3)

where Wg and Wy are the linear projection weights for
the query and key, dy, is the projection channel dimension,
and R(-) is the sinusoidal positional encodings [32] of rela-
tive positions. This language-guided self-attention enables
the model to learn to gather important context features for
the referred object based on the given textual descriptions.
The multi-head attention module outputs the map of context
feature representations as F,.. To establish more discrim-
inative features for the target object, we extend the Eq. (2)
to fuse both the context features F,. and visual-linguistic
verification scores S (from Eq. (1)) with the visual features
F, as:

attn; ; = softmax(

E,=(Fy,4+F,)-S. 4)

The produced discriminative feature representations are
then utilized in the final multi-stage decoder for target iden-
tification and localization.

3.4. Multi-stage Cross-modal Decoder

We leverage the established visual feature maps and the
textual embeddings for final target localization. To reduce
the ambiguity in reasoning, we propose a multi-stage cross-
modal decoder that iteratively mulls over the visual and
linguistic information to distinguish the target object from
other parts and retrieve related features for object localiza-
tion.

We illustrate the architecture of the decoder in Fig. 2-(b).
The decoder consists of N stages, each of which is con-
stituted by the same network architecture (with unshared
weights) for iterative cross-modal reasoning. In the first
stage, we employ a learnable target query ¢, € R9*! as the
initial representation of the target object. This target query
is fed into the decoder to extract visual features based on
the linguistic expression, and iteratively updates its feature
representation into tfl (1 £ 7 < N) in the following stages.
Fig. 2-(b) shows the feature updating process of each de-
coder stage. Specifically, in the i-th stage, the target query
tfl is input (as the query) to the first multi-head attention
module to collect informative semantic descriptions about
the referred object from the textual embeddings, producing
the linguistic representation ¢; € R“*!. Then, in the second
multi-head attention module, we use this linguistic repre-
sentation ¢; as the query to compute its correlation with the
previously established discriminative features F,, (from the
feature encoder, Fig. 2-(a)), and then gather the features of
interest from the visual feature map F,,. In this manner, the
gathered visual feature ¢, € RE*! for the referred object
is produced based on the collected semantic descriptions in
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t;. Thereafter, we use this gathered feature ¢, to update the
target query ¢ as:

{t; T LN(t} J,rtv) / )
ty™t = LN(t, + FFN(t,))
where LN(+) denotes the layer normalization, and FFN(-)
is a feed-forward network composed of two linear projec-
tion layers with ReLU activations. The updated target query
tit! is then input to the next decoder stage for iterative
cross-modal reasoning and feature representation updating.
Based on this multi-stage structure, the target query th
of each stage is able to focus on different descriptions in
the referring expression, and thus more complete and reli-
able features of the target object can be gathered. The target
query tfl is progressively refined with the gathered features
to form a more accurate representation of the target object.
Finally, we append a three-layer MLPs with ReLU activa-
tion functions to the target query output in each stage to pre-
dict the bounding box of the referred object. The predicted
bounding boxes from all stages are equally supervised to
facilitate the multi-stage decoder training.

3.5. Training Loss

Our training procedure is more concise and straightfor-
ward than the previous ranking-based methods [42,44]. As
our network directly regresses the final bounding box, we
avoid the positive/negative sample assignment and can di-
rectly compute the regression losses with the ground-truth
box. Let {b'} Y, denote the predicted bounding boxes from
stages 1 to NV, and b denote the ground-truth box. We sum
up the losses between the predicted boxes and the ground-
truth box over all the stages as:

N
L= Z )\giouﬁgiou(ba I;l) + /\LIELl(b, (;l) 5 (6)

i=1

where Lgiou(-,-) and Ly, (-, -) are the GloU loss [29] and
L1 loss respectively. The Agiou and Ap; are the hyper-
parameters to balance the two losses.

4. Experiments
4.1. Datasets

RefCOCO/ RefCOCO+/ RefCOCOg. RefCOCO [45],
RefCOCO+ [45], and RefCOCOg [23] are three commonly
used benchmarks for visual grounding, with images col-
lected from the MS COCO dataset [19]. 1) RefCOCO [45]
has 19,994 images with 142,210 referring expressions for
50,000 referred objects. It is split into train, validataion,
testA, and testB sets with 120,624, 10,834, 5657, and 5095
expressions, respectively. 2) RefCOCO+ [45] provides
19,992 images with 49,856 referred objects and 141,564
referring expressions. It is also split into the train, val-
idation, testA, and testB sets that have 120,191, 10,758,

5,726, and 4,889 referring expressions, respectively. 3)
RefCOCOg [23] has 25,799 images with 95,010 referring
expressions for 49,822 object instances. The expressions
in RefCOCOg are generally longer than those in the other
two datasets. There are two splitting conventions for Re-
fCOCOg, which are RefCOCOg-google [23] (val-g) and
RefCOCOg-umd [24] (val-u, test-u). We conduct experi-
ments following the two conventions separately for com-
prehensive comparisons.

ReferItGame. ReferltGame [16] contains 20,000 images
collected from the SATIAPR-12 dataset [8]. We follow the
previous works [ 14,42] to split the dataset into three subsets,
i.e., a train set with 54,127 referring expressions, a valida-
tion set with 5,842 referring expressions, and a test set with
60,103 referring expressions.

Flickr30k Entities. Flickr30k Entities [26] has 31,783 im-
ages with 427k referred entities. We follow the same split
as in the previous works [5, 26, 42] for training, validation,
and testing.

4.2. Implementation Details

We set the input image size to 640 x 640 and the max-
imum length of the language expression to 40. During in-
ference, we resize the input image to make the longer edge
equal to 640 and pad the shorter edge to 640. We append the
[CLS] and [SEP] tokens to the beginning and end of the in-
put language expression respectively, before processing the
expression with BERT [6].

During training, we use the AdamW optimizer [21] to
train our proposed model with a batch size of 64. We set
the initial learning rate of our network to 10~4, except for
the feature extraction branches (i.e. the CNN + transformer
encoder layers, and BERT), which have an initial learning
rate of 107°. We use ResNet-50 or ResNet-101 as our CNN
backbone followed by 6 transformer encoder layers in the
visual feature extraction branch, which are initialized with
the corresponding weights of DETR model [1]. The textual
embedding extraction branch is initialized with BERT [6].
We use Xavier init [9] to randomly initialize the parameters
of the other components in our network. We train our model
for 30 epochs in all ablation studies, where the learning rate
decays by a factor of 10 after 20 epochs. For comparison
with state-of-the-art methods, we extend the training epochs
to 90, and decay the learning rate by 10 after 60 epochs.
To stabilize the training, we also freeze the weights of the
visual and textual feature extraction branches in the first 10
epochs. For the learnable parameters in Eq. (1), we set a =
1.0 and o = 0.5 as the initial values. For the loss function
in Eq. (6), we set Agicy = 2 and Ar,; = 5. We follow the
previous works [5, 18,42,43] to perform data augmentation
during training.

We follow the evaluation metric of the previous works [5,

]. Given an image and a language expression, the pre-
dicted bounding box is considered correct if its IoU with
the ground-truth bounding box is larger than 0.5.
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Table 1. Comparison of our method with other state-of-the-art methods on RefCOCO [

1, RefCOCO+ [45], and RefCOCOg [23].

Models Venue Backbone RefCOCO RefCOCO+ RefCOCOg
val testA  TestB val testA  testB | val-g  val-u test-u
Two-stage:
CMN [13] CVPR’17 VGG16 - 71.03  65.77 - 5432 47.76 | 57.47 - -

VC [47] CVPR’1S8 VGG16 - 7333 6744 - 5840 5318 | 62.30 - -

ParalAttn [50] CVPR’18 VGG16 - 75.31 65.52 - 61.34 50.86 | 58.03 - -

MAttNet [44] CVPR’I8 | ResNet-101 | 76.65 81.14 69.99 | 65.33 71.62 56.02 - 66.58 67.27

LGRANSs [34] CVPR’19 VGG16 - 76.60  66.40 - 64.00 53.40 | 61.78 - -
DGA [40] Iccv’i9 VGG16 - 7842 6553 - 69.07 51.99 - - 63.28

RvG-Tree [12] TPAMI’'19 | ResNet-101 | 75.06 78.61 69.85 | 63.51 67.45 56.66 - 66.95 66.51

NMTree [20] ICCV’19 | ResNet-101 | 76.41 81.21 70.09 | 66.46 72.02 57.52 | 64.62 65.87 66.44

Ref-NMS [2] AAAI'2] | ResNet-101 | 80.70 84.00 76.04 | 68.25 73.68 59.42 - 70.55 70.62
One-stage:

SSG [3] arXiv’18 | DarkNet-53 - 76.51 67.50 - 62.14 49.27 | 4747 58.80 -
FAOA [43] ICCV’19 | DarkNet-53 | 72.54 7435 68.50 | 56.81 60.23 49.60 | 56.12 61.33 60.36
RCCF [18] CVPR’20 DLA-34 - 81.06 71.85 - 70.35 56.32 - - 65.73

ReSC-Large [42] ECCV’20 | DarkNet-53 | 77.63 80.45 7230 | 63.59 68.36 56.81 | 63.12 67.30 67.20
LBYL-Net [15] CVPR’2] | DarkNet-53 | 79.67 8291 74.15 | 68.64 73.38 59.49 | 62.70 - -
Transformer-based:
TransVG [5] Iccv2i ResNet-50 | 80.32 82.67 78.12 | 63.50 68.15 55.63 | 66.56 67.66 67.44
TransVG [5] ICCV’2] | ResNet-101 | 81.02 82.72 7835 | 64.82 70.70 56.94 | 67.02 68.67 67.73
VLTVG (ours) ResNet-50 | 84.53 87.69 79.22 | 73.60 78.37 64.53 | 72.53 7490 73.88
VLTVG (ours) ResNet-101 | 84.77 87.24 80.49 | 74.19 7893 65.17 | 72.98 76.04 74.18

4.3. Comparisons with State-of-the-art Methods

In Table 1, we report our performance in comparison
with other state-of-the-art methods on RefCOCO [45], Re-
fCOCO+ [45], and RefCOCOg [23] datasets. Our method
outperforms other methods in all splits of the three datasets.
Notably, we achieve absolute improvements of up to 4.45%,
5.94% and 5.49% respectively on RefCOCO, RefCOCO+,
and RefCOCOg, compared with the cutting-edge two-stage
method Ref-NMS [2]. The recent two-stage methods [2,44]
rely on a pre-trained object detector, e.g., Mask R-CNN [10]
for object proposal generation and feature extraction. Since
their object detector is not involved in visual grounding
training, the visual features from the detector may not be
very compatible with the visual grounding task. More-
over, the quality of the pre-generated proposals could also
become the performance bottleneck of these two-stage
paradigms. In contrast, our method encodes the target’s
feature representation with the guidance from the language
expression, which is more flexible and adaptive.

Our method also shows consistent improvements over
the current one-stage methods [15,42]. Notably, we achieve
accuracies of 84.77% and 80.49% on the val and testB splits
of RefCOCO, which bring absolute improvements of 5.10
and 6.34 percentage points over the previous best perfor-
mance of the one-stage framework [15]. The previous one-
stage methods use the fused visual-textual feature at each
spatial location to represent a candidate object, which may
not adequately capture the important visual attributes or
contexts in the language expression. Instead, our method
models the representation of the target object by iteratively
querying the linguistic and visual features, allowing us to

identify the referred object in a finer-grained way.

Comparing with the the most recent work TransVG [5],
our method also achieves appreciable improvements. As
shown in Table 1, our accurices exceed TransVG by
2.14% ~ 4.52% on RefCOCO, 8.23% ~ 9.37% on Ref-
COCO+, and 5.96% ~ 7.37% on RefCOCOg.

Table 2 also reports the performance of our method on
the test sets of the ReferltGame [16] and Flickr30k Enti-
ties [26]. Our method surpasses the previous one-stage and
two-stage methods by an appreciable margin. Compared
with TransVG [5], we achieve relatively better performance
with all the different backbones. We notice that our im-
provements over TransVG on Flickr30k Entities are less
than the improvements on the other datasets. This could be
because most of the referring expressions in Flickr30k En-
tities are short noun phrases, which may be not suitable for
exhibiting the advantages of our method. Nevertheless, the
experimental results demonstrate the generality and com-
petitiveness of our method in different scenarios.

4.4. Ablation Study

In this section, we conduct the ablation studies on the
RefCOCOg (val-g) [23] dataset, containing longer language
expressions, which poses more challenges for comprehen-
sion and reasoning.

4.4.1 The Component Modules

In Table 3, we conduct a thorough ablation study on the
proposed components to verify their effectiveness. The first
row of Table 3 shows our baseline that performs visual
grounding with only a single-stage decoder, which achieves
an accuracy of 63.64%. Based on this baseline, we further
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Table 2. Comparison with the state-of-the-art methods on the test
sets of ReferltGame [16] and Flickr30k Entities [26].

Models Backbone ReferltGame | Flickr30K
test test
Two-stage:
CMN [13] VGG16 28.33 -
VC [47] VGG16 31.13 -
MALttNet [44] ResNet-101 29.04 -
Similarity Net [33] | ResNet-101 34.54 60.89
CITE [25] ResNet-101 35.07 61.33
DDPN [46] ResNet-101 63.00 73.30
One-stage:
SSG [3] DarkNet-53 54.24 -
ZSGNet [30] ResNet-50 58.63 63.39
FAOA [43] DarkNet-53 60.67 68.71
RCCF [18] DLA-34 63.79 -
ReSC-Large [42] DarkNet-53 64.60 69.28
LBYL-Net [15] DarkNet-53 67.47 -
Transformer-based:
TransVG [5] ResNet-50 69.76 78.47
TransVG [5] ResNet-101 70.73 79.10
VLTVG (ours) ResNet-50 71.60 79.18
VLTVG (ours) ResNet-101 71.98 79.84

Table 3. The ablation studies of the proposed components in our
network. We evaluate the accuracy of visual grounding, and report
the model size and the computational complexity.

Multi-stage | Context V-L

# s GFLOPS Acc (%
Decooder | Encoder | Verification params ce (%)

143.37M 41.10 63.64

v 151.26M 41.39 66.02
v v 151.79M 41.67 68.44
v v v 152.18M 41.79 71.62

add more cross-modal decoder stages to perform iterative
reasoning for target localization. It can be found that the
accuracy is notably improved by 2.38 points, as shown in
the second row of Table 3. In the third row of Table 3,
we further introduce the language-guided context encoder
to gather visual contexts for grounding, and find the accu-
racy is again boosted by 2.42 points. The last row of Ta-
ble 3 shows the performance of our full model after apply-
ing the visual-linguistic verification module, which further
improves the accuracy from 68.44% to 71.62% (+3.18 per-
centage points) and achieves the best performance among
these ablation variants.

We also report the number of model parameters and the
computational complexity of different variants in Table 3.
Our proposed components only introduce a total of 8.81M
extra parameters and 0.69 GFLOPS to the baseline, which
only increase the model size and computational complexity
by 6.14% and 1.68%, respectively.

4.4.2 The Decoder Stages

In Table 4, we evaluate our system when employing differ-
ent numbers of decoder stages for the object location decod-

Table 4. Comparison of different decoder stages used to perform
cross-modal reasoning for visual grounding.

The decoder stages (/V) | #params GFLOPS Acc (%)
N=1 143.37M 41.10 63.64
N=2 144.95M 41.15 65.05
N=4 148.10M 41.27 65.70
N=6 151.26M 41.39 66.02
N=28 154.42M 41.51 65.97

Table 5. Comparison of our method with the transformer-based
approach for visual-linguistic feature learning.

The V-L feature learning #params GFLOPS  Acc (%)
None 151.26M 41.39 66.02
152.69M 42.08 69.37
154.00M 42.77 69.22
155.32M 43.46 69.15
Trans. encoder layers (x4) 156.63M 44.15 69.55
Ours (V-L verification + context) | 152.18M 41.79 71.62

Trans. encoder layers (x1)
Trans. encoder layers (x2)

Trans. encoder layers (x3)

ing. As shown in Table 4, the accuracy steadily increases
(from 65.22%) as more decoder stages are employed until
it reaches the saturation point of 67.57% near N = 6. This
reflects the importance of multi-stage reasoning for visual
grounding, The multi-stage decoder queries the linguistic
information and gathers the visual features with multiple
rounds, allowing the referred object to be identified and lo-
calized more accurately. As the accuracy improves little
when N > 6, we employ 6 decoder stages in our network
by default. Besides, our multi-stage decoder only increases
the model parameters by 5.5% and the computational cost
by 0.71%, which is quite efficient.

4.4.3 Visual-Linguistic Feature Learning

In our network, we utilize the visual-linguistic verification
module and the language-guided context encoder for feature
learning of both modalities. To further verify the necessity
and effectiveness, we compare our method with the com-
mon transformer-based design for visual-linguistic feature
learning in Table 5. Specifically, we replace our verifica-
tion module and context encoder with a stack of common
transformer encoder layers. We concatenate the visual and
textual features and feed them to the stacked transformer
encoder layers to perform cross-modal feature fusion. As
shown in Table 5, using a single transformer encoder layer
for feature learning improves the accuracy by 3.35 points
over the baseline. However, when stacking more trans-
former encoder layers, we observe no significant improve-
ments in accuracy, but a increase in the number of param-
eters and computational cost. In contrast, our method im-
proves the baseline by 5.60 percentage points with fewer
parameters and computation resources than a single trans-
former encoder layer. Our method also outperforms the
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Q: a chair to the far right of
the couch with gold trim

Q: hot dog in front of
other hot dog

Q: red small box

| —

S

Q: a long banana

(A) Input image and

language expression (B) Verification scores

(C) Attention maps in the multi-stage decoder (stages 1, 3, 6)

(D) Localization results

Figure 3. Visualization of the verification score maps, the multi-stage decoder’s attention maps, and the final localization results for various

input images and language expressions.

;‘~-_
s

==

a girl in a red coat
on top of a horse

Figure 4. Visualization of the attention map of the language-
guided context encoder.

top variant with transformer encoders by 2.07 percentage
points, which demonstrates the efficacy of our design in
visual-linguistic features encoding.

4.5. Visualization

In Fig. 3, we visualize the generated verification scores,
the multi-stage decoder’s attention maps, and the final local-
ization results for different inputs. It can be observed that,
the verification scores are generally higher on the objects
or regions related to the descriptions in the language ex-
pressions. With Eq. (2), our modulated visual features are
able to focus on these regions and reduce the distractions.
Then, the multi-stage decoder mulls over these regions to
localize the referred object. For example, in the 4-th row of
Fig. 3, given the language query “a long banana”, the atten-
tion of the first stage is focused on both two bananas. After
multi-stage reasoning, the attention is successfully drawn to
the longer banana mentioned by the text, for localizing the
target. The discriminative feature representation and multi-
stage reasoning enable our method to effectively locate the
referred objects for various image and expression inputs.

In Fig. 4, given a language expression, we visualize the

language-guided context encoder’s attention map for a point
on the referred girl. Guided by the text, the context encoder
focuses on the context around the related horse. The gath-
ered visual contexts are helpful for identifying the girl in the
image.

5. Conclusions and Limitations

We have presented a transformer-based visual ground-
ing framework, which establishes discriminative features
and performs iterative cross-modal reasoning for accurate
target localization. Our visual-linguistic verification mod-
ule focuses the visual feature encoding on the regions re-
lated to the textual descriptions, while the language-guided
context encoder gathers informative visual contexts to im-
prove the distinctiveness of the target. Moreover, the multi-
stage cross-modal decoder iteratively mulls over the visual
and linguistic information for localization. Extensive ex-
periments on the public datasets exhibit the state-of-the-art
performance of our method.

One limitation of this work is that our model is only
trained on the visual grounding datasets with limited sizes
of corpus. Our trained model may not generalize well to
more open language expressions. In the future, we plan to
extend our method to larger scale grounding datasets for
better generalization ability.
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