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Abstract

Unsupervised domain adaptive video action recognition
aims to recognize actions of a target domain using a model
trained with only out-of-domain (source) annotations. The
inherent complexity of videos makes this task challenging
but also provides ground for leveraging multi-modal in-
puts (e.g., RGB, Flow, Audio). Most previous works utilize
the multi-modal information by either aligning each modal-
ity individually or learning representation via cross-modal
self-supervision. Different from previous works, we find that
the cross-domain alignment can be more effectively done by
using cross-modal interaction first. Cross-modal knowledge
interaction allows other modalities to supplement missing
transferable information because of the cross-modal com-
plementarity. Also, the most transferable aspects of data
can be highlighted using cross-modal consensus.

In this work, we present a novel model that jointly con-
siders these two characteristics for domain adaptive action
recognition. We achieve this by implementing two modules,
where the first module exchanges complementary transfer-
able information across modalities through the semantic
space, and the second module finds the most transferable
spatial region based on the consensus of all modalities. Ex-
tensive experiments validate that our proposed method can
significantly outperform state-of-the-art methods on multi-
ple benchmark datasets, including the complex fine-grained
dataset EPIC-Kitchens-100.

1. Introduction
Unsupervised domain adaptation (UDA) models aim at

learning features on the source dataset that can also be used
on the target dataset. Due to its potential in reducing the
necessity of large-scale labeling, UDA has been extensively
explored for tasks such as image recognition [33,49,52,58],
semantic segmentation [3, 64] and object detection [5, 8].

With one additional temporal dimension, video data is
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Figure 1. Different from existing UDA works that directly align
the multi-modal inputs (a), we find that it is more effective to first
enhance the transferability of each modality by cross-modal inter-
action, and then perform cross-domain alignment (b).

more complex than image data, and the domain gap not
only resides in the appearance difference of environments
but also in the motion variance when different people per-
form the same action. This prevents the direct application
of image-based domain adaptation methods on the domain
adaptive action recognition task [6, 20]. One direction to
address this complexity is to use additional modality in-
formation (e.g. optical flow, audio). Other than directly
combining multi-modal inputs [38], recent works add self-
supervised modality alignment to implicitly learn properties
of source and target data [24,36,47]. However, since the ob-
jectives of cross-modal alignment and cross-domain align-
ment are not perfectly consistent, simultaneously aligning
modality and aligning domain can distract the learning tar-
get, i.e., minimizing the domain discrepancy.

Due to different characteristics, the transferability (i.e.,
invariance of feature across domains) of each modality lies
in different and complementary perspectives. For example,
for an action “wash cup” on the target domain, since the
sound of water is similar across domains, the audio modal-
ity is more transferable to determine the verb “wash” of the
action. Meanwhile, although RGB cannot perform as good
as audio when recognizing the verb on the target domain,
it can well recognize the noun “cup” on the target domain
based on its domain-transferable appearance knowledge. If
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these two modalities can interact with each other and ex-
change their unique domain-transferable knowledge, both
of them can enhance their transferability and finally de-
termine the action “wash cup” accurately. Based on this
observation, we leverage this cross-modal complementar-
ity and propose a Mutual Complementarity (MC) module
that allows each modality to refine its feature by absorbing
the transferable knowledge from other modalities, thus the
transferability of all modalities can be enhanced.

Another aspect brought by multiple modalities is the
cross-modal consensus. Since domain shift is often ac-
companied by changes of the scenario background, find-
ing and focusing on more transferable foreground objects
is critical. Rather than applying spatial attention like pre-
vious works [27, 55] which introduce additional parame-
ters that also suffer from domain gap, we instead use a
parameter-free correlation-based spatial consensus opera-
tion. Leveraging multi-modal features, we find and empha-
size the transferable regions which share consensus among
different modalities by developing a cross-modal Spatial
Consensus (SC) module. Compared with spatial attention,
our proposed consensus operation is proved in the experi-
ments to be more suitable for domain adaptation.

We conduct experiments on the standard UCF-HMDB
dataset and EPIC-Kitchens-55 dataset. Our experiments
demonstrate that with cross-modal knowledge interaction,
our proposed method can outperform state-of-the-art meth-
ods significantly. We also show that our method can bring
remarkable enhancement on the EPIC-Kitchens-100 dataset
that contains challenging fine-grained actions.
Our contributions can be summarized as follows:

• We propose a novel model to enhance multi-modality fea-
tures for domain adaptive action recognition. To our best
knowledge, this is the first work to consider cross-modal
interaction for increasing the feature transferability across
domains.

• We propose to use correlation-based operation to evaluate
the transferability of spatial locations, which is proved to
be simple and effective compared with spatial attention in
the context of domain adaptation.

• Our proposed model achieves state-of-the-art perfor-
mance on multiple datasets, including the challenging
EPIC-Kitchens-100 dataset with fine-grained actions.

2. Related work
Unsupervised domain adaptation (UDA) other than

action recognition. For solving the domain gap problem
which exists widely in various applications such as object
recognition [13, 41, 49], image segmentation [3, 14, 17, 60,
64], and natural language understanding [39, 44, 51], do-
main adaptation has been extensively studied especially in
recent years. The goal of domain adaptation is to improve

the performance on the target domain with a model trained
on the source domain. Some works try to mitigate the do-
main gap from the input level by modifying the source in-
put to become similar to the target domain via approaches
like image-to-image translation [2, 37]. Another direction
addresses this task from the representation level with Max-
imum Mean Discrepancy (MMD) [34] or adversarial train-
ing [52]. Very recently, self-supervised training becomes
a new direction for domain adaptation [3, 22, 50]. Kang
et al. [22] proposed to build the pixel-level cycle associ-
ation between source and target pixel pairs for the task
of domain adaptive semantic segmentation. Incorporat-
ing multiple modalities for UDA has been recently inves-
tigated for the task of emotion recognition and image re-
trieval [40]. They used single and multi-modal discrimina-
tors with cross-modality attention, showing that using mul-
tiple modalities can be more robust to domain shift com-
pared with a single modality.

Action recognition and its UDA. Action recognition
enjoyed a huge advance with the help of deep learning [4,
12, 19, 28, 35, 57]. Recent methods use multiple modali-
ties such as RGB frames, optical flow and audio as input,
and demonstrate the advantage of each modality [23]. Be-
sides the rapid development in action recognition, domain
adaptive action recognition also got a considerable amount
of research attention. Most research works focus on the
cross-viewpoint domain adaptation [25]. These works aim
to adapt to the geometric transformations of a camera in
the same environment, with optional additional information
like the human pose [31] and temporal correspondence [45].

Another line of research focuses on the unsupervised do-
main adaptation for action recognition in different environ-
ments. These include methods that align source and tar-
get domain using hand-crafted features [11, 63], and recent
works based on deep neural networks [1, 7, 32], using the
RGB modality. Recently, several works [36, 38, 46, 59] ex-
plored the use of multiple modalities (RGB and flow) for
domain adaptive action recognition. In [38], the authors
use temporal alignment independently on each modality
and only fuse modalities during inference. In [24, 36, 47],
self-supervised alignment of modality is adopted. However,
self-supervised modality alignment has a different learning
target with domain adaptation, and simultaneously learning
a model with two targets distracts the model from the pri-
mary task – minimizing the domain discrepancy.

In this work, we allow cross-modal interaction to in-
crease the transferability by re-evaluating semantic trans-
ferability based on information from other modalities, and
using the cross-modal spatial consensus to find the most
transferable regions. Different from previous methods [24,
36, 47], our cross-modal interaction does not add self-
supervision loss, so that the interaction can be optimized
to solely improve the domain transferability.
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Figure 2. Overview of the proposed CIA model. We showcase three modalities RGB, Flow and Audio as input but it can be easily extended
to add other modalities such as depth. In the figure, ⊕ denotes element-wise summation, ⊗ is element-wise multiplication, and ⊛ means
the correlation operation that calculates the Pearson correlation coefficient on each spatial position.

3. Method
To effectively leverage the cross-modal complementar-

ity and cross-modal consensus for domain adaptive action
recognition, we propose a Cross-modal Interactive Align-
ment (CIA) model that first supplements each modality with
cross-modal transferable knowledge by mutual semantic re-
finement and then emphasizes transferable regions by ex-
ploiting the consensus of multiple modalities.

Figure 2 depicts the overview of the proposed CIA
model. In both source domain S and target domain T ,
for each modality of RGB, Flow and Audio, we first
use backbone (omitted in the figure) networks to encode
the input into frame-level features F S

RGB ,F
S
Flow,f

S
Audio,

F T
RGB ,F

T
Flow and fT

Audio. We omit the notation of the do-
main identifier in the following part of this section when the
operation is identical on both domains. We then use two
modules, named Mutual Complementarity module (MC)
and Spatial Consensus module (SC), to allow feature in-
teraction for exploiting the cross-modal complementarity
and the cross-modal consensus, respectively. The MC mod-
ule exploits cross-modal complementarity by enabling one
modality to receive transferable semantic knowledge from
other modalities, utilizing two gating functions (Sec. 3.1).
Then the SC module emphasizes transferable spatial regions
which share consensus among all modalities by a multi-
scale correlation operation (Sec. 3.2). Finally, we adopt ad-
versarial feature alignment on the SC outputs to minimize
the discrepancy between source and target domains.

3.1. The Mutual Complementarity (MC) module

Different modalities excel in their unique perspectives
for perceiving the input, and the MC module aims to
leverage this cross-modal complementarity to enhance the
transferability of each modality by selecting and absorb-
ing domain-transferable knowledge from other modalities.

Transferable semantic knowledge lies in the feature chan-
nels [62], however gaps between modalities prevent direct
channel-wise fusion methods like max-pooling or summa-
tion. In our proposed MC, we instead use a “summarize and
re-evaluate” operation to leverage cross-modal transferable
information.

Figure 3 depicts the proposed MC by showcasing
the workflow of modality M . The output of MC is
a transferability-refined feature of modality M FrM ∈
R2c×h×w, which is the concatenation of two parts: a cross-
refined feature FcM and a self-refined feature FsM .

FcM represents the feature of modality M refined by
transferable knowledge from other modalities. For getting
FcM , we first apply global average pooling on features of
other modalities and concatenate them to obtain a cross-
modal knowledge representation f in

M . With f in
M , we sum-

marize the domain-transferable knowledge and re-evaluate
the semantic transferability of modality M by a cross-gating
function [16]:

tcM = σW in
2 (δ(W in

1 f in
M )), (1)

FcM = FM · tcM , (2)

where W in
1 ,W in

2 are weight matrices, · is channel-wise
multiplication, σ and δ denotes the sigmoid and ReLU ac-
tivations, respectively. Here tcM is the re-evaluation of se-
mantic transferability of modality M by using cross-modal
knowledge. tcM serves as the “advice” from other modali-
ties to emphasize the channels of FM by channel-wise mul-
tiplication.

Although this gating mechanism is simple, it can
learn nonlinear interaction between channels, while allow-
ing multiple channels to be emphasized during the re-
evaluation. This helps the gating operations to first sum-
marize domain-transferable knowledge (using W in

1 ) and
then re-weight the channels of FM utilizing the summarized
knowledge (using W in

2 and channel-wise multiplication).
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Figure 3. The Mutual Complementarity module (MC) showcased using modality M . M could be any modalities of RGB, Flow and Audio,
also can be extended to other modalities if available, e.g., depth.

When receiving the complementary knowledge from
other modalities, it is also important for modality M to pre-
serve unique information and modality characteristics of it-
self. Thus, in addition to cross-gating, we use a self-gating
operation to perform a self re-evaluation of modality M :

tsM = σWM
2 (δ(WM

1 fM )), FsM = FM · tsM , (3)

To summarize domain-transferable knowledge while
preventing the domain adaptation model from overfitting on
the source domain, the MC only introduces a small number
of model parameters by leveraging bottleneck during gat-
ing. In other words, we reduce the dimension by a ratio r
via making W1 ∈ R c

r×c and W2 ∈ Rc× c
r . Finally, we get

the transferability-refined feature of modality M by fusing
the two refined features FsM and FcM via concatenation:

FrM = Concat(FsM ,FcM ). (4)

We show the analysis of model parameters and computa-
tional complexity in the supplementary.

3.2. The Spatial Consensus (SC) module

To further enhance feature transferability by focusing
on the most transferable spatial regions (e.g. foreground
objects), previous works mainly use the spatial attention
mechanism [18,27,55]. However, this introduces additional
model parameters which will also be affected by domain
shift. Different from spatial attention, we propose a Spa-
tial Consensus (SC) module to highlight the transferable re-
gions that have shared consensus among modalities.

Our idea to find transferable locations is letting multi-
ple modalities work with “collective wisdom”. Since fea-
tures FrR and FrF encode different information, we first
map these features into the same latent space to get trans-
ferability estimations from their own perspective. Then we
compute the feature similarity using a correlation operation
to measure whether two modalities share the same opinion

about spatial transferability. For each location, the feature
similarity is high only if two modalities both find this loca-
tion to be transferable.

Since transferable regions vary in size in different sam-
ples, we compute the correlation of feature maps at dif-
ferent scales [30]: the features HrR and HrF are first
downsampled by a factor of 2 k times, resulting in
two groups of feature maps {H0

rR,H
1
rR, ...H

k
rR, } and

{H0
rF ,H

1
rF , ...,H

k
rF , }. For each scale k, we compute

the Pearson correlation coefficient on each spatial position
(i, j) as:

Ck,(i,j) =
H

k,(i,j)
rR ∗Hk,(i,j)

rF

∥Hk,(i,j)
rR ∥2×∥Hk,(i,j)

rF ∥2
, Ck ∈ R

w

2k
× h

2k (5)

where ∗ indicate dot product. It is important that SC con-
tains only a small number of parameters so that most of the
representation is learned in the MC while also preventing
overfitting. To this end, we choose to use correlation in-
stead of spatial attention [56].

Finally, all the correlation maps {C0,C1, ...,Ck} are
upsampled to match the size as FrR and then summed to-
gether to form a consensus map C. The consensus map C
is then used as a spatial weight map for the weighted av-
erage pooling of FrR and FrF . We also add residual con-
nections following [15,53], forming feature vectors frR and
frF . Since MC already involves audio information and frA

does not contain spatial dimensions, frA is not used in this
module. During training, the SC module will encourage
the network to extract features such that the spatial correla-
tion becomes higher for locations more helpful for domain
alignment.

3.3. Adversarial Domain Alignment

We apply adversarial domain alignment on three trans-
ferability enhanced features frR, frF and frA, individu-
ally. Denote the two-layer MLP based discriminator as D,
the discriminator loss can be written as:
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Lfd =
∑

M∈{rR,rF,rA}

∑
fM∈S,T

−d log(DM (fM ))

− (1− d) log(1−D(fM ))

(6)

where d is the binary domain label, S, T denotes the source
and target domains respectively, and fM represents one of
the features in {frR,frF ,frA}.

We average the frame-wise features to form video-level
features vrR, vrF and vrA and fuse them as vmm. The
domain alignment is also done on the video-level features
vrR, vrF and vrA and its loss is denoted as Lvd.

On the source domain, we apply the standard classifica-
tion loss on the fused video-level feature vmm:

Ly = −
∑

vmm∈S

y logP (GM (vmm)), (7)

where GM represents the linear action classifier for the cor-
responding feature.

As a result, our full loss function is a combination of Ly ,
Lfd and Lvd:

L = λyLy + λfdLfd + λvdLvd (8)

4. Experiments
4.1. Dataset and Implementation Details

We validate our proposed CIA model on three represen-
tative domain adaptive action recognition datasets: UCF-
HMDB [26, 48] (U-H) is one widely used dataset that con-
tains 12 action classes. We use the full version [6] in our
experiments. H → U indicates the source dataset is HMDB
while the target dataset is UCF, and vice versa. We also use
the EPIC-Kitchens-55 (E55) as another benchmark dataset.
To make a fair comparison with [24, 36, 47], we follow the
same setting as [36]. Class-wise action recognition accu-
racy is used as the evaluation metric on these two datasets.

Additionally, EPIC-Kitchens-100 [10] (E100) is a newly
released dataset with fine-grained actions taken from the
first-person perspective. This dataset is extremely challeng-
ing because (1) source and target actions are performed by
different individuals in different kitchens. (2) The first-
person viewpoint often makes the action happen in a non-
salient region, and (3) the annotation is fine-grained. There
are 16115/26115 training videos for source/target domains
and 7906 clips as the target-validation split. 97 verb classes,
300 noun classes form a total of 3369 fine-grained action
classes. We further add experiments on this dataset since its
large-scale and fine-grained property makes it more suitable
for analyzing model performance. Following the protocol
in [10], we use the accuracy of verb, noun and action as the
evaluation metric.

Implementation Details For a fair comparison, we use
two backbones for feature extraction: I3D [4] pretrained on
Kinetics and TBN [23] pretrained on Kinetics then fine-
tuned on the source training set of the according dataset.

Modality Backbone Method U→H H→U

RGB

R-TRN TA3N [6] 78.33 81.79
R-TRN TCoN [38] 87.24 89.06

I3D SAVA [9] 82.20 91.20
I3D-TRN TA3N [6] 82.78 91.77

Flow I3D-TRN TA3N [6] 82.50 90.89

R+F

I3D Avg⋄ 83.61 91.07
I3D G-blend [54] 84.72 91.24
I3D MMTM [21] 85.83 92.47
I3D MM-SADA [36] 84.20 91.10
I3D STCDA [47] 83.10 92.10
I3D Kim et al. [24] 84.70 92.80
I3D CIA source only⋄ 86.11 92.47
I3D CIA (Ours)⋄ 88.33 94.05

I3D Concat⋆ 86.11 92.99
I3D CIA source only⋆ 85.83 93.52
I3D CIA (Ours)⋆ 90.56 94.22

I3D-TRN TA3N [6]⋆ 89.17 92.81
I3D-TRN CIA (Ours)⋆ 89.72 93.17
I3D-TRN CIA +TA3N⋆ 91.94 94.57

I3D CIA target only⋆ 96.83 99.12

Table 1. Performance comparison on the UCF-HMDB (U-H))
dataset. ⋄ refers to averaging the outputs from each modality clas-
sifier, while ⋆ means concatenate features of different modalities.

The MC processes the feature with dimension c = 1024,
and the ratio for gating bottleneck is r = 16. We use ei-
ther average or concatenate as the late fusion methods based
on datasets. For all experiments, we train the model on 4
NVIDIA-V100 GPUs. Other dataset-specific details can be
found in the supplementary.

4.2. Comparison with state-of-the-art

We compare our CIA model with the following methods:

• Multi-modal UDA action recognition methods. We
compare with three recent methods MM-SADA [36],
STCDA [47] and Kim et al. [24]. These methods show
state-of-the-art performance in the UDA action recogni-
tion task.

• Single-modal UDA action recognition methods [6, 9, 20,
29, 33, 38, 42]. For better comparison, we follow [10]
to enable TA3N [6] with multi-modality input and use
TRN [61] on the backbone for temporal feature fusion.

• Multi-modal fusion methods for other tasks. To better
evaluate our CIA’s ability on using multi-modal informa-
tion in the scope of domain adaptation, other than direct
fusion via average (Avg) or concatenation (Concat), we
add comparison with previous multi-modal fusion meth-
ods G-blend [54] and MMTM [21]. Since [21, 54] are
not originally designed for domain adaptation, we use
their method on the same adversarial alignment frame-
work with our method for a fair comparison.
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Method D1→D2 D1→D3 D2→D1 D2→D3 D3→D1 D3→D2 mean

Ours Source only 43.2 42.5 43.0 48.0 43.0 55.5 45.9
MMD [33] 46.6 39.2 43.1 48.5 48.3 55.2 46.8

AdaBN [29] 47.0 40.3 44.6 48.8 47.8 54.7 47.2
MCD [42] 46.5 43.5 42.1 51.0 47.9 52.7 47.3

DAAA [20] 50.0 43.5 46.5 51.5 51.0 53.7 49.4
MM-SADA [36] 49.5 44.1 48.2 52.7 50.9 56.1 50.3
Kim et al. [24] 50.3 46.3 49.5 52.0 51.5 56.3 51.0
STCDA [47] 52.0 45.5 49.0 52.5 52.6 55.6 51.2
CIA (Ours) 52.5 47.8 49.8 53.2 52.2 57.6 52.2

Ours target only 71.6 73.6 63.3 73.6 63.3 71.6 69.5

Table 2. Performance comparison on the EPIC-Kitchens-55 (E55) dataset.

Results on U-H dataset are shown in Table 1. From the
table, because of the inherent difficulty of video data, multi-
modal methods generally surpass single modality meth-
ods [6, 9, 38]. Meanwhile, previous multi-modal fusion
works G-blend [54] and MMTM [21] do not perform well
in the domain adaptation setting, suggesting that our pro-
posed CIA model better suits the task of domain adaptation.
Our method significantly outperforms previous state-of-the-
art multi-modal works MM-SADA, STCDA and Kim et
al.. Compared with Kim et al., we can increase the ac-
curacy from 84.70 to 88.33 on U→ H and 92.80 to 94.05
on H→ U. This indicates the superiority of our CIA model
in leveraging multi-modal interaction compared with self-
supervised learning.

We also validate different late fusion methods by com-
paring average⋄ and concatenation⋆. We found that us-
ing concatenation for late modality fusion can be more
helpful. Using TRN [61] as a more sophisticated tempo-
ral aggregation method, our method outperforms TA3N on
both datasets. Since our method can be flexibly fitted into
any domain adaptation framework, we can further enhance
TA3N by adding our model, achieving 91.94 and 94.57 on
the two datasets.

Results on E55 dataset are illustrated in Table 2. We
average the outputs of individual modality classifiers as the
late fusion method for a fair comparison with prior works.
Using cross-modal self-supervision, MM-SADA, STCDA
and Kim et al. cannot perform as good as our proposed
method. This proves our assumption that simultaneously
optimizing cross-modal alignment and cross-domain align-
ment can distract the modal from minimizing the domain
gap. However, by interacting before alignment, our method
can better leverage the cross-modal complementarity and
cross-modal consensus, thus boosting the mean accuracy by
up to 1% compared with the previous state-of-the-art.

Results on E100 dataset Table 3 demonstrates the per-
formance comparison with state-of-the-art methods on the
challenging E100 validation set. We average the scores of
each modality for late fusion when implementing methods

Modality Backbone Method Verb Noun Action

R+F

I3D Source only 39.28 22.28 11.62
I3D MM-SADA [36] 40.41 23.92 12.80
I3D Source only 40.17 22.89 12.27
I3D CIA (Ours) 42.35 24.49 14.25

TBN Source only 42.41 27.26 16.03
TBN DAAA [20] 42.99 27.38 16.32
TBN Source only 42.98 27.49 16.44
TBN CIA (Ours) 43.93 27.54 17.01

TBN-TRN Source only 43.78 26.65 16.70
TBN-TRN TA3N [6] 44.88 27.41 17.39
TBN-TRN Source only 44.12 27.12 16.86
TBN-TRN CIA (Ours) 45.23 27.75 18.02

R+F+A

TBN-TRN Source only 46.67 27.57 19.00
TBN-TRN TA3N [6] 47.43 28.40 19.42
TBN-TRN Source only 47.69 28.48 19.61
TBN-TRN CIA (Ours) 48.34 29.50 20.30

TBN Source only 47.10 28.30 18.66
TBN DAAA [20] 47.96 29.08 19.19
TBN Source only 48.22 29.86 19.73
TBN CIA (Ours) 49.08 30.36 20.49

Table 3. Performance comparison on the EPIC-Kitchens-100
(E100) validation set. R, F and A refers to RGB, Flow and Au-
dio modalities, respectively. We show each method together with
its source only performance in the row above.

on the I3D backbone, while we use concatenation for meth-
ods on other backbones. Using RGB and Flow modalities
and the same backbone, our proposed method performs fa-
vorably against the state-of-the-art method MM-SADA [36]
by 1.45% in terms of the accuracy of action. When us-
ing RGB, Flow and audio modalities, our method can show
more significant improvements over previous works on all
of the verb, noun and action metrics.

4.3. Visualization

To better understand the proposed CIA model, in Fig-
ure 4 we show the Grad-CAM [43] visualizations of acti-
vation maps before and after cross-modality feature refine-
ment by the MC module. From these cases we can clearly
see the benefit of feature interaction with other modalities:
in (a-1) and (a-2), other modalities help the RGB modality
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Flow Refined FlowRGB Refined RGB

(a-1)

(a-2)

(b-1)

(b-2)

Figure 4. Grad-CAM [43] visualizations of features before and
after cross-modality feature refinement by MC. The ground-truth
actions are: (a-1) take spoon, (a-2) move spoon, (b-1) take garlic,
(b-2) take oil. (a-1) and (a-2) show RGB activation maps (left) and
the activation map of RGB modality refined by other modalities
(right). Similarly, (b-1) and (b-2) depict the activation maps of the
Flow modality alone and Flow refined by other modalities.

RGB Refined RGB Refined FlowFlow After SC

(a)

(b)

Figure 5. Grad-CAM [43] visualizations of RGB, refined RGB,
Flow, refined Flow and fused modality after SC. The ground-truth
action labels are: (a) open cupboard, (b) put down spoon.

to put more focus on the hand by suppressing the attention
on other objects. In (b-1), the refined Flow modality trans-
fers its focus from foot to hand, and in (b-2) from left hand
to right hand. These examples strongly prove that cross-
modal transferable knowledge helps each modality to per-
form better on the target domain.

We also visualize the activation maps after the SC mod-
ule to qualitatively evaluate its effectiveness. In the action
“put down spoon” shown in Figure 5(b), the RGB modal-
ity is guided by other modalities to ignore the tap, and the
refined Flow feature becomes more focused in the center.
And finally our SC module can find the best focus by taking
advantage of consensus from all modalities.

4.4. Ablation Study

Contribution of each module In this section, we conduct
an ablation study on the E100 validation set to examine the
contribution brought by each module. We test our method
w/o the MC or SC module, and also test whether to use self-
or cross-refined features within the MC module.

Results can be seen in Table 4. Compared with the base
setting (1st row), both self-refinement (2nd row) and cross-
refinement (3rd row) benefit from the “summarize and re-
evaluation” operation, while combining the self- and cross-

MC SC Verb Noun Action

× × 47.96 29.08 19.19
Self-refinement × 48.01 29.31 19.56

Cross-refinement × 48.48 29.48 19.67
✓ × 48.62 29.96 19.98
× ✓ 48.66 29.79 19.83
✓ ✓ 49.08 30.36 20.49

Table 4. Ablation study on Mutual Complementarity module (MC)
and Spatial Consensus module (SC) of our CIA model.

Setting Module Verb Noun Action

Source only
Avg 47.10 28.30 18.66

Att [56] 47.32 28.85 19.21
SC 47.85 29.18 19.55

Domain
Adaptation

Avg 47.96 29.08 19.19
Max 48.11 29.59 19.48

Att [56] 48.08 29.46 19.39
TADA [55] 47.79 29.69 19.59

SC † 48.39 29.70 19.62
SC 48.66 29.79 19.83

Action
Recognition

Avg 72.43 51.36 40.90
Att [56] 72.89 53.00 42.20

SC 73.09 52.50 42.28

Table 5. Performance comparison of our SC module with other
approaches on the E100 validation set.

refinement our MC (4th row) gets a more obvious increase
in accuracy. This strongly proves that self- and cross-
refinement provide mutual promotion to leverage multi-
modal transferable information for better domain adapta-
tion. With only MC or SC, the performance is not favorable
against their combined version, indicating that our MC and
SC can cooperate well to leverage both cross-modal com-
plementarity and consensus for minimizing the domain gap.

Different design options of SC We also test different de-
sign options of our proposed SC. The SC module aims to
spatially re-weight the features based on the transferability
of each location. We compare with the most widely adopted
feature fusion methods: spatial max pooling (Max) and av-
erage pooling (Avg). Other than these direct fusion meth-
ods, we consider two methods based on spatial attention
mechanisms, one for general purpose (Att [56]) and one
for domain adaptation (TADA [55]), to generate a spatial
attention map for each modality. Weighted average is used
to fuse the features based on the attention maps. SC † is a
simplified version of our SC which computes the correlation
of feature maps only at a single scale.

Table 5 shows the comparison on the E100 validation set.
In the domain adaptation setting, simply replacing SC with
max or average pooling on each spatial location negatively
affects the performance. This indicates that max and aver-
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Figure 6. Per-class accuracy of several most frequent verbs (a) and nouns (b) of the E100 validation dataset.

age pooling do not do well in putting the focus on the trans-
ferable regions. The usefulness of multi-scale correlation
compared with single-scale correlation is proved, as SC can
outperform SC †. Without fully exploiting the multi-modal
knowledge, Att and TADA with adversarial alignment can-
not find transferable regions as good as our SC. Our SC gets
the best performance among these options in the source-
only and domain adaptation settings, showing that the spa-
tial consensus among modalities is more domain-invariant.

Due to the lack of labels on the target domain, we can-
not show target-only results. Instead, we show an “action
recognition” setting by both training and testing models on
the source domain. From Table 5, Att outperforms our SC
in Noun accuracy since it can learn modality-specific spa-
tial weights when no domain gap exists. From the com-
parison under different settings, we can see that when do-
main gap hinders the learning of spatial weight, generating
modality-specific spatial weight becomes even more chal-
lenging. In this case, our consensus-based SC shows supe-
riority in highlighting transferable regions. However, when
no domain gap exists, our SC becomes sub-optimal as we
cannot emphasize different regions for different modalities,
showing the limitation of our method.

4.5. Contribution of different modalities

To validate the contribution of each modality, in Table 6
we show the results of one modality before and after inter-
acting with other modalities. From the table, we can clearly
see the benefit brought by information interaction among
multiple modalities. We can also see different modalities
have different influences on verb and noun. For example,
in the bottom block of Table 6, RGB brings more improve-
ments for Audio in the noun accuracy, and Flow guides the
Audio modality to better classify the verbs.

To further validate the enhancement brought by modality
interaction, per-class accuracy for RGB modality interacted
with different modalities can be seen in Figure 6 (referring
to rows 1,2,4,5 of Table 6). In Figure 6(a), for the verbs like
“wash”, “turn-on” and “turn-off”, RGB modality interacted
with Audio modality can have a significant performance
boost. We think this is because the unique sounds of wa-

Modality Module Verb Noun Action

RGB - 30.88 22.98 10.23
(interact with Flow) MC 39.17 24.94 13.88
(interact with Flow) MC + SC 40.69 25.22 14.63
(interact with Audio) MC 40.48 25.64 15.51

(interact with Flow, Audio) MC 45.38 27.25 17.43
(interact with Flow, Audio) MC + SC 45.21 27.85 17.80

Flow - 42.02 21.15 12.90
(interact with RGB) MC 42.52 24.54 15.32
(interact with RGB) MC + SC 42.90 25.34 15.81
(interact with Audio) MC 46.57 23.37 15.95

(interact with RGB, Audio) MC 46.02 26.14 17.68
(interact with RGB, Audio) MC + SC 46.28 26.30 17.75

Audio - 33.34 14.82 8.64
(interact with RGB) MC 40.10 22.26 13.80
(interact with Flow) MC 43.80 21.20 14.26

(interact with RGB, Flow) MC 45.11 24.66 16.27

Table 6. Results of single modality before and after interacting
with different modalities on the E100 validation set are shown to
validate the contribution of each modality.

ter and switch are very similar in both source and target do-
mains. Information from the Flow modality helps RGB in
discriminating verbs like “open”, “cut” and “mix”. This is
expected since Flow contains more transferable information
of the motion and thus complements the RGB modality in
predicting verbs. A similar conclusion can be derived from
the performance of noun classes, e.g. “tap” and “sponge”.

5. Conclusion
In this work, we propose a novel CIA model for multi-

modal domain adaptive action recognition. Our CIA model
uses two modules to enable the cross-modality feature in-
teraction, which leverages both cross-modal complementar-
ity and cross-modal consensus to accurately learn the most
transferable features across the source and target domains.
Our method shows considerable improvements on multiple
datasets over a variety of previous methods. Our proposed
method also has great potential in other domain adaptation
tasks, which we will explore in the future.
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