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Figure 1. By specifying the layouts, we compared several results generated by recent CNN-based method [10] and our proposed TwFA.

Our approach enables transformers to synthesize high-quality images containing multiple objects with complex structures from layouts

(bounding boxes with categories).

Abstract

We present a method that achieves state-of-the-art re-
sults on challenging (few-shot) layout-to-image genera-
tion tasks by accurately modeling textures, structures
and relationships contained in a complex scene. After
compressing RGB images into patch tokens, we propose
the Transformer with Focal Attention (TwFA) for explor-
ing dependencies of object-to-object, object-to-patch and
patch-to-patch. Compared to existing CNN-based and
Transformer-based generation models that entangled mod-
eling on pixel-level&patch-level and object-level&patch-
level respectively, the proposed focal attention predicts the
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current patch token by only focusing on its highly-related
tokens that specified by the spatial layout, thereby achieving
disambiguation during training. Furthermore, the proposed
TwFA largely increases the data efficiency during training,
therefore we propose the first few-shot complex scene gener-
ation strategy based on the well-trained TwFA. Comprehen-
sive experiments show the superiority of our method, which
significantly increases both quantitative metrics and qual-
itative visual realism with respect to state-of-the-art CNN-
based and transformer-based methods. Code is available at
https://github.com/JohnDreamer/TwFA.

1. Introduction

Generating photo-realistic images is the ever-lasting goal

in computer vision. Despite achieving remarkable progress

on image generation for both simple scenario, e.g., faces,
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cars, and cats [14, 15, 30], and single object, e.g., Ima-

geNet [1, 42], the image generation for complex scenes

composed of multiple objects of various categories is still

a challenging problem.

In this paper, we focus on one representative com-

plex scene image generation task, layout to image gener-

ation [45] (L2I), which aims to generate complex scenes

conditioned on specified layouts. The layout, as illustrated

in Figure 1, consists of a set of object bounding boxes and

corresponding categories, thus providing a sketch of the ex-

pected complex scene image. Compared with other condi-

tions for complex scene generation, including textual de-

scriptions [27], scene graphs [13, 23], and segmentation

masks [20], layouts are much more user-friendly, control-

lable and flexible [45]. Ambitiously, we further propose

a new few-shot layout to image generation task (few-shot

L2I), which aims to generate complex scenes with a novel

object category after providing only a few images contain-

ing the novel objects.

As to the complex scene generation, including (few-shot)

L2I tasks, the core challenge is how to synthesize a photo-

realistic image with reasonable object-level relationships,

clear patch-level instance structures, and refined pixel-level

textures. Existing attempts to the L2I task can be divided

into two categories, i.e., CNN-based [18, 20, 24, 33, 34, 46]

and Transformer-based [12], according to their generator.

The CNN-based methods deploy an encoder-decoder gen-

erator [13, 24] where the encoder transfers the layout into

an image feature map, and the decoder upsamples the fea-

ture map into the target image. Those methods capture the

object relationships in the encoder by a self-attention [35]

or a convLSTM [46], and model the instance structures and

textures simultaneously in the decoder by upsampling con-

volutions. In contrast, the Transformer-based methods tok-

enize the layout into object tokens and employ a pre-trained

compression model to quantize the image into a sequence of

discrete patch tokens, thus simplifying the image generation

task as an image patch composition task implemented by a

Transformer. Those methods produce the detailed textures

with the compression model, and model both relationships

and structures by the Transformer.

However, the entangled modeling on patch-level and

pixel-level (CNN-based methods) or object-level and patch-

level (Transformer-based methods) prevents the model from

capturing inherent instance structures, leading to blurry or

crumpled objects, and increases the burden on the few-

shot learning because the model must learn the two levels

information simultaneously with only a few images. To

this end, upon the Transformer-based methods, we propose

a Transformer with Focal Attention (TwFA) to separately

model image compositions on object-level and patch-level

by distinguishing between object and patch tokens. Dif-

ferent from vanilla self-attention, which neglects the com-

position prior of spatial layouts, our focal attention further

constrains each token can only attend on its related tokens

according to the spatial layouts. Specifically, to model ob-

ject relationships, an object token attends on all object to-

kens to capture the global information. To model instance

structures, a patch token attends on the object it belongs to

and the patches inner the object bounding box. By the pro-

posed Focal Attention, the TwFA focuses on generating the

current patch without any disturbance from other objects or

patches thus increasing the data efficiency during training.

Therefore, the focal attention makes the TwFA can fast learn

the novel object category with only a few images.

We validate the effectiveness of the proposed TwFA

on COCO-stuff [2, 22] and Visual Genome [17] datasets.

TwFA improves the state-of-the-arts [12,20] FID score from

29.56 to 22.15 (-25.1%) on COCO-stuff, and from 19.14 to

17.74 (-7.3%) on Visual Genome. Morevoer, TwFA demon-

strates the superiority on the few-shot L2I task with strong

performance and impressive visualizations.

2. Related Work
CNN-based image generation. In recent years, a num-

ber of CNN-based generative models have been proposed,

and achieved significant progress on (un)conditional image

generation tasks. Till now, CNN-based generative models

(e.g., GANs [6, 36, 37], VAEs [16]) are good at synthesiz-

ing high-resolution and high-fidelity object images, which

include but are not limited to flowers, human/animal faces,

and buildings [1, 3, 14]. However, generating complex real-

world scenes which include multiple instances with variant

layout and scale has still been a challenging task [10,20,32].

To ease the difficulty of synthesizing complex scenes, pre-

vious works usually break the tasks into several steps. For

example, Layout2Im [45,46] models this task as object gen-

eration then image generation pipeline, each object is con-

trolled by a certain category code and an uncertain appear-

ance code. For better controllability, LostGANs [32, 33]

first synthesize the semantic masks from layouts, and then

ISLA-Norm is proposed for generating color images from

specific masks and style codes. In addition, some works

focus on improving models’ generative performance by in-

troducing pseudo supervisions [18, 34], additional annota-

tions [24] or fine-grained control [5]. Although CNN-based

layout-to-image generation methods have achieved promis-

ing performance on texture synthesis, they may still suffer

from accurately modeling the dependencies among pixels

(or object parts), which hinders the model generated more

realistic scene images.

Transformer-based image generation. Recently, trans-

formers not only demonstrate promising results in com-

puter vision tasks [41, 43], but also show potential on con-

ditional visual content generation [4, 21, 26]. First, a Vector

Quantised Generative Adversarial Network (VQ-GAN) [4]
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is trained to compress images into finite discrete representa-

tions/tokens. Then, an autoregressive transformer is trained

to model the dependencies between discrete image tokens.

Through modeling together with conditional signals, such

as text, class labels and keypoints, transformers demon-

strated the strong capability of generating semantic control-

lable images [4]. For the complex scene generation, [12]

made a great attempt on synthesizing the high-resolution

image from a given layout. Although promising results

have been achieved, synthesizing complex scenes that con-

sist of multiple instances and staff is still a challenge task.

Since autoregressive transformers have challenges in han-

dling spatial positions [40], they may not accurately model

object-object and object-patch relationships. In this pa-

per, the proposed transformer with focal attention can better

model the composition of the complex scenes, and leads to

better generation performance.

Few-shot image generation. Few-shot learning is first

explored in discriminative tasks. Given limited data

from a target domain, neural networks have to overcome

training/fine-tuning difficulties, and generalize the pre-

trained model to target domain [8, 9, 39]. In few-shot im-

age generation, the generative model is trained to synthe-

size diverse images from the target domain. Previous few-

shot image generation methods mainly focused on generat-

ing simple patterns and low resolution results [28, 29]. Re-

cently, [7, 19, 25, 38] extend the few-shot generation to ob-

jects with similar structures, such as human faces, buildings

and cars. However, it has great challenges in performing

few-shot generation on complex scenes or novel classes in

complex scenes. To our best knowledge, this paper is the

first attempt on few-shot complex scene generation.

3. Approach

3.1. The Framework

As illustrated in Figure 2, the proposed Transformer with

Focal Attention (TwFA) for the L2I task generally follows

the pipeline of tokenization → composition → generation,

i.e., firstly tokenizes the layout/image into sequential dis-

crete object/patch tokens, secondly predicts the distribution

of patch tokens in an auto-regressive manner and composes

into a discrete patch token sequence, and finally generates

the synthesized image from the patch tokens.

Tokenization. Given a layout consists of a set of objects

with their bounding boxes and category classes, we directly

tokenize it into a sequential object tokens c = {(li, bi)Ni=1}
with N objects, where li denotes the ith object’s category,

and bi = [x1i, y1i, x2i, y2i] represents its top-left and bot-

tom right corner positions.

Given an image x ∈ R
3×H×W , we tokenize it with

an encoder of Vector Quantised Generative Adversarial

Network (VQ-GAN [4]) that compresses high-dimensional
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Figure 2. The overview of the proposed Transformer with Focal

Attention (TwFA) framework for the L2I task. Given a layout and

an image as input, we first 1) tokenize them into sequential discrete

object/patch tokens by the embedding/encoder, next 2) predict the

next patch token by the TwFA, and then 3) during inference, gener-

ate the RGB image from all predicted patch tokens by the decoder.

data into a discretized latent space and reconstructs it.

Specifically, the VQ-GAN encoder Enc tokenizes the im-

age x into a collection of indices s of codebook entries:

s = {s1, s2, . . . , sM} = Enc(x). (1)

Here, the codebook actually is a “vocabulary” of learned

representations C = {ei}Ki=1 where the vocabulary size is

K. The VQ-GAN decoder Dec then tries to reconstruct the

original image from these latent codes. In our method, we

use a pretrained generic VQ-GAN [4] and keep the weights

frozen without any fine-tuning in our experiments.

Composition. After tokenizing the input as layout and

patch tokens, we simplify the image generation task into an

image composition task, where we can only focus on how to

produce the final sequential discrete patch tokens with the

proposed Transformer with Focal Attention (TwFA). In de-

tail, given the object tokens c and the generated (or ground-

truth) patch tokens s<i, the TwFA is introduced to model

the long-range dependency and predict the probability of

the next patch token si:

p(si|s<i, c) = TwFA(s<i, c). (2)

In an auto-regressive manner, TwFA generates the final

patch tokens s step-by-step.
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Figure 3. The illustration of different attention mechanisms with connectivity matrix. (a) Vanilla attention follows a casual mask, neglecting

different interactions, (b) Object-object interaction enhances the modeling of object-level relationships; (c) Object-patch interaction makes

patches to realize the object categories, (d) Patch-patch interaction introduces the composition prior of layouts, (e) Therefore our focal

attention captures both object-level relationships and patch-level structures. Colors(orange, yellow, green) correspond to different objects.

Generation. With the generated patch tokens s, we further

reconstruct it into a real image by VQ-GAN decoder, as:

x̂ = Dec(s). (3)

Since arbitrary appearances of different objects can be en-

coded into the codebook, VQ-GAN is a useful tool for mod-

eling the texture information.

Training and Sampling. To train the TwFA, we directly

employ a cross-entropy loss for the sequence prediction

task:

L = −
M∑
i=1

log(p(si|s<i, c)), (4)

where M is the token length of images, si and s<i are to-

kens tokenized from ground-truth images. During infer-

ence, the ground-truth image and its patch tokens are not

available. We leverage multinomial resampling strategy to

generate diverse images for the same layout.

3.2. The Attention

In this part, we first revisit the vanilla attention of Trans-

former [35], and then elaborate the proposed Focal Atten-

tion as illustrated in Figure 3.

3.2.1 Vanilla Attention

Given the tokenized object tokens c and patch tokens s, we

embed them into the feature F = [Embc(c); Embs(s)],
where Embc/s are two embedding layers, and [; ] denotes

the concatenate operation. Then the feature F is fed into

a multi-layer decoding Transformer, which adopts attention

mechanism with Query-Key-Value (QKV) model.

Given the queries Q = WQF , keys K = WKF , and

values V = WV F , the vanilla attention is given by:

Attention(Q,K,V ) = softmax

(
QKT

√
Dk

◦M
)
V , (5)

where M is called connectivity matrix, and ◦ denotes

element-wise product. In the standard self-attention mech-

anism, every token needs to attend to all other generated

tokens, i.e., M is a causal mask as shown in Figure 3 (a),

given by:

M [i, j] =

{
1, if j ≤ i,

−∞, else.
. (6)

However, the vanilla attention neglects the different type

tokens, i.e., object tokens and patch tokens, in our L2I task,

hindering the model to well capture the object-level rela-

tionships and patch-level instance structures. For example,

while generating the 14th patch in Figure 3 (a), the token

attends to all object tokens, including P1, P2, and S1, even

though the 14th patch doesn’t belong to P1 and S1. Mean-

while, the token also attends to all generated patch tokens,

even though not all patches are related to the 14th patch.

3.2.2 Focal Attention

To address the above issues in vanilla attention, We care-

fully design the connectivity matrix to guide the transformer

to focus on the related tokens. To better demonstrate mech-

anism of our focal attention, we further decompose the

connectivity matrix M into three areas, i.e., object-object,

object-patch, and patch-patch interaction.

Object-Object Interaction. To model the object-level re-

lationships and learn the global context for each object, we

design the object-object interaction as shown in Figure 3

(b). The dense interaction makes each object can interact

with each other to capture the relationships by the multi-

layer transformer, which is essential for object structure rea-

soning, for example, to generate a man kicking a soccer, the

human’s action can be predicted by the relative position be-

tween him and the ball. While vanilla attention models the
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context in a single direction, in other words, the first object

never know others. Hence, the connectivity matrix Moo in

the object-object area can be written as:

Moo[i, j] = 1. (7)

Object-Patch Interaction. To make the patch aware of the

object category it belongs to, we design the object-patch in-

teraction as shown in Figure 3 (c). We stipulate that a patch

of an object attends only on the corresponding object token

to enhance the representation of the class, and a patch of a

stuff or background can attend on all object tokens to make

sure the image surroundings is consistent with the complex

scene. Formally, the connectivity matrix Mop in the object-

patch area is:

Mop[i, j] =

{
1, if si relates to cj ,

−∞, else.
(8)

Here, we explicitly distinguish the instance objects, e.g.,
man and bus, and stuff objects, e.g., sky and grass. If si
locates in an instance, we define si only relates to this one

instance. If si locates in a stuff, we define si relates to

every objects for we hypothesize the stuff area generation

relies on the global information.

Patch-Patch Interaction. To ensure the generative consis-

tency in the local area, the relationships between patches

need considerations. As shown in Figure 3 (d), the patch-

patch interaction realize the isolation between the instance

and background and meanwhile keep the local consistency.

Formally, the connectivity matrix Mpp in the patch-patch

area is:

Mpp[i, j] =

{
1, if si and sj are neighbors, j ≤ i,

−∞, else.

(9)

Thanks to the composition prior from the layout, here we

define two patches are neighbors if they belong to the same

object, or they are both belong to stuffs or background.

By combining the above three types of interaction mech-

anisms, the connectivity matrix M of focal attention can be

written as:

M =

[
Moo −∞
Mop Mpp

]
. (10)

Finally, by unambiguously dealing with the interactions of

different types, we increase the data efficiency and make it

possible for the complex scene few-shot learning.

3.3. The Few-Shot L2I

Upon the well-trained TwFA, we are ambitious on few-

shot layout to image generation. Given a novel object class

and a few images containing this novel object, we aim at

learning a model which can synthesize the complex scene

image containing the novel class, while keeping the perfor-

mance for the base ones.

The few-shot framework is based on the TwFA, we 1)

append a new instance embedding to the input layer for

the novel class, 2) split the last transformer layer into two,

where the first one is for the base classes, and the second

one is for the novel class, and 3) insert a token fusion mod-

ule, which fuse the tokens from two last transformer layer

according to the spatial layouts, to produce the final sequen-

tial patch tokens.

To train the few-shot framework, we initialize the new

instance embedding with the well-trained embedding of its

superclass, the second transformer layer with the first one,

and fine-tune the new instance embedding and the sec-

ond last transformer layer while keeping the parameters

of pre-trained TwFA frozen. It’s worth noting that thanks

to the separate modeling on the hierarchical object-patch-

pixel level and the sparse focal attention, our TwFA can fast

adopts to new class with only a few images and achieves

impressive performance.

4. Experiments
In this section, we first introduced our experimental set-

tings that include training/testing datasets, and evaluation

metrics. Then, we carried out quantitative and qualita-

tive comparisons between our method and state-of-the-art

CNN-based and transformer-based layout-to-image gener-

ation methods. Ablation studies are performed to validate

effectiveness of the proposed focal attention. Finally, we

performed few-shot complex scene image generation.

4.1. Experimental settings

Datasets. Following previous layout to image genera-

tion papers, we validate the proposed TwFA and state-of-

the-art methods on two datasets: COCO-stuff [2, 22] and

Visual Genome [17]. COCO-stuff dataset is an expan-

sion of the Microsoft Common Objects in Context (MS-

COCO) dataset, which includes 91 stuff classes and 80 ob-

ject classes. Visual Genome (VG) is a complex scene under-

standing dataset that contains annotations such as bounding

boxes, object attributes, relationships, etc. Following ex-

isting works [10, 20, 33], we only employed scene images,

bounding boxes and labels in both datasets. In this paper,

for fair comparisions, all models are trained on the resolu-

tion of 256× 256.

Implementation Details. In the initial stage, the shot edge

of each training image is first scaled to 296 pixels, keeping

the image’s aspect ratio unchanged. Then the pre-trained

VQ-GAN is utilized to tokenize each 256 × 256 px crop

into 16 × 16 tokens. The codebook size is set to 8192.

In the second stage, we leverage these tokens to train our

TwFA (24 layers, 16 attention heads, and 1024 embedding

dimensions) and only implement the focal attention on the
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Figure 4. Samples generated from the layouts in COCO-stuff [2] by our method against the most representative baseline model, i.e.

LostGAN-V2 [33] and the state-of-the-art existing model in Table 1, i.e. Context-L2I [10]. For all the different scenes, TwFA outperforms

the state-of-the-art model with finer instance structures. More results are demonstrated in supplementary materials.

instance objects. The dropout rate is set to 0.1. When test-

ing, we directly resize the images to 256× 256 without any

other augmentation.

Evaluation Metrics. To evaluate the generation perfor-

mance over all comparison methods and our TwFA, we

adopted five metrics to evaluate the visual realism and di-

versity of generated complex scene images. They are Incep-

tion Score (IS) [31], Frechet Inception Distance (FID) [11],

SceneFID [34], Diversity Score (DS) [44], and YOLO

Scores [20]. Inception Score (IS) is one of the earliest met-

rics for automatically evaluating the quality of image gen-

erative models. For the FID score, it first extracts image

features from a pretrained backbone network (e.g. Incep-

tion V3 trained on ImageNet dataset), then computes the

2-Wasserstein metric between real-world images and gener-

ated images. Similarly, SceneFID is proposed for complex

scene generation tasks. It computes the Frechet Inception

Distance (FID) on the crops of all objects instead of the

whole image. Different from measuring the distribution of

generated images, Diversity Score (DS) compares the dif-

ference between the generated image and the real image

from the same layout. Additionally, YOLO Scores are em-

ployed as an evaluation metric to measure the consistency

of generated images’ layouts to conditions.

4.2. Comparisons with Existing Methods

To validate the effectiveness of the proposed TwFA,

we compared our model with both CNN-based and

Transformer-based complex scene generation methods.

Among them, CNN-based methods include LostGAN-

V2 [33], OCGAN [34], LAMA [20], Context-L2I [10] and

the only transformer-based method is HCSS [12]. For a

fair comparison, we adopt their official released pre-trained

models or the official reported scores in their papers.
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FID ↓ SceneFID ↓ Inception Score ↑ Diversity Score ↑
COCO VG COCO VG COCO VG COCO VG

LostGAN-V2 [33] 42.55 47.62 22.00 18.27 18.01±0.50 14.10±0.38 0.55±0.09 0.53±0.09

OCGAN [34] 41.65 40.85 - - - - - -

HCSS [12] 33.68 19.14 13.36 8.61 - - - -

LAMA [20] 31.12 31.63 18.64 13.66 - - 0.48±0.11 0.54±0.09

Context-L2I* [10] 29.56 - 14.40 - 18.57±0.54 - 0.65±0.00 -

Ours 22.15 17.74 11.99 7.54 24.25±1.04 25.13±0.66 0.67±0.00 0.64±0.00

Table 1. Quantitative results on COCO-stuff [2] and Visual Genome (VG) [17]. For fair comparisons, all the results are taken from the

original papers and based on the resolution of 256× 256. ‘-’ means the related value is unavailable in their papers. ‘*’ denotes results on

samples from trained models with the official implementation.

Grid2 Grid4 Grid16 Ours

FID ↓ 27.64 29.01 27.04 22.15
S-FID ↓ 17.26 19.43 16.80 11.99

IS ↑ 21.84±0.88 21.50±0.59 22.73±0.65 24.25±1.04

Table 2. Comparison of different attention configurations. Grid16

is equivalent to vanilla attention. S-FID denotes SceneFID.

The quantitative results by the involved competitors on

both the COCO-stuff and Visual Genome datasets are re-

ported in Table 1. Among existing methods, Context-

L2I [10] achieved the best overall performance. HCSS [12]

employed a transformer with self-attention to perform the

complex scene composition modeling task. Since we em-

ployed the same texture tokenization strategy, the genera-

tion performance depends on how well the transformer can

model the composition of complex scenes. Compared to

them, ours achieved significant improvement on all metrics.

In Figure 4, we provide several visual comparisons of

the complex scene images generated by different methods

based on the same layout. According to the visual com-

parison, we can observe that pervious methods are capable

of generating reasonable texture and patches. According to

the generated texture, we can roughly understand the syn-

thesized scene. However, they failed to accurately model

the instance structures. For example, the bear generated by

LostGAN looks like a collection of the animal fur. Ac-

cording to the visual examples, the proposed TwFA per-

forms better on constructing relationships between objects

and modeling structure of instances. More examples can be

found in our supplementary material.

Overall, the superiority of the proposed TwFA is val-

idated on both quantitative metrics and qualitative visual

comparison. The metrics such as FID, sceneFID and IS

demonstrated the distribution of TwFA-generated images

are statistical better then other methods. And TwFA largely

improved the visually quality of complex scene generation.

4.3. Ablation Study

Here, we aim to explore how the attention mechanisms

will influence transformer modeling of the complex scene

YOLO

Scores
Grid16

Ours

w/o oo

Ours

w/o op

Ours

w/o pp

Ours

Full

AP50 ↑ 25.97% 25.01% 27.59% 26.00% 28.20%
AP75 ↑ 17.45% 17.38% 19.00% 17.93% 20.12%

Table 3. Comparison of different interaction configurations in the

Connectivity Matrix. “oo”, “op”, and “pp” denote the object-

object, object-patch, and patch-patch interaction respectively.

generation. Besides the proposed focal attention, we per-

formed other three attention configurations. First, we em-

ployed the global self-attention with causal mask that is

widely used in language and image generation tasks. When

predicting the current token, it performs self-attention with

all given tokens, i.e. the layout conditions and all patch to-

kens before it. Inspired by the recent popular local atten-

tions proposed in vision transformer, we test additional two

attention mechanisms with sliding window size 2 and 4, i.e.

‘Grid2’ and ‘Grid4’. Specifically, when predicting the cur-

rent patch token, besides layout conditions, the model only

attended on the given patch tokens within the 2D sliding

windows. In our model, since the size of compressed token

map is 16× 16, therefore the setting of global self-attention

is equivalent to ‘Grid16’.

The quantitative results are reported in Table 2. We can

see that our focal attention achieved the best performance

on all metrics. Interestingly, we find that both Grid16 and

Grid2 perform better than Grid4. It means either model-

ing global dependencies or local dependencies would con-

tribute to increasing the performance, yet selecting a win-

dow size larger than 2 may decrease the performance. A

possible explanation is that the relatively large window size

is easier to break down the dependencies within and out-

side the bounding box, and meanwhile, fail to model global

relationships. Compared with them, the proposed focal at-

tention better utilizes the information provided by layouts.

The same conclusion can be drived from Figure 5. As illus-

trated in the second row, the models with a larger window

size failed to generate another face correctly.

Additionally, we ablate different connectivity matrix

components, i.e., object-object, object-patch, and patch-
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Figure 5. Qualitative ablative results of different attention config-

urations. Our focal attention achieves the best results.

patch interaction, to investigate their effect to object com-

position modeling in complex scene generation. Here,

we utilize YOLO Scores to evaluate the alignment and fi-

delity of generated objects. As shown in Table 3, we

have the following observations: 1) The lack of the object-

object interaction leads to a huge decrease. It indicates the

global context greatly influences the object structure rea-

soning; 2) Both “Ours w/o op” and “Ours w/o pp” per-

forms better than Grid16, which suggests the well-designed

object-patch/patch-patch interaction is essential to generat-

ing an photorealistic object; 3) By integrating all the interac-

tions, the TwFA improves Grid16 from 17.45% to 20.12%

(+15.3%) and from 25.97% to 28.20% (+8.6%) on AP75

and AP50, respectively.

4.4. Few-shot Complex Scene Generation

As aforementioned, benefiting from the accurate rela-

tionship modeling, the well-trained TwFA has the poten-

tial to perform few-shot complex scene image generation.

Specifically, through fine-tuning on a few of images that

contain unseen objects, we hope our model can be trained

to generate this kind of objects giving new layouts.

For providing both quantitative and qualitative analy-

sis, we trained a baseline (i.e. Grid16*) and a Ours* using

COCO-stuff training data that removed all zebra images.

Thus, zebra images in the original COCO-stuff dataset can

act as the additional images for few-shot learning. Here, we

choose zebra images for two reasons, (i) zebra is a kind of

challenging target to synthesize, since it has a unique texture

and complex structure/pose; (ii) there are relatively large

amount of zebra images (∼1500) in COCO-stuff datasets,

which contributes to more accurate quantitative measure-

ment (e.g. FID prefer testing on more images).

sky-other

tree

mountain

snow penguin

clouds

mud

hill

person

balloon

person

Layout Grid2 Grid4 Grid16 Ours

tree

christmas tree

metal
sky-other

grass
pavement

Figure 6. Examples of few-shot results. The novel classes are the

Christmas tree, penguin, and hot air balloon. TwFA outperforms

all the baseline model with finer structures and details.

Grid16* Ours*

# of Shot FID ↓ Obj-FID ↓ FID ↓ Obj-FID ↓
20 39.47 35.62 36.34 31.17
30 39.32 34.59 34.87 29.33
40 37.36 31.34 34.30 28.87
50 37.47 32.81 31.53 26.73

Full trained 30.28 21.96 24.33 21.66

Table 4. Qualitative few shot results. Obj-FID only computes the

FID score on the crops of the novel class with a size of 224× 224.

As shown in Table 4, all experiments on 20/30/40/50

shots show the superiority of our Ours*. Meanwhile, ac-

company with the increasing of shot number, better gen-

eration performance can be achieved. In Figure 6, three

new classes (Christmas tree, penguin, and hot air balloon)

with 2 samples are employed to fine-tune both the baseline

and our TwFA. From the visual examples, we can see our

TwFA show better instance structure compared to the base-

line model. Since space limitation, more few-shot genera-

tion results are reported in the supplementary material.

5. Conclusion

In this paper, we presented a novel Transformer with

Focal Attention (TwFA) to disentangle the modeling be-

tween object-level relationships and patch-level instance

structures, and introduce the composition prior from spa-

tial layouts into image compositions. Compared with CNN-

based and Transformer-based methods, TwFA enables the

model to capture the inherent instance structures, and in-

crease the data efficiency to alleviate the burden on few-

shot learning with limited data. With extensive experiments

and visualizations on both COCO-stuff and Visual Genome

datasets, the proposed TwFA demonstrates its superiority

over the SoTA methods on both L2I and few-shot L2I tasks.
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