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Abstract

In this paper, we address the task of semantics-guided
image outpainting, which is to complete an image by gen-
erating semantically practical content. Different from most
existing image outpainting works, we approach the above
task by understanding and completing image semantics at
the scene graph level. In particular, we propose a novel
network of Scene Graph Transformer (SGT), which is de-
signed to take node and edge features as inputs for model-
ing the associated structural information. To better under-
stand and process graph-based inputs, our SGT uniquely
performs feature attention at both node and edge levels.
While the former views edges as relationship regularization,
the latter observes the co-occurrence of nodes for guiding
the attention process. We demonstrate that, given a partial
input image with its layout and scene graph, our SGT can
be applied for scene graph expansion and its conversion
to a complete layout. Following state-of-the-art layout-to-
image conversions works, the task of image outpainting can
be completed with sufficient and practical semantics intro-
duced. Extensive experiments are conducted on the datasets
of MS-COCO and Visual Genome, which quantitatively and
qualitatively confirm the effectiveness of our proposed SGT
and outpainting frameworks.

1. Introduction

Given an incomplete image or a partial image input, hu-
mans generally are able to picture the context of the corre-
sponding complete version. Such reasoning skill is largely
based on our prior experience and knowledge observed
from diverse images and their semantics. In the scope of
machine learning, the objective is typically applied for the
task of image completion, aiming to generate or predict rea-
sonable missing image regions based on the observed in-
put. In the areas of computer vision and image processing,
several content creation applications such as object removal
editing [21], image panorama creation [30], texture cre-
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Figure 1. Illustration of semantics-guided image outpainting.
Our work can be divided into stages of (a) Scene Graph Expansion
(SGE), (b) Scene Graph to Layout (G2L), and (c) Layout to Image
(L2I) conversions. The blue node and red edges in the scene graph
indicate the generated objects and relationship, respectively.

ation [24], and view expansion [29] are closely related to
the aforementioned task.

Depending on where the missing parts are to be re-
covered, the task of image completion is typically divided
into two categories, image inpainting (also known as image
hole-filling) and outpainting (also known as image extrap-
olation). Compared to image inpainting, image outpainting
needs to synthesize unknown regions in single-sided fash-
ions and thus is considered to be more challenging. Based
on image inpainting works [8,16,18,27,31], researchers ad-
vance local and global GAN [8], Partial Convolution [16],
Gated Convolution [31] and edge information [18] for out-
painting tasks [11, 17, 20, 23, 26, 29]. However, despite im-
pressive performances, most existing approaches are not de-
signed to predict novel semantic regions in the output im-
ages. That is, they mainly focus on extending the surround-
ing texture or completing the fractional objects, resulting
in extrapolated image regions with repeating structures or
patterns. It is not clear how to introduce novel semantics
with reasonable relationships with the existing ones during
outpainting. As a result, we choose to approach this chal-
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lenging semantics-oriented image outpainting problem by
modeling and manipulating images at the semantic level.

In order to tackle the above task, a scene graph would
be a desirable representation due to their ability in describ-
ing the presence of semantic objects and their relationships
in an image. Thus, based on recent works such as [9], [6]
and [19], one can describe and categorize a given image
into three levels. The first level is the image level, contain-
ing pixel-level information. The second one is the layout
level, which describes the locations/sizes of the objects of
interest, including their corresponding category labels. The
final level is the scene graph level, which describes seman-
tic objects and their relationships (e.g., right of, throw) in
an image. The higher the level is, the more abstract and
semantic information it would contain.

In this paper, we choose to decompose the semantics-
guided image outpainting task into three stages, as depicted
in Figure 1. Given the scene graph extracted from the partial
image and its layout, the first stage of scene graph expan-
sion (SGE) utilizes the proposed Scene Graph Transformer
(SGT), which uniquely performs node and edge-level atten-
tion, for expanding the input scene graph. The following
stage of G2L further transforms such an expanded scene
graph into a complete layout. Finally, layout-to-image (L2I)
models can be applied for producing the final image out-
put. We note that both SGE and G2L stages utilize our
proposed SGT module, taking scene graph data as inputs
with unique objectives introduced to enforce the desirable
object/relationship properties, as later discussed in Sect. 3.

The contributions of our work are highlighted as follows:

• We approach the task of semantics-guided image out-
painting, which is able to synthesize novel yet semanti-
cally practical objects with associated relationships for
completing an image output.

• We propose a Scene Graph Transformer (SGT), which
takes node and edge features with unique node-level
and edge-level attention mechanisms for modeling the
associated structural information.

• Expecting the sparsity of the object relationships in a
scene graph, our SGT is designed to exploit the con-
verse relationships between objects, so that semanti-
cally practical nodes and their corresponding edges can
be properly recovered or expanded.

2. Related Work
2.1. Image Outpainting

Adversarial learning [20] has been applied for image out-
painting, generating image regions toward horizontal direc-
tions. By adopting a recurrent neural network, [29] ex-
tends the output image in a single direction with varying

lengths. As for [17], it fills in the intermediate gap between
left and right partial image inputs for outpainting purposes.
Although the method of [26] allows outpainting in all four
directions, they require extra information (i.e., the image
margins) during both training and testings. While such re-
quirements are later alleviated by [22], most existing works
are only capable of extending background textural regions
or mending fractional objects. It is not clear whether novel
yet semantically practical image regions can be added to
the output image. Recently, [11] proposes to outpaint im-
ages based on the extrapolated segmentation map, serving
as guidance for generating novel object instances.

2.2. From Scene Graphs to Images

As noted in [10], scene graph is a data structure with
each node encoding an object in the image, and each edge
describing the associated relationship. Scene graph gener-
ation can be viewed as a task of image-to-text conversion.
However, generating an image from a scene graph is a more
challenging task, and is first tackled by [9] in an end-to-end
learning fashion. Taking the image layout as an interme-
diate representation, one typically converts a scene graph
to an image layout, followed by a layout-to-image conver-
sion task. For scene graph to layout, [6] leverages the con-
verse and transition property of relationships. [19] proposes
Spade, an architecture for describing image semantic lay-
outs. [6] extends Spade for manipulating the attributes of
the generated objects.

With the recent advances of the Transformer [25], re-
cent approaches like [2, 28, 32] utilize Transformer based
architectures for handling scene graph data, either for scene
graph generation or scene graph to layout generation. How-
ever, these methods cannot be easily applied for scene graph
expansion, which is critical in our focus on semantics-
guided image outpainting. Nevertheless, since the Trans-
former deals with sequential data, one needs to convert the
input scene graph to a sequence of triplets, each consisting
of a subject, a predicate, and an object. Moreover, since
“no relation” would be also viewed as a predicate, describ-
ing a scene graph from an image would inevitably result in
a large number of triplets. This would result in long triplet
sequences, making the learning of the Transformer ineffi-
cient. Another potential problem for triplet representations
is that if one object node has multiple relationship edges, the
object node will appear in multiple triplets, which might re-
sult in redundant representations with inconsistent seman-
tic outputs. In this paper, we propose an alternative yet
novel architecture, Scene Graph Transformer (SGT). As de-
tailed in the following section, our SGT would alleviate the
aforementioned problems and can be applied for both scene
graph expansion and scene graph to layout generation.
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Figure 2. Scene Graph Transformer. (a) Node-level attention:
attention across nodes under guidance of the associated edges.
(b) Edge-level attention: attention across edges conditioned on
the sharing nodes. Note that Wn

v ,Wn
s ,W e

v W e
s denote the MLP

transformation layers for the corresponding feature modalities.

3. Methodology

3.1. Notations and Algorithmic Overview

Image outpainting. Given an incomplete image Iin of
h1 × w1 pixels, image outpainting is to generate an extrap-
olated image Iop of h2 × w2 pixels with h2 > h1 and
w2 > w1. During training, we have Iin partially cropped
out from a complete image Igt (of h2 × w2 pixels), aiming
at producing Iop to recover Igt.

Scene graph and layout. To describe semantic infor-
mation in an image, a scene graph S = (O,R) consists
of a list of N objects (nodes) O = {oi}i=1:N and the as-
sociated relationship (edge) matrix R = (rij) ∈ RN×N ,
where oi is the object label, and rij indicates the edge la-
bel between objects oi and oj . Note that rij belongs to
{yR1 , yR2 , · · · , yRM} ∪ {0}, where each yRi denotes the re-
lation label (e.g., riding, wear, on, etc.), and M is its label
number. And, rij = 0 indicates no relationship between
the corresponding object pair. On the other hand, a lay-
out is a list of bounding boxes of each object in an image,
i.e., B = {bi}i=1:N with each bi = (bxi , b

y
i , b

w
i , b

h
i ) de-

scribing the center coordinates and the size of the bound-
ing box. We also compute the bounding box disparity for

each relationship D = (dij) ∈ RN×N×4, where each
dij = {bxi − bxj , b

y
i − byj , log(b

w
i /b

w
j ), log(b

h
i )/ log(b

h
j )}

describes the spatial displacement between the bounding
boxes of each subject-object pair.

Algorithmic overview. To perform semantic-guided im-
age outpainting, our model would introduce novel object
instances with realistic relationships with semantic practi-
cality, which can be decomposed into the following three
stages: The scene graph expansion (SGE) stage deploys
the Scene Graph Transformer based on incomplete images
Iin with their layouts Lin = (Bin,Din) and scene graphs
Sin = (Oin,Rin), so that the model TSGE would expand
Sin into Sop = (Oop,Rop). In the stage of scene graph to
layout (G2L), we learn a second SGT-based model TG2L

which converts the expanded scene graph into layout Lop

under the guidance of Iin. Finally, for the layout to im-
age (L2I) stage, we produce the final outpainted image Iop

via the model GL2I . While not being the main focus of
this work, our model GL2I is based on SPADE [19] resnet
blocks and consists of an image encoder and a generator.

3.2. Scene Graph Transformer

In this paper, we propose a novel architecture of Scene
Graph Transformer (SGT), which is particularly designed
to handle graph-structured data. With the ability to de-
scribe the nodes and their relationships in an image scene
graph, our SGT performs separate yet mutually related self-
attention between node levels and edge levels. That is,
SGT views edges in scene graphs as regularization during
the self-attention between different nodes, while the co-
occurrence of nodes would guide the self-attention across
different edges. Since both stages of SGE and G2L in our
outpainting task take scene graph data as the inputs, our
SGT will be utilized in both stages with objectives properly
introduced and enforced.

For the sake of completeness, we briefly review the stan-
dard Transformer and explain how it can be applied to han-
dle graph-structured data with N nodes. As a sequence-
to-sequence model, the Transformer consists of multiple
transformation layers mapping an input sequence H =
{hi}i=1:3N2 to the output Ĥ = {ĥi}i=1:3N2 . Note that,
with N nodes and N2 = N × N edges in the input graph,
the Transformer in [2, 28, 32] needs to convert such input
data into a sequence, whose length is at least 3N2 due to the
triplet representation “subject-predicate-object”. For each
transformer layer, the input vector h is first converted into
the query vector q, the key vector k, and the value vec-
tor v through an MLP layer. The output vector ĥ is com-
puted as the weighting sum of the value vector vj , i.e., ĥi =∑

j sijvj , with the weight sij = softmax(qi · kj/
√
dk),

where dk is the dimension of k, and · stands for the inner
product operation.

Instead of viewing the scene graph as a single sequence
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of triplets, the transformation layers in our SGT consider
node (object) and edge (relationship) features as distinct
yet mutually related data modalities. Thus, we have input
and output of node feature sequences denoted as Hn =
{hn

i }i=1:N and Ĥn = {ĥn
i }i=1:N , respectively. As for

those of the edge feature matrices, they are denoted as
He = {he

ij}i,j=1:N and Ĥe = {ĥe
ij}i,j=1:N . For each

modality, we deploy unique attention mechanisms based on
the scene graph structure, as we present below.

3.2.1 Node-level attention

The first type of attention in our SGT is performed at the
node level, while the cross-attention between nodes is en-
forced by the edge relationships observed. Recall that,
for the standard Transformer, it simply “flattens” the scene
graph as a sequence of (nodei-edgeij-nodej) triplets with
its attention mechanism not distinguishing between data
modalities, nor considering the intrinsic graph structure.

With the scene graph nodes as the inputs, our SGT calcu-
lates the similarity between node features hn

i and hn
j under

the guidance of the associated edge feature he
ij , with the

output for that node ĥn
i as the weighted summation of the

values across each node j. Thus, we have

ĥn
i =

∑
j

snij ⊙ vn
j , (1)

where vn
j is the value features for node j, snij indicates the

attention weight derived from each triplet with node i (i.e.,
nodei, edgeij , and nodej), and ⊙ denotes an element-wise
multiplication.

As depicted in Figure 2(a), the above calculation allows
the edges associated with the node of interest to be incorpo-
rated into the attention process, which effectively regular-
izes the attention across nodes based on their corresponding
relationships. To provide additional details, we calculate
the value vector vn

i for each node hn
i through a single MLP

Wn
v . Instead of utilizing query or key vectors for calculat-

ing the attention weight snij , we take the triplet features of
nodei-edgeij-nodej by concatenating their representations
as tnij = hn

i ⊕hn
j ⊕he

ij . With another MLP Wn
s taking tnij

as the input, the output weight vector snij thus attends across
hn
i and hn

j , i.e. snij = Wn
s (t

n
ij).

As a final remark, we do not follow the standard
Transformer for using inner-product followed by softmax
to produce the attention weight. This is because our
edge-regularized attention mechanism provides guidance of
structural information, and the use of inner-product opera-
tion would dilute such information. Thus, we have the out-
put vector ĥn

i as the summation of element-wise multipli-
cation between snij and vn

j , as shown in Equation (1).

3.2.2 Edge-level attention

For the edge features He in a scene graph, only he
ij con-

tributes to the computation of tnij = hn
i ⊕ hn

j ⊕ he
ij . If

one simply performs cross-attention on tnij , similar nodes
would imply and result in the same ĥe

ij , which is viewed
as the edge collapse problem, i.e., resulting in repeating or
redundant edges related to the same node i. For example, it
is possible that, for node j and node k both linking to node
i, the same ĥe

ij and ĥe
ik are produced (e.g., two men hold

the same tennis racket).
To tackle the above problem, we propose edge-level at-

tention in our SGT, while the cross-attention between edges
is regularized by the nodes sharing the edge of interest, as
illustrated in Figure 2(b). To exploit inter-edge information
and to take the shared nodes into consideration, we have
an input edge feature he

ij with the node pair i, j, and we
consider edges linking to either node i or j for attention.
Thus, we have the features he

kl for such edges expressed as
{he

kl|k = i ∨ l = j}. And, the triplet feature for edge-level
attention is computed as follows:

teij,kl = he
ij ⊕ he

kl ⊕

{
hn
i , if k = i

hn
j , if l = j.

(2)

Instead of having the resulting edge-level attention matrix
as N2 ×N2 = N4, only N2 (edge number) × 2N (N sub-
jects +N objects)= 2N3 edge pairs need to be considered.
This greatly reduces the computation load when comparing
to the use of the standard Transformer to perform attention
across all edges in a graph.

The remaining attention mechanism follows that of
node-level attention discussed earlier. As depicted in Fig-
ure 2(b), the above calculation allows the nodes associated
with the edge of interest to be incorporated into the attention
process, which effectively regularizes attention across edges
based on their shared nodes. To provide further details, we
calculate the value vector ve

kl for each edge he
kl through

a single MLP W e
v . The “edge triplet feature” of edgeij-

shared node-edgekl is obtained by concatenating their rep-
resentations as shown by Equation 2. With an MLP W e

s

taking teij,kl as the input, the output weight vector seij,kl thus
attends across he

ij and he
kl, i.e. seij,kl = W e

s (t
e
ij,kl).

3.3. Semantic-Guided Image Outpainting

3.3.1 Scene Graph Expansion

Aiming at expanding the scene graph extracted from the in-
put image, our SGT-based SGE model TSGE learns to ap-
pend novel object nodes with the associated and necessary
relationship edges introduced. Inspired by masked language
model [4], we train this model by observing a complete
scene graph Sgt = (Ogt,Rgt), with a number of objects in
Ogt being masked with a special token [MASK] assigned.
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Figure 3. Flowcharts for (a) SGE and (b) G2L. Note that the colors for the feature cubes indicate their data modalities, and those in
gray and dark-color denote the masked and generated ones. For SGE, the object and relationship classes are used as node and edge inputs,
respectively. For G2L, we have the concatenated features of object class, bounding box, and the associated visual features as the node
input, while the concatenated relationship label and its bounding box disparity as the edge inputs.

Subsequently, the relationships in R linking to the masked
node (either a subject or a object) will also be masked. This
results in the partial input scene graph Sin = (Oin,Rin).

In order to perform node and edge-level attention, our
SGE model TSGE contains object and relationship embed-
ding encoders EO and ER to extract features from nodes
and edges, object and relationship classifiers CO and CR

for recognizing the derived output features, as shown in
Fig. 3(a). That is, TSGE takes the object category word
embeddings fO

i = EO(o
in
i ) as the node inputs hn

i , and the
relationship category word embedding fR

ij = ER(r
in
ij ) as

the relationship matrix input he
ij . CO learns to predict the

object class oopi = CO(ĥ
n
i ), and the relationship classifier

CR predicts the relationship label ropij = CR(ĥ
e
ij). From

the above process, the objective of training TSGE is to re-
cover the complete scene graph Sop = (Oop,Rop) from
Sin. Thus, the objective can be summarized below:

LSGE =
∑
i

LCE(o
op
i , ogti ) +

∑
i,j

LCE(r
op
ij , r

gt
ij ), (3)

where LCE indicates the cross-entropy classification loss.

Exploitation of converse relationships. As noted in
Sect. 3.1, R = (rij) ∈ RN×N denotes the relationships
between each object pair in the scene graph. However, this
matrix is not necessarily expected to be a symmetric ma-
trix, since rij = yR and rji = ỹR are viewed as relational
antonyms and thus with converse relationships, even both
edges are connected to the same node pair. Given an input

scene graph, typically only one of such relationship pairs
would be observed. Thus, the above converse relationship
can be implicitly inferred when either rij or rji is presented,
resulting in the relationship matrix towards skew-symmetric
(i.e., rji = r̃ij). In practice, only a limited number of rela-
tionships would be specified in a scene graph, one thus ob-
serves a sparse ground truth relationship matrix Rgt, lack-
ing converse relationship pairs. Also, one of the attention
mechanisms introduced in our SGT is node-level attention,
which is specifically guided by the relationship between the
nodes of interest. Without properly generating and observ-
ing the aforementioned converse relationship pairs, the at-
tention would be partially biased and result in undesirable
outputs. The above challenges make the learning of the
SGE model TSGE very difficult.

To tackle the above problem, we choose to process Rgt

as follows. For each non-empty rgtij = yR, we manually as-
sign the converse label ỹR to the associated empty rgtji . (e.g.,
converse-riding vs. riding, and converse-on vs. on). It is
worth noting that, the above label processing is for training
TSGE only, not for later G2L and L2I training purposes.

Furthermore, to enforce the one-to-one mapping be-
tween a relationship and its converse version, we deploy
an additional feature converter EC which takes the input re-
lationship ER(y

R) and produces its converse version. This
allows the classifier CR to predict its lalel ỹR. Thus, EC is
trained with the classification loss: Lconv =

∑
i LCE(CR ◦

EC ◦ ER(y
R
i ), ỹ

R
i ).

With converse relationship enforced, the skew-symmetry
property of the SGE model can be expected, which can be
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Figure 4. Illustration of our L2I Model GL2I . Based on
AttSpade [6], the decoder of GL2I (i.e., GSPADE) takes semantic
maps as guidance for producing image outputs.

calculated by the following loss function:

Lsym =
∑
ij

LCE(CR ◦ EC ◦ ER(r
op
ij ), r

gt
ji ). (4)

Note that ropij = CR(ĥ
e
ij) denotes the relationship label de-

rived from the output relationship he
ij . Finally, our TSGE is

trained with the combination of Equations (3) and (4).

3.3.2 Scene Graph to Layout (G2L)

Given a partial input image Iin with the corresponding lay-
out Lin, together with the expanded scene graph Sop, the
second stage of our work is to learn a G2L model TG2L for
generating the plausible layout Lop. Based on the archi-
tecture of SGT but different from TSGE , our TG2L consid-
ers a bounding box encoder EB with a regressor RB , and
a disparity encoder ED with a regressor RD. Moreover,
as shown in Figure 3(b), an image encoder EI is deployed
to distinguish whether a non-masked object is with missing
parts. For example, it is possible the Iin consists of a horse
with its legs cropped out of the image, thus with a smaller
incomplete Lin. By feeding TG2L with the visual feature of
Iin, it is expected to attend the partial horse and thus expand
its incomplete bounding boxes accordingly.

Utilizing SGT, the input layout for TG2L is also de-
scribed as a graph (Hn,He). Each node hn

i is obtained
by concatenating the object category embedding fO

i =
EO(oi), bounding box feature fB

i = EB(bi), and the vi-
sual feature f I

i , i.e. hn
i = fO

i ⊕fB
i ⊕f I

i . Note that f I
i can

be directly obtained by cropping out the associated region
from the input feature map f I = EI(I). As for the edges in
He, each edge input he

ij is obtained by concatenating the
relationship category embedding fR

ij = ER(rij) and the
disparity feature fD

ij = ED(dij), i.e. he
ij = fR

ij ⊕ fD
ij .

We note that the regressor RB in TG2L predicts bound-
ing box information. If node i denotes a novel/masked ob-
ject, the regressor is trained to predict the bounding boxes
bopi , under the supervision of ground truth bgti . Otherwise,
it would predict the boundary offset boffi = bgti − bini (i.e.,
top, bottom, left, and right) between the input object and the
ground truth one. As for the regressor RD, it is deployed to
maintain the consistency between the node outputs and edge

outputs, and is trained to predict the bounding box dispari-
ties dop

ij under the supervision of ground truth dgt
ij . With the

above definitions, we train TG2L with the following loss:

LG2L =
∑

i, if oini ̸=mask

LcIoU (b
off
i + bini , bgti )

+
∑

i, if oini =mask

LcIoU (b
op
i , bgti ) +

∑
i,j

|dop
ij − dgt

ij |,
(5)

where LcIoU (·) is the complete-IoU loss utilized in [34].

3.3.3 Layout to Image (L2I)

With the expanded scene graph and layout, our final stage
is to perform layout to image conversion. Adapted from
AttSpade [6], our L2I model GL2I learns to outpaint the
partial input image into Iop, conditioned on Sop and Lop.
To enforce visual consistency, we choose to concatenate the
image feature f I = EI(I

in) with the layout feature map
fL to form the semantic information map fS . This al-
lows our model to generate a realistic output image with
the guidance of fS through layers of SPADE blocks. Since
the ground truth images are available during training, in ad-
dition to the adversarial loss, we are able to train GL2I with
the reconstruction loss between Iop and Igt.

It is worth repeating that, since we focus on the design
of SGT (and its use for SGE and G2L), producing high-
quality image outputs is not within the main scope of this
work. Thus, AttSpade-based designs can be replaced with
state-of-the-art image conversion models if desirable.

4. Experiments
4.1. Datasets

We evaluate our proposed methods on scene-level im-
age datasets with bounding box annotation, namely COCO-
stuff [1, 15], VG-MSDN [13, 14] and CityScapes [11].
Please see the supplementary materials for more details.

4.2. Evaluation and Analysis

Scene graph expansion. To compare the output ex-
panded scene graph Sop to the ground truth Sgt, we re-
port the metrics of the averaged rank of correct prediction
(rAVG) and the top-k accuracy (Hits@k) for both object
and relationship predictions, respectively. Note that We ig-
nore the “empty” relationship in Sgt for accuracy calcula-
tion due to the sparsity expected for scene graphs.

To assess that, compared to the training of masked lan-
guage models (MLM), whether our proposed SGT learning

The authors from NTU downloaded, evaluated, and completed the ex-
periments on the datasets.
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Table 1. Quantitative evaluation on scene graph expansion. Note that masking strategies of M and E denote uses of standard MLM and
our expansion-based learning schemes, as described in Sect. 4.2.

VG-MSDN COCO-stuff

Masking
strategy

Object Relation Object Relation

rAVG ↓ Hit@ 1 / 5 ↑ rAVG ↓ Hit@ 1 / 5 ↑ rAVG ↓ Hit@ 1 / 5 ↑ rAVG ↓ Hit@ 1 / 3 ↑

Transformer M 28.96 9.55 / 29.7 5.32 37.4 / 70.1 31.14 11.1 / 29.7 2.41 28.7 / 78.2
LTNet M 24.72 9.86 / 36.4 4.62 42.7 / 74.8 30.76 12.0 / 30.3 2.40 27.9 / 77.8
GTwE M 10.93 28.3 / 58.8 5.26 34.9 / 73.1 12.25 24.6 / 54.1 2.92 20.1 / 61.9
SGT M 9.40 34.7 / 64.5 3.92 48.7 / 81.7 11.32 26.0 / 58.5 2.20 36.4 / 81.5

Transformer E 33.77 10.6 / 28.9 5.30 35.3 / 65.8 22.35 14.7 / 37.8 2.37 29.4 / 78.5
LTNet E 24.45 13.9 / 34.8 4.70 34.8 / 74.6 17.22 20.1 / 45.8 2.36 29.1 / 78.4
GTwE E 11.91 27.0 / 57.2 5.36 35.8 / 72.5 11.81 28.4 / 57.2 2.89 20.4 / 63.3
SGT E 8.38 39.7 / 68.9 3.43 55.3 / 84.3 11.03 29.6 / 59.0 2.19 45.5 / 82.2

Table 2. Quantitative Results on scene graph to layout. The (✓/
✗) indicates whether the method is trained and test with or without
input image and layout guidance.

VG-MSDN COCO-stuff

Lin mIoU mIoU

Sg2Im ✗ 16.8 29.0
Canonical ✗ 18.0 41.9
LTNet ✗ 18.3 49.0
SGT ✗ 25.3 54.6

Transformer ✓ 5.1 / 71.2 / 51.9 10.4 / 75.7 / 61.2
GCN ✓ 11.4 / 70.6 / 50.0 21.1 / 72.3 / 60.8
GTwE ✓ 12.3 / 79.9 / 62.1 21.3 / 73.2 / 64.8
SGT ✓ 14.5 / 81.1 / 62.4 28.2 / 85.1 / 74.9

strategy would favor the task of SGE, we consider/compare
the following two training schemes. First (and as our pro-
posed one), one object randomly is removed during training
(including its corresponding edges). For the second case,
we follow an existing MLM work [32] to randomly mask
α = 30% of the total objects and relationships for training
the SGE model.

In addition to the standard transformer, we apply LT-
Net [28] and GTwE (Graph Transformer with Edge fea-
tures [5]) for comparison purposes, and the results are listed
in Table 1. From this table, it can be seen that our TSGE

performed against baseline and state-of-the-art models on
both VG-MSDN and COCO with clear margins, for both
object generation and relationship prediction. More specif-
ically, between the two training schemes, we found that
the setting with a single object (and its edges) intentionally
and randomly removed resulted in more effective perfor-
mance. Since this setting is consistent with the expansion
task for scene graphs, the use of SGT-based TSGE can be
verified. Selected visualization examples of SGE are shown
and compared in Fig. 5(a).

Scene graph to layout. To evaluate the performance for
this stage, we measure the mIoU between the output layout
Lop and the ground truth Lgt. We note that depending on
the object is an introduced or an existing one, we show their
mIoU separately, with the total mIoU as their weighted av-
erage. We compare our SGT-based TG2L with two other
models: Transformer [25], GCN [6, 12] and GTwE [5]. Ta-
ble 2 lists the performances of the above methods, and we
see that our model consistently performed against GCN and
Transformer across different settings. From the visual ex-
amples shown in Figure 5, it can be observed that our model
better comprehends the expanded scene graph and the given
partial input, so that the predicted layout would be more se-
mantically practical.

Furthermore, we demonstrate the robustness of our
model which is trained without any input image or layout
guidance. This is thus consistent with the setting used in
Sg2Im [9], Canonical [6], and LTNet [28]. With no input
guidance except for our expanded scene graphs, all objects
would be considered masked(new) and thus only one mIoU
score is reported. From the results shown in Table 2, one
can see that our model still achieved the highest mIoU and
thus would be preferable in such scenarios.

Semantic-guided image outpainting. Finally, we eval-
uate the performance for semantics-guided image outpaint-
ing. From the visual examples shown in Figure 5(c) and
(d). We see that, under the guidance of the expanded scene
graph and completed layout, our model better generates
novel object instances at the pixel level, e.g., a grassland
(second row of Fig. 5(c)), sky (first row of Fig. 5(d)), or ex-
pands an existing object to a reasonable size, e.g., the jaw
of the bear (first row of Fig. 5(c)). Additional visualization
results are provided in the supplementary materials.

We note that, most image outpainting works consider
images in restrained scenes (e.g., Cityscapes [11] and
ADE20K [11]) or those with single category object (e.g.,
CUB [26], CelebA [26, 33] or DeepFashion [26]). And,

15623



Figure 5. Visualization examples of SGE, G2L, and image outpainting. From left to right: (a) input scene graph Sin, output scene
graphs Sop from LTNet, GTwE, and ours. Nodes and edges in green denote correct predictions, while those in blue are semantically
practical but differ from the ground truth ones. Finally, those in red denote incorrect predictions. (b) input layout Lin, input scene graph
Sgt, output layouts Lop from GCN and Ours, and ground truth Lgt. Bounding boxes from novel (generated) objects are denoted in blue,
while the existing ones are shown in green. (c) and (d): input image Iin, output images Iop from Boundless, AttSpade, and ours. Note
that we also highlight selected nodes and their bounding boxes following the protocol in (b).

to the best of our knowledge, we are the first outpaint im-
age data in the wild with rich interaction between various
categories of objects (e.g., VG-MSDN and COCO-stuff).
Therefore, only limited quantitative comparisons can be
conducted. Specifically, we consider Cityscapes [3] and
take the Fréchet inception distance (FID) [7] as the met-
ric. Our model reported FID of 60.99, which surpassed
Outpainting-SRN [26] at 66.89, Boundless [23] at 77.86,
and a modified AttSpade [6] at 68.91 (equivalent to our
GL2I only). While a recent work of SemIE [11] reported an
improved FID score of 47.67, it is designed for restrained
street-view (Cityscapes) or indoor scenes (ADE20K [35]),
and cannot be easily applied to outpaint image data in the
wild as ours does. Another requirement of SemIE is the use
of segmentation masks as learning guidance, while we only
require guidance at scene graph levels. Thus, the effective-
ness and practicality of our proposed model can be verified.

Ablation studies. To assess the design of our SGT,
we consider VG-MSDN and report the performance on
SGE. For Hits@1, the baseline SGT with only node-level
attention reported 35.7/46.1 on object/relationship predic-
tion while adding edge-level attention and regularization
of skew-symmetry result in 38.7/48.6 and 38.2/52.0, re-
spectively. Finally, our SGT with full objectives achieved
39.7/55.3, which confirms its design and learning schemes.
More details can be found in the supplementary materials.

5. Conclusions
We address the task of semantics-guided image outpaint-

ing by proposing a novel Scene Graph Transformer (SGT).
By decomposing the task into the stages SGE, G2L, and
L2I, our proposed model leverages information observed
from the nodes and edges in the partial input scene graph,
inferring plausible object co-occurrences, and thus produc-
ing the final image output. Our SGT uniquely performs
attention at both node and edge levels for modeling input
structural information. In addition, for completing a seman-
tically practical image, our SGT exploits converse relation-
ships between edges for scene graph expansion. Our experi-
ments confirmed that our proposed SGT performs favorably
against state-of-the-art transformer-based models on both
SGE and G2L. With novel objects and their relationships
introduced, satisfactory image outputs can be achieved.

Acknowledgement This work is supported in part by
the Ministry of Science and Technology of Taiwan un-
der grant MOST 110-2634-F-002-036 and in part by Qual-
comm Technologies, Inc. through a Taiwan University Re-
search Collaboration Project. We also thank to National
Center for High-performance Computing (NCHC) for pro-
viding computational and storage resources.

15624



References
[1] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-

stuff: Thing and stuff classes in context. In CVPR, 2018.
6

[2] Yuren Cong, Wentong Liao, Hanno Ackermann,
Michael Ying Yang, and Bodo Rosenhahn. Spatial-
temporal transformer for dynamic scene graph generation.
CoRR, 2021. 2, 3

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In CVPR,
2016. 8

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HLT, 2019.
4

[5] Vijay Prakash Dwivedi and Xavier Bresson. A generalization
of transformer networks to graphs. CoRR, 2020. 7

[6] Roei Herzig, Amir Bar, Huijuan Xu, Gal Chechik, Trevor
Darrell, and Amir Globerson. Learning canonical represen-
tations for scene graph to image generation. In ECCV, 2020.
2, 6, 7, 8

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. In NIPS, 2017. 8

[8] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa.
Globally and locally consistent image completion. 2017. 1

[9] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image genera-
tion from scene graphs. In CVPR, 2018. 2, 7

[10] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li,
David Shamma, Michael Bernstein, and Li Fei-Fei. Image
retrieval using scene graphs. In CVPR, 2015. 2

[11] Bholeshwar Khurana, Soumya Ranjan Dash, Abhishek Bha-
tia, Aniruddha Mahapatra, Hrituraj Singh, and Kuldeep
Kulkarni. Semie: Semantically-aware image extrapolation.
In ICCV, 2021. 1, 2, 6, 7, 8

[12] Thomas N. Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. In ICLR, 2017.
7

[13] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. 2017. 6

[14] Yikang Li, Wanli Ouyang, Bolei Zhou, Kun Wang, and Xi-
aogang Wang. Scene graph generation from objects, phrases
and region captions. In ICCV, 2017. 6

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014. 6

[16] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang,
Andrew Tao, and Bryan Catanzaro. Image inpainting for ir-
regular holes using partial convolutions. In ECCV, 2018. 1

[17] Chia-Ni Lu, Ya-Chu Chang, and Wei-Chen Chiu. Bridging
the visual gap: Wide-range image blending. In CVPR, 2021.
1, 2

[18] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and
Mehran Ebrahimi. Edgeconnect: Structure guided image in-
painting using edge prediction. In ICCV Workshops, 2019.
1

[19] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In CVPR, 2019. 2, 3

[20] Mark Sabini and Gili Rusak. Painting outside the box: Image
outpainting with gans. CoRR, 2018. 1, 2

[21] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In WACV, 2022. 1

[22] Cheng-Yo Tan, Chiao-An Yang, Shang-Fu Chen, Meng-Lin
Wu, and Yu-Chiang Frank Wang. Robust image outpainting
with learnable image margins. In ICIP, 2021. 2

[23] Piotr Teterwak, Aaron Sarna, Dilip Krishnan, Aaron
Maschinot, David Belanger, Ce Liu, and William T Free-
man. Boundless: Generative adversarial networks for image
extension. In ICCV, 2019. 1, 8

[24] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-
tor S Lempitsky. Texture networks: Feed-forward synthesis
of textures and stylized images. In ICML, 2016. 1

[25] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, 2017. 2, 7

[26] Yi Wang, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Wide-
context semantic image extrapolation. In CVPR, 2019. 1, 2,
7, 8

[27] Wei Xiong, Jiahui Yu, Zhe Lin, Jimei Yang, Xin Lu, Con-
nelly Barnes, and Jiebo Luo. Foreground-aware image in-
painting. In CVPR, 2019. 1

[28] Cheng-Fu Yang, Wan-Cyuan Fan, Fu-En Yang, and Yu-
Chiang Frank Wang. Layouttransformer: Scene layout gen-
eration with conceptual and spatial diversity. In CVPR, 2021.
2, 3, 7

[29] Zongxin Yang, Jian Dong, Ping Liu, Yi Yang, and Shuicheng
Yan. Very long natural scenery image prediction by outpaint-
ing. In ICCV, 2019. 1, 2

[30] Zhenqiang Ying and Alan C. Bovik. 180-degree outpainting
from a single image. CoRR, 2020. 1

[31] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Free-form image inpainting with gated
convolution. In ICCV, 2019. 1

[32] Alireza Zareian, Zhecan Wang, Haoxuan You, and Shih-Fu
Chang. Learning visual commonsense for robust scene graph
generation. In ECCV, 2020. 2, 3, 7

[33] Lingzhi Zhang, Jiancong Wang, Yinshuang Xu, Jie Min,
Tarmily Wen, James C Gee, and Jianbo Shi. Nested scale-
editing for conditional image synthesis. In CVPR, 2020. 7

[34] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang
Ye, and Dongwei Ren. Distance-iou loss: Faster and better
learning for bounding box regression. In AAAI, 2020. 6

15625



[35] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In CVPR, 2017. 8

15626


