
 
Abstract 

 
With the rapid development of artificial intelligence and 

autonomous driving technology, the demand for 
semiconductors is projected to rise substantially. However, 
the massive expansion of semiconductor manufacturing 
and the development of new technology will bring many 
defect wafers. If these defect wafers have not been correctly 
inspected, the ineffective semiconductor processing on 
these defect wafers will cause additional impact to our 
environment, such as excessive carbon dioxide emission 
and energy consumption. 

In this paper, we utilize the information processing 
advantages of quantum computing to promote the defect 
learning defect review (DLDR). We propose a classical-
quantum hybrid algorithm for deep learning on near-term 
quantum processors. By tuning parameters implemented 
on it, quantum circuit driven by our framework learns a 
given DLDR task, include of wafer defect map 
classification, defect pattern classification, and hotspot 
detection. In addition, we explore parametrized quantum 
circuits with different expressibility and entangling 
capacities. These results can be used to build a future 
roadmap to develop circuit-based quantum deep learning 
for semiconductor defect detection. 

 

1. Introduction 
The industry presents a paradox. The achievement of 

global climate goals will depend on semiconductors. They 
are an integral part of solar arrays, wind turbines, and 
electric vehicles. But chip manufacturing requires huge 
amounts of energy and water, and it emit a lot of exhaust 
gas during the production process. In addition to switching 
to renewables, chipmakers could also implement 
efficiencies in fabs to reduce their carbon footprint, 
including ineffective processing on the defect wafer. 

In the semiconductor manufacturing, there are three 
main types of defects: wafer defect map, defect pattern, and 
hotspot. Wafer defect map is used to visualize the 
distribution of defect patterns and identify potential 
process and tool issues. Continuous-monitoring wafer 

defect maps are crucial for yield management because a 
sudden increase in the problematic patterns can be 
feedback to operation engineers to resolve the related issue. 
Generally, it is known that conventional defect patterns 
such as cluster, scratch, and ring are closely related to a 
certain type of process. For example, as shown in Figure 1, 
the defect map “Edge” is caused by the damaged low 
thermal mass (LTM) pad. LTM is an industrial grade self-
regulating heating cable used for pipelines and chambers. 
Under the high temperature and high pressure of chemical 
vapor deposition (CVD) process, LTM pad will gradually 
get aged and cracked. Then, it will produce particles that 
fall on the edge of wafer surface. Another example “Cluster” 
is a mass of particles on the wafer surface during the 
Etching process. This defect is usually caused by the aged 
component of side O-ring. When this defect maps are 
detected, it means that the chamber needs to maintenance 
and replace aging parts with new ones. 

The defect pattern is the unit that composes the wafer 
map, which image is obtained by a higher resolution 
inspection tool. Each defect pattern signals the root cause, 
and engineers can diagnose the failure and prevent it from 
happening again. As shown in Figure 2, the defect pattern 
"Multi-dots" mainly occurs in the WET Etching chamber 
pipeline and is caused by the dirty nozzles of xFlow. 
Another example is “Fallon” that often occurs on the CVD 
chamber. The main reason is the fall on particle caused by 
the damage of the point-of-use (POU) filter. The damage 
component must be replaced immediately to avoid this 
defect from happening again. 
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Figure 1: Defect map and its root cause. 
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A hotspot is the region of mask layout patterns where 
failures including open and short circuits are more likely to 
happen during semiconductor manufacturing. Hotspot 
detection is used to check potential circuit failures at the 
post optical proximity correction (OPC) stage when 
transferring designed patterns onto silicon wafers. Figure-
3 show the example of Epitaxy (EPI) hotspot and its root 
cause. We can find that this wafer has the layout pattern of 
SiGe wavy. This hotspot usually caused by tungsten loss 
(W loss) in the CVD process. In addition, the lithography 
(LIT) hotspot has received much attention in the recent 
years. LIT hotspots caused by light diffraction during 
manufacturing procedure due to a substantial mismatch 
between lithography wavelength and semiconductor 
technology feature size. 

Deep learning as a hot computer vision technology has 
been actively realized in many fields. Although it has been 
serving the semiconductor industry in many areas, the 
contribution of deep learning in semiconductor defect 
detection is tremendous. However, deep learning 
algorithms tend to give probabilistic results and contain 
correlated components but at the same time suffer 
computational bottlenecks due to the curse of 
dimensionality. Similar to deep learning, quantum 
computing (QC) provides probabilistic results based on 
measurements formed by intrinsically coupled quantum 
systems. QC can provide potentially exponential speedups 
due to their ability to perform massively parallel 
computations on the superposition of quantum states. 

In addition, each artificial neuron is usually constructed 
by linear connected layers, with non-linear activation 
functions connected at the end. In this work, we replace the 

linear part by the quantum circuit to take advantage of 
possible speedup in quantum computation.  We propose the 
hybrid classical-quantum deep learning (HCQDL) based 
on quantum circuit for the above various types of defect 
inspection. Our HCQDL consists of classical and quantum 
layers. The classical layers implemented by the 
combination of self-proliferation and self-attention block. 
Self-proliferation block used a series of linear 
transformations to generate more feature maps at a cheaper 
computing cost. Then, self-attention block learned a wealth 
of information about long-range dependencies from this 
generated feature. 

The quantum layer implemented by various quantum 
circuit built in the continuous-variable architecture, which 
encodes quantum information in continuous degrees of 
freedom such as the amplitudes of the electromagnetic field. 
By tuning parameters implemented on it, quantum circuit 
driven by our framework learns a given DLDR task, 
include of wafer defect map classification, defect pattern 
classification, and hotspot detection. The main 
contributions of the paper are: 

(1) We introduce a new network architecture, Self-
Proliferation-and-Attention block (SP&A Block), which 
can perform feature engineering in a more efficient way.  

(2) We present the parametrized quantum circuit (PQC) 
with different expressibility and entangling capacities, and 
compare their training performance to quantify the 
expected benefits. 

(3) We provide a future roadmap to develop circuit-
based hybrid quantum-classical deep learning for 
semiconductor defect detection. 

The rest of the paper has been organized as follows: 
Section 2 describes the related works of deep learning 
defect review (DLDR) and quantum machine learning. 
Section 3 presents our proposed HCQDL model and 
explore it in detail theoretically. Section 4 compares the 
results of latest DLDR models and our proposed method 
according to different metrics through several experiments. 
Finally, we conclude with some final thoughts and give 
future work recommendations in section 5. 

2. Related works 
In this section, we briefly discuss DLDR and quantum 

machine learning backgrounds. 

2.1. Defect learning defect review 
Wafer Defect Map. Wafer defect map is used to visualize 
defect patterns, identify potential process issues, and 
provide yield engineers with vital information to help them 
identify the root cause of die failures during semiconductor 
manufacturing processes. Nakata et al. [1] proposed the big 
data analysis enables comprehensive and long-term 
monitoring automation. They make use of fast and scalable 
methods of clustering and pattern mining and realize daily 

 
Figure 2: Defect pattern and its root cause 

 
Figure 3: Hotspot and its root cause. 
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comprehensive monitoring with massive manufacturing 
data. They also apply deep learning to classification of 
wafer failure map patterns. Their deep learning model was 
a retrainable, one-class classifier with five layers whose 
parameters were determined empirically. They used to 
train it on the frequently occurring pattern, employing 
unlabeled images to monitor if that defect pattern emerges 
again. Nakazawa and Kulkarni [2] proposed the 
convolutional neural network (CNN) for wafer map defect 
classification and retrieval of similar maps. They 
demonstrate that by using only synthetic data for network 
training, real wafer maps can be classified with high 
accuracy. Kyeong and Kim [3] proposed a mixed defect 
classification system consisting of four CNN models for 
four basic defect types of the dataset. The proposed model 
was able to identify 16 defect types as combinations of four 
basic types. Kim et al. [4] presented a neural network-
based bin coloring method and built a four-layered CNN to 
distinguish good and bad wafers. However, they did not 
classify the defect wafers into their respective defect types, 
which is a necessary step to analyze the root cause of the 
defects. di Bella et al. [5] adopted submanifold sparse CNN 
as a binary classifier for sparse data of larger images. They 
also used oversampling to overcome class imbalance, such 
as rotations, flips, and noise injection. Kong and Ni [6] 
proposed a multi-step detection system for multi-defect 
wafers classification. First, a binary CNN is used to 
classify wafers with overlapping and non-overlapping 
patterns. The wafer maps with a single pattern or non-
overlapping mixed-type pattern were segmented into 
single pattern maps and then classified by a CNN. In the 
latest research, deep learning architecture has become the 
mainstream [8-10] on wafer defect map classification task. 
We plan to combine the advantages of deep learning and 
quantum computing as a roadmap for future research. 

Defect Pattern. The defect pattern is the unit that 
composes the wafer map. It is the image obtained by a 
higher resolution inspection tool. Defect pattern 
recognition is suited to deep learning, a powerful 
supervised learning technique that does not need manual 
feature design. Beuth et al. [11] used a biological visual 
attention method to perform the deep learning defect 
review. This biological visual attention mechanism is 
mainly to realize the boundary search of the defect chip by 
simulating the signal of the pre-frontal cortex (PFC). 
However, the attention mechanism of this study has two 
problems: 1. The PFC of this model is only applicable to 
the search of geometric shapes, and not for textures. 2. The 
model cannot adaptively learn the attention area of 
attention. Therefore, how to develop an adaptive attention 
mechanism (self-attention) for defect pattern classification 
is the direction of future research. Chen et al. [12] proposed 
a lightweight network called WDD-Net. The method refers 
to MobileNet-V2, using depthwise separable convolutions 
to reduce parameters and calculations, The experimental 

results show that the detection speed of WDD-Net is 5 
times faster than that of VGG-16. Yang and Sun [13] 
proposed a new DLDR architecture, named self-
proliferating neural network (SPNet), which can 
effectively generate more feature maps with a lower 
computational cost. 

Hotspot. Hotspot detection is defined as the procedure of 
finding the hotspots from the layout that would cause 
printability issues during lithograph. F. Yang et al. [14] 
used support vector machine (SVM) as the lithography 
hotspot classifier. They adopted spectral clustering for 
feature extraction, and their accuracy reached 95.66% on 
the public dataset ICCAD-2012. V. S. Ajna and N. George 
[15] proposed a method of layout hot spot detection based 
on deep learning. This method achieves 93% accuracy with 
the least number of false alarms. In subsequent research, 
deep learning became the main model architecture of 
hotspot detection [16-18]. X. Huang et al. [19] proposed an 
ensemble deep learning based on multiple sub-models. 
This method achieves recall rate 98.8% on the ICCAD-
2012. 

Quantum computation is a paradigm that furthermore 
includes nonclassical effects such as superposition, 
interference, and entanglement, giving it potential 
advantages over classical computing models. Therefore, 
we introduce the application of quantum machine learning 
in the next section, hoping to improve the weakness of 
classical deep learning by using quantum computing. 

2.2. Quantum machine learning 
Recent developments in quantum computing allowed 

scientists to look at computational problems from a new 
perspective. Researchers have been investigating quantum 
computing tools for a computational advantage for the deep 
learning problem. As near-term quantum devices move 
beyond the point of classical stimulability, also known as 
quantum supremacy [20], it is of utmost importance to 
discover new applications for noisy intermediate scale 
quantum (NISQ) devices [21] which are expected to be 
available in the next few years. Among the most promising 
applications for quantum computing is Quantum Machine 
Learning (QML) [22-23]. Recent advances in QML have 
been dominated by a class of algorithms called hybrid 
quantum-classical variational algorithms. Sasaki and 
Carlini [24] have delved into the notion of semi-classical 
and universal strategies whereby, in the former, classical 
methods are adapted to work on quantum systems whereas 
in the latter the methods are purely quantum in nature. A. 
Ajagekar and F. You [25] proposed the fault diagnosis deep 
learning method based on quantum computing. This 
method enjoys superior performance with an average fault 
diagnosis rate of 80% and tremendously low false alarm 
rates for the monitoring of Tennessee Eastman process. 

In this paper, we present quantum computing based deep 
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learning methods for semiconductor defect detection that 
are capable of overcoming the computational challenges 
faced by conventional techniques performed on classical 
computers. The proposed model effectively detects defect 
pattern by leveraging the superior feature extraction of self-
proliferation and self-attention to facilitate proper 
classification between normal and defect wafers. Then, a 
quantum computing assisted generative training process 
followed by supervised discriminative training is used to 
train this model. 

3. Method 
Our technique, called hybrid classical-quantum deep 

learning (HCQDL), uses quantum circuits to nonlinearly 
transform classical inputs into features that can then be 
used in a number of deep learning algorithms. HCQDL 
consists of classical layer, quantum layer, and fully 
connection layer (as shown in Figure 4). The classical layer 
is implemented by the self-proliferation and self-attention 
(SP&A) block that used to extract feature maps effectively. 
The quantum layer is composed of the quantum circuit that 
can generate highly complex kernels whose calculations 
could be classically intractable. The fully connection layer 
is implemented by the non-linear activation functions to 
calculate the probability of various semiconductor defect. 
To demonstrate the power of the proposed method, we 
present results of using HCQDL to generate eigenstates of 
simple molecules, complex entangled ground states, and 
ground states of the transverse Hamiltonian with varying 
local fields and spin-spin couplings. The approach 
achieved high accurate results and can be generalized for 
creating quantum states of complex systems. 

3.1. Classical Layer 
The classical layer is mainly composed of two parts: 

self-proliferation block and self-attention block. Self-
proliferation block used a series of linear transformations 
to generate more feature maps at a cheaper cost. Self-
attention block learned a wealth of information about long- 

range dependencies from this generated feature maps. 

Self-Proliferation Block. Traditional convolution is a 
series of convolution operations to increase the feature 
depth. Self-proliferation block generates the same number 
of features through linear transform. The process is similar 
to DNA unzipping and replication, which can effectively 
increase the number of features. The process of Self-
proliferation is as follows (as shown in Figure 5). 

The first step of self-proliferation is a small amount of 
classical convolution which can be built upon a 
transformation 𝑓𝑓 ∈ ℝ𝑐𝑐×𝑘𝑘×𝑘𝑘×𝑛𝑛  mapping an input 𝑀𝑀 ∈
ℝ𝑐𝑐×ℎ×𝑤𝑤 to feature maps 𝑀𝑀′ ∈ ℝℎ′×𝑤𝑤′×𝑛𝑛: 

𝑀𝑀′ = 𝑀𝑀⊗ 𝑓𝑓 (1) 

where ⊗ denotes convolution, 𝑐𝑐  and 𝑛𝑛  is the number of 
input and out channels, ℎ and ℎ′ is the height of the input 
and out data, 𝑤𝑤 and 𝑤𝑤′ is the width of the input and out 
data. we can obtain n feature maps by classical convolution. 

The second step is a cheap operation, represented by ρ 
in the Eq. 2. This is a linear transformation that uses depth-
wise convolution to further obtain n feature maps 
according to the following function: 

𝑢𝑢𝑖𝑖,𝑗𝑗 = 𝜌𝜌𝑖𝑖,𝑗𝑗(𝑚𝑚𝑖𝑖
′),∀𝑖𝑖 = 1, … , 𝑠𝑠, 𝑗𝑗 = 1, … , 𝑡𝑡 (2) 

Where 𝑚𝑚𝑖𝑖
′ is the i-th unit of feature map 𝑀𝑀′ generated by 

Eq. 1., 𝜌𝜌𝑖𝑖,𝑗𝑗 is the j-th linear transformation for generating 
the j-th feature map 𝑢𝑢𝑖𝑖,𝑗𝑗. If 12 feature maps are generated, 
self-proliferation can generate 6 of them (as shown in 
Figure 5). Therefore, the computation cost can be reduced 
by half. 

Self-Attention Block. The self-attention block aims at 
strengthening the features of the query position via 
aggregating information from other positions. The basic 
architecture formulated as: 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑤𝑤𝑒𝑒2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅𝐿𝐿 �𝑤𝑤𝑒𝑒1�
𝑅𝑅𝑤𝑤𝑔𝑔𝑥𝑥𝑗𝑗

∑ 𝑅𝑅𝑤𝑤𝑔𝑔𝑥𝑥𝑚𝑚ℎ×𝑤𝑤
𝑚𝑚=1

ℎ×𝑤𝑤

𝑗𝑗=1
�) (3) 

We denote 𝑥𝑥𝑖𝑖  as the feature map of on input instance 
(e.g., defect pattern), where h and w is the height and width 
of input x. 𝑤𝑤𝑒𝑒1  and 𝑤𝑤𝑒𝑒2 denote linear transform matrices 
(1×1 convolution) which is used to bottleneck transform. 
𝑤𝑤𝑔𝑔 is the weight for global attention pooling. LN denotes  

 
Figure 4: Architecture of hybrid classical-quantum deep learning. 

 

Figure 5: Self-proliferation process. 
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the layer normalization, which is utilized to filter the 
redundant information and refine the obtained contextual 
information. Specifically, our self-attention block consists 
of 3 parts (as shown in Figure 6): (a) global attention 
pooling for context modeling; (b) bottleneck transform to 
capture channel-wise dependencies; and (c) denotes the 
fusion function to broadcast element-wise addition for 
feature fusion. This function can aggregate the global 
context features to the features of each position [30]. 

Self-Proliferation-and-Attention Block. It consists of 4 
parts (as shown in Figure 7): (a) expansion layer used self-
proliferation block to increase input dimension to generate 
more feature maps at a cheaper cost. (b) depthwise 
convolution are used for feature extraction and self-
attention are used to capture long-range dependencies. (c) 
compression layer used to reduce feature dimension to be 
the same as input feature. Then, we can transform spatial 
information with low computation. Finally, in (d) we refer 
to MobileNetV2 [26] to build inverted residuals. The 
residuals architecture was first proposed by He et al. in 
ResNet [27]. Its design concept is to learn residuals on the 
network to avoid gradient vanishing problems. ResNet's 
architecture is to compress first then expand. MobileNet's 
architecture is the opposite of ResNet that expand first then 
compress. The idea of MobileNet is to "capture features in 
high dimensions and transfer information in low 
dimensions". 

3.2. Quantum Layer 
The quantum layer implemented by various quantum 

circuit built in the continuous-variable architecture. It 
consists of three consecutive parts (as shown in Figure 8). 
An encoding circuit encodes classical data to states of the 
qubits followed by a parametrized quantum circuit (PQC) 
that is applied to transform these states to their optimal 
location on the Hilbert space (as shown in Figure 9). 
Finally, measure the output of PQC along the z-axis with 
the 𝜎𝜎𝑧𝑧 operator. 

3.2.1 Encoding Circuit 

The encoding circuit is used to encode the classical data 
into the physical states of Hilbert space [28] for quantum 
computing. In this paper, we applied 3 encoding methods, 
including basis encoding, amplitude encoding, and angle 
encoding. 

Basis Encoding. In basis encoding, the data has to be in 
form of a binary string to get encoding. Approximating a 
scalar value to its binary form and then transforming it to a 
quantum state. For example, if we have a classical dataset 
containing two examples 𝑥𝑥𝑘𝑘 = 01  and 𝑥𝑥𝑘𝑘+1 = 11 , the 
corresponding quantum state after basis encoding is |𝑥𝑥𝑘𝑘⟩ =
|01⟩ and |𝑥𝑥𝑘𝑘+1⟩ = |11⟩. In short, Basis encoding encodes 
an n-bit binary string 𝑥𝑥𝑘𝑘 to an n-qubit quantum state as: 

|𝑥𝑥𝑘𝑘⟩ = |𝑖𝑖𝑥𝑥⟩ (4) 

where |𝑖𝑖𝑥𝑥⟩ is a computational basis state, and every binary 
string has a unique integer representation 𝑖𝑖𝑥𝑥 = ∑ 2𝑘𝑘𝑥𝑥𝑘𝑘𝑛𝑛−1

𝑘𝑘=0 . 

Amplitude Encoding. The amplitude encoding is also 
known as wave function embedding. The amplitude is the 
height of a wave. In the amplitude encoding, the data points 
are transformed into amplitudes of the quantum state. A 
normalized classical N-dimensional 𝑥𝑥𝑘𝑘  is represented by 
the amplitudes of a n-qubit quantum state |𝑥𝑥𝑘𝑘⟩ as: 

|𝑥𝑥𝑘𝑘⟩ = � 𝑥𝑥𝑘𝑘|𝑖𝑖𝑥𝑥⟩
𝑁𝑁

𝑘𝑘=0
(5) 

where N is the length of vector 𝑥𝑥𝑘𝑘 into amplitudes of an n-
qubit quantum state with 𝑛𝑛 = 𝑙𝑙𝑙𝑙𝑙𝑙2(𝐿𝐿) . {|𝑖𝑖𝑥𝑥⟩}  is the 
computational basis for the Hilbert space. Since the 

 
Figure 6: Architecture of self-attention. 

 
Figure 7: Architecture of self-proliferation-and-attention block. 
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Figure 8: An example of quantum circuit with 4 qubits. Each 
qubit uses the rotation gate 𝑅𝑅(𝜃𝜃) by the angle θ around x, y, z. 
CNOT gate are used for every 2 qubits in order. 
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classical information forms the amplitudes of a quantum 
state, the input needs to satisfy the normalization condition: 
|𝑥𝑥|2 = 1. 

Angle Encoding.  Angle encoding makes use of rotation 
gates to encode classical information 𝑥𝑥𝑘𝑘 ∈ ℝ𝑁𝑁 without any 
normalization condition. The classical information 
determines angles of rotation gates: 

|𝑥𝑥𝑘𝑘⟩ =⊗𝑘𝑘=0
𝑁𝑁 𝑅𝑅(𝑥𝑥𝑘𝑘)|0𝑁𝑁⟩ (6) 

Where N is the number of qubits, R can be one of 𝑅𝑅𝑥𝑥, 𝑅𝑅𝑦𝑦, 
𝑅𝑅𝑧𝑧. Usually, N used for encoding is equal to the dimension 
of vector 𝑥𝑥𝑘𝑘. Since it is 2π-periodic one may want to limit 
ℝ𝑁𝑁  to the hypercube [0, 2𝜋𝜋]⊗𝑛𝑛 . The i-th feature 𝑥𝑥𝑘𝑘  is 
encoded into the k-th qubit via a Pauli-X rotation. Figure 9 
show the angle encoding with a rotation angle of θ around 
z-axis on the Hilbert space. After activation function 
𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑥𝑥), the output 𝑥𝑥𝑘𝑘 ∈ [−1, 1] from the end of classical 
layer. Then, the rotation angle is mapped between 𝜃𝜃 ∈
[0,𝜋𝜋] due to the periodicity of the cosine function. This is 
relevant since the expectation value is taken with respect to 
the 𝜎𝜎𝑧𝑧 operator at the end of the circuit execution. 

3.2.2 Parametrized Quantum Circuit 

A parameterized quantum circuit is a quantum circuit 
consisting of parameterized gates with fixed depth. These 
circuits have free parameters: the rotation angle of the 
quantum state. We use quantum circuits and repeat 
multiple times with different random parameters, instead 
of using the large and complex classical neural networks. 
The parameterized quantum circuit also consists of one-
qubit gates as well as Controlled Not (CNOT). Some more 
complicated gates may also be used in PQC which can be 
decomposed into one qubit gates and CNOT. In general, an 
n qubits PQC can be written as: 

𝑢𝑢(𝜃𝜃�)|𝜑𝜑⟩ = �� 𝑢𝑢𝑖𝑖
𝑚𝑚

𝑖𝑖=1
� |𝜑𝜑⟩ (7) 

where 𝑢𝑢(𝜃𝜃�) is the set of unitary gates and m is the number 
of quantum gate. 𝜃𝜃� is the set of parameters {𝜃𝜃0, 𝜃𝜃1,... 𝜃𝜃𝑘𝑘}, 
where k is the total number of parameters and |𝜑𝜑⟩ is the 
initial quantum state after data encoding. The unitary gate 

taking parameters is rotation gate 𝑅𝑅�𝜃𝜃��, given by: 

𝑅𝑅𝑥𝑥(𝜃𝜃�) = 𝑅𝑅−𝑖𝑖
𝜃𝜃�
2𝜎𝜎𝑥𝑥 ,𝑅𝑅𝑦𝑦(𝜃𝜃�) = 𝑅𝑅−𝑖𝑖

𝜃𝜃�
2𝜎𝜎𝑦𝑦 ,𝑅𝑅𝑧𝑧(𝜃𝜃�) = 𝑅𝑅−𝑖𝑖

𝜃𝜃�
2𝜎𝜎𝑧𝑧 (8) 

where {𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦 ,𝜎𝜎𝑧𝑧} is Pauli matrices. The operation of 𝑢𝑢 can 
be modified by changing parameters 𝜃𝜃�. Thus, the output 
state can be optimized to approximate the wanted state by 
changing parameter 𝜃𝜃�. By optimizing the parameters used 
in 𝑢𝑢(𝜃𝜃�), PQC approximates the wanted quantum states. To 
achieve better entanglement of the qubits before appending 
nonlinear operations, the n qubits PQC has n repeated 
layers in our model. By optimizing the parameters, the 
general PQC tries to approximate arbitrary states so that it 
can be used for different specific molecules. 

In order to provide computational speedup by 
orchestrating constructive and destructive interference of 
the amplitudes in quantum computing, we constructed m 
rotation gates 𝑅𝑅𝑥𝑥 on the n qubits PQC as our basic quantum 
circuit, which can be written as: 

� (⊗𝑗𝑗=0
𝑚𝑚 𝑅𝑅𝑥𝑥(𝜃𝜃𝑖𝑖+𝑛𝑛×𝑗𝑗) 𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶𝑖𝑖,𝑖𝑖+1)

𝑛𝑛

𝑖𝑖=1
(9) 

where 𝑅𝑅𝑥𝑥 represents the unitary gate of rotation-𝑥𝑥. 𝜃𝜃𝑖𝑖+𝑛𝑛×𝑗𝑗 
is adjustable parameter of unitary gates. 𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶𝑖𝑖,𝑖𝑖+1 
represents 𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶 gate with 𝑚𝑚 as the control qubit, and 𝑛𝑛 is 
the total number of qubits. Figure 10 show the basic 
quantum circuit with n=4 and m=3. Each qubit uses the 
rotation gate 𝑅𝑅(𝜃𝜃)  by the angle 𝜃𝜃  around x-axis on the 
Hilbert space, and  𝐶𝐶𝐿𝐿𝐶𝐶𝐶𝐶 gate is used for every 2 qubits. 

3.3. Fully Connection Layer 
After obtaining all features from PQC, we feed them into 

a fully connection (FC) layer. We use the softmax 
activation function, so the output of FC layer will be a 
probability distribution. The i-th element of the output is 
the probability that this data point belongs to the i-th 
category, and we predict that this data point belongs to the 
category with the highest probability. In order to predict 
the actual label, we calculate the cumulative distance 
between the predicted label and the actual label as the loss 
function to be optimized: 

ℒ(𝜔𝜔1, 𝑏𝑏1,𝜃𝜃,𝜔𝜔2, 𝑏𝑏2) = −
1
𝐿𝐿
� � 𝑦𝑦𝑗𝑗𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦�𝑗𝑗𝑖𝑖

𝐾𝐾

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1
(10) 

 

Figure 9: Angle encoding with a rotation angle of θ around z-axis 
on the Hilbert space. 

 

Figure 10: Basic quantum circuit with n=4, m=3 

2328



where 𝜔𝜔1, 𝑏𝑏1  is the parameter of classical layer. 𝜃𝜃 is the 
parameter of quantum layer. 𝜔𝜔2, 𝑏𝑏2 is the parameter of FC 
layer. Perform the above procedure enough times to get a 
good estimate of the expected value of 𝑦𝑦�𝑗𝑗𝑖𝑖 with minimum 
loss function. 

4. Results 

4.1. Experiment Circuits 
In deep learning, it is very useful to transform data into 

a higher-dimensional feature space. In the same way, there 
are two strategies for using quantum circuits to generate 
higher dimensional features: entangling more and more 
qubits. However, quantum computers are now in their 
infancy, the available qubits are limited. In this experiment, 
we adopt different entangling strategies to verify our 
method on the 4 qubits circuit system. In addition to the 
basic quantum circuit (as shown in Figure-10), we also 
chose Circuit-5/6/16/17 provided by Sim et al. [29], which 
has better expressive ability and entanglement ability, as 
the parametrized quantum circuit (as shown in Figure 11). 

Table 1: Ablation Study of Defect Pattern Classification 

4.2. Ablation Study 
To demonstrate the usefulness of quantum circuit, our 

model had been verified on two industry data sets, defect 
pattern and EPI hotspot. We performed a rigorous ablation 
study and showed the quantitative comparison in Table 1. 
We refer to ResNet50, SENet, MobileNetV3 and our 
proposed model as the basic model to integrate with 
various quantum circuits. In addition to the basic circuit we 

proposed, we added the Circuit-5/6/16/17 presented in the 
previous section. We also adopted four encoding strategy: 
basic, amplitude, and angle encoding. 

Ablation results yielded many significant findings. First, 
Circuit 5 and Circuit 6 is a fully connected graph 

Model 

Classical 
Layer Quantum Layer 

Feature  
Extraction Encoding 

Circuit 
Basic 5 6 16 17 

Hybrid ResNet50 
[27] 

Basic 93.73  95.42  95.03  94.42  93.94  
Amplitude 93.74  95.43  95.04  94.43  93.95  
Angle 93.81  95.50  95.11  94.51  94.02  

Classical - 92.76  

Hybrid SENet 
[45] 

Basic 95.09  96.75  96.43  96.04  95.85  
Amplitude 95.27  96.94  96.61  96.22  96.03  
Angle 95.42  97.08  96.75  96.36  96.17  

Classical - 93.55  

Hybrid MobileNetV3 
[31] 

Basic 92.93  94.13  93.70  93.24  93.40  
Amplitude 93.02  94.21  93.79  93.33  93.49  
Angle 93.39  94.58  94.15  93.70  93.86  

Classical - 92.09  

Hybrid SP&A-Net 
(proposed 

model) 

Basic 95.92  97.85  97.05  96.54  96.11  
Amplitude 96.06  97.99  97.19  96.68  96.25  
Angle 96.55  98.47  97.68  97.17  96.73  

Classical - 94.27  

 

Figure 11: Quantum Circuit by Sim et al. [29]. 

 
Figure 12: ResNet50 [27] with Different Strategy of Quantum 
Circuit for Defect Pattern Classification 

 
Figure 13: SENet [45] with Different Strategy of Quantum 
Circuit for EPI Hotspot Classification 
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arrangement of qubits which led to both favorable 
expressibility and entangling capability. Therefore, the 
network model with Circuit 5 and Circuit 6 has high 
accuracy regardless of semiconductor defect detect task (as 
shown in Figure 12 and Figure 13). Second, Circuit 5 and 
Circuit 16 with controlled Z-rotation (CRz) gates is better 
than Circuit 6 and 17, respectively. It because that CRz 
operations in the entangling block commute with each 
other and thus the effective unitary operation comprised of 
CRz gates can be expressed using unique generator terms 
that are fewer than the number of parameters for these gates. 
Finally, the basic circuit without any controlled rotation 
gate has the lowest accuracy among the 4 classification 
tasks. This suggests that, if one is trying to design a PQC 
to increase expressibility, it is better to insert single-qubit 
gates which skew the controlled gate rotation axis away 
from the control axis. 

4.3. Experiment Results 
We compare our proposed model on the public dataset 

of LIT hotspot (ICCAD-2012) and defect wafer map (WM-
811K) with the state-of-art method in the last 4 years. Table 
2 and table 3 shows that our proposed model (HCQDL) has 
a higher test accuracy, which shows the advantages of 
quantum computing. It mean that small quantum circuits 
provide significant performance lift over standard linear 
classical algorithms, improving classification accuracy 
rates from around 98% to 99.12%, and from around 96% 
to 98.10% in these two public dataset, respectively. 

Table 2: Comparison of state-of-the-art methods on ICCAD-2012 

Authors Model Feature 
Extraction 

Data 
Augmentation Accuracy 

H. Yang, et al. 
[32] CNN Feature Tensor 

Extraction 
Mirroring, 
Flipping 98.88% 

H. Yang, et al. 
[33] CNN - 

Mirroring, 
Flipping, 

Upsampling 
98.20% 

Y. Tomioka, et al. 
[34] Real AdaBoost 

Histogram of 
Oriented Light 

Propagation 

Rotating, 
Reflecting 99.01% 

F. Yang, et al. 
[35] 

Efficient 
SVM 

Spectral 
Clustering - 95.66% 

V. Borisov and J. 
Scheible [36] CNN - 

Flipping, 
Gaussian 

filter 
98.94% 

H. Yang, et al. 
[37] CNN - - 97.36% 

V.S. Ajna and N. 
George [15] CNN - - 93.00% 

X. Huang, et al. 
[19] 

Ensemble 
CNN 

 Combine 
Physical Features - 98.80% 

X. Lin, et al. [38] 
Heterogeneous 

Federated 
Learning 

Feature Tensor 
Extraction - 97.90% 

Our Proposed 
Model 

Hybrid 
Classical-

Quantum CNN 

Self-Proliferate 
Self-Attention 

Mirroring, 
Flipping, 
Rotating 

99.12% 

Table 3: Comparison of state-of-the-art methods on WM-811K 

Authors Model Feature 
Extraction 

Data 
Augmentation Accuracy 

T. Nakazawa and 
D. V. Kulkarni, 
[2] 

CNN - - 96.30% 

N. Yu, Q. Xu and 
H. Wang [7] CNN PCA - 93.25% 

J. Yu and J. Liu 
[10] CNN AE+PCA - 97.30% 

J. Yu, X. Zheng 
and J. Liu [39] CNN AE - 95.13% 

J. Yu [40] SVM AE - 89.50% 
T.-H. Tsai and 
Y.-C. Lee [8] MobileNetV2 - AE 97.01% 

M. B. Alawieh et 
al. [9] CNN - AE 94.00% 

S. Kang [41] CNN - Rotation 92.13% 
U. Batool et al. 
[42] CNN - Flipping, 

Brightness  90.44% 

M. Saqlain et al. 
[43] CNN - 

Rotation, 
flipping, 
shifting, 
zooming 

96.20% 

D. Kim and P. 
Kang [44] CNN - - 96.40% 

Our Proposed 
Model 

Hybrid 
Classical-

Quantum CNN 

Self-Proliferate 
Self-Attention 

Mirroring, 
Flipping, 
Rotating 

98.10% 

5. Conclusion 
Our experiments in this work were designed to highlight 

the novelties introduced by the quantum deep learning: the 
generalizability of convolutional layers inside a typical 
CNN architecture, the ability to use this quantum circuit on 
semiconductor defect datasets, and the potential use of 
features introduced by the parametrized quantum circuit. 
The experimental results show that our framework 
outperforms the existing deep learning techniques. In 
addition, based on recent progress, we reasonably believes 
that quantum advantage is achievable within the next 5-10 
years. Quantum computers promise access to fast linear 
algebra processing capabilities which are in principle able 
to deliver the polynomial speed-up that allows kernel 
methods to process big data without relying on 
approximations and heuristics. 

Moreover, there is much to be learned about how to 
select these parameterized circuits, how to choose the 
random numbers to mix with the input data, and how to 
optimize the number of qubits to get good performance. 
Many of our existing deep learning algorithms could be 
translated into hybrid classical-quantum deep learning, 
allowing them take advantage of new properties like 
entanglement, superposition and parallel computing. It’s 
only a matter of time before these algorithms are changing 
the world. We hope this paper can be a demonstration that 
quantum machine learning has the potential to provide 
satisfactory solutions for semiconductor defect detection. 
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