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Abstract

Geospatial semantic segmentation on remote sensing im-
ages suffers from large intra-class variance in both fore-
ground and background classes. First, foreground objects
are tiny in the remote sensing images and are represented
by only a few pixels, which leads to large foreground intra-
class variance and undermines the discrimination between
foreground classes (issue firstly considered in this work).
Second, background class contains complex context, which
results in false alarms due to large background intra-class
variance. To alleviate these two issues, we construct a
sparse and complete latent structure via prototypes. In par-
ticular, to enhance the sparsity of the latent space, we de-
sign a prototypical contrastive learning to have prototypes
of the same category clustering together and prototypes of
different categories to be far away from each other. Also, we
strengthen the completeness of the latent space by modeling
all foreground categories and hardest (nearest) background
objects. We further design a patch shuffle augmentation for
remote sensing images with complicated contexts. Our aug-
mentation encourages the semantic information of an ob-
ject to be correlated only to the limited context within the
patch that is specific to its category, which further reduces
large intra-class variance. We conduct extensive evalua-
tions on a large scale remote sensing dataset, showing our
approach significantly outperforms state-of-the-art methods
by a large margin.

1. Introduction
Remote sensing images are high-resolution images ac-

quired from a long distance from the Earth’s surface and

contain rich geospatial information. Geospatial seman-

tic segmentation aims to interpret the remote sensing im-

ages by assigning each pixel a semantic category. With

a wide range of applications such as environmental as-

sessment, infrastructure planning, natural resources man-

* Indicates equal contribution

Image Ground Truth Mask

Figure 1. Illustration of large intra-class variance: (1) Foreground

intra-class variance that the boats on the right (right yellow bound-

ing box) look more similar to the trucks (pink bounding box) than

some other boats (left yellow bounding box). (2) Background

intra-class variance (false alarm) that container (red bounding box)

in the background looks similar to the trucks (pink bounding box),

which is a foreground object.

agement [24, 25], geospatial semantic segmentation draws

close attention in the remote sensing community.

Compared to general semantic segmentation datasets, re-

mote sensing images have their own challenging problem of

large intra-class variance [2, 28, 58]. Since remote sensing

images are taken far from the ground, foreground objects

are tiny in high resolution images and are represented by

only a few pixels. Lack of sufficient information to rep-

resent a foreground object leads to a large variation, and

the neural network is prone to misclassify different fore-

ground categories. Meanwhile, background class often con-

tains abundant information with high complexity, which

causes serious false alarms due to large background intra-

class variance [58], as shown in Figure 1.

Current general semantic segmentation methods mainly

focus on scale variation [5, 46, 56] while ignoring the above

issues. Recent work on geospatial semantic segmentation

[58] leverages the symbiotic relation between geospatial
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Figure 2. Left: Incomplete latent space organization with struc-

tural bias that only leverages within-image information. The an-

chor point will be pushed to other unconstrained foreground ob-

jects and background objects. Right: Complete latent space orga-

nization that leverages global information. The anchor prototype

achieves overall optimization in the latent space.

scene and geospatial objects to enhance the discrimination

of foreground features and to suppress the false alarm is-

sue due to large background variance. However, they fail to

solve the intra-class variance within foreground categories.

In this paper, we propose a Sparse and Complete latent

Organization (SCO) to tackle the large intra-class variance

issues for both foreground and background class via pro-

totypes, the average of pixels of a category within the im-

age. To enhance the sparsity, we design a prototypical con-

trastive learning to have prototypes of the same category

clustering together, and meanwhile to force prototypes of

different categories to be far away from each other. Specif-

ically, given an anchor prototype of a particular category,

we treat prototypes of the corresponding category extracted

from data augmentation as positive samples while other pro-

totypes from the original image as negative samples. How-

ever, this leads to a latent space structural bias, in which

only prototypes from partial categories are under constraint

since a single image is highly unlikely to contain all cate-

gories. Due to the limited size of latent space (the channel

of the feature map is restricted), the anchor prototype will be

pushed to other categories in the unconstrained latent space,

which may undermine the discrimination from those fore-

ground categories and deteriorate the false alarm issue, as

shown in Figure 2 (a). To avoid this issue, we strengthen

the completeness of the latent space by modeling all fore-

ground categories and hardest (nearest) background objects,

as shown in Figure 2 (b), using foreground and background

prototype memory banks.

In addition to structuring the latent space, we design a

novel data augmentation method, patch shuffle augmenta-

tion, to generate the positive samples. Existing data aug-

mentation methods focus on the image-level transformation

[10, 41, 52, 54], which provides insufficient variance for

pixel-level samples. Since geospatial semantic segmenta-

tion is a context-dependent task with highly complicated

background information [28, 58], objects of the same cat-

egory are correlated to different contexts at a large scale

(e.g. background of cars in urban scenes varies a lot com-

pared to those in rural scenes). By conducting patch shuffle

augmentation, we encourage the semantic information on a

pixel to be correlated only to the object itself and its limited

surroundings within the patch that is specific to its category

(e.g. cars almost always on a road) thus reducing intra-class

variance.

Overall, the main contributions of this work are summa-

rized in the following three aspects:

• We propose a sparse and complete latent structure to

alleviate the large intra-class variance issue in geospa-

tial segmentation for both foreground and background

categories.

• We design a novel patch shuffle augmentation for

positive samples generation to restrict context infor-

mation within the patch, which further reduces fore-

ground intra-class variance and enhances discrimina-

tion among objects.

• We evaluate our method through extensive experi-

ments in a large-scale remote sensing dataset, showing

our method outperforming state-of-the-art approaches

by a large margin.

2. Related Work
Geospatial Semantic Segmentation The success of the se-

mantic segmentation task aligns with the usage of the fully

convolutional network (FCN) [32] to conduct pixel-wise

classification with end-to-end training, which incorporates

more spatial information than convolutional neural network

(CNN) [8, 13, 15, 16]. To further improve the perfor-

mance, various works attempt to retain more spatial infor-

mation by extending the receptive field and extracting wider

and deeper spatial context [1, 4, 36, 38], to extract multi-

scale features by designing novel and more robust networks

[5, 7, 31, 39, 56], and to introduce new mechanisms such as

attention [14, 22, 50, 51] and strip pooling [19] to further

exploit the spatial field.

General semantic segmentation methods mainly empha-

size on the retainment of spatial information and multi-scale

feature extraction, but with few emphasis on the common

issues presented in the remote sensing imagery: large

intra-class variance and foreground-background imbalance.

The task of geospatial semantic segmentation is widely

researched in specific application scenarios with some

improved techniques [3, 11, 21, 35, 37, 45, 47, 49, 53];
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however, few work has been done regarding the common

issues in semantic segmentation of remote sensing images.

Zheng et al. [58] identified two main unique challenges

in geospatial semantic segmentation as stated above, and

developed a foreground-aware relation network (FarSeg) to

tackle foreground-background related issues via relation-

based and optimization-based foreground modeling. Li et

al. [28] further pointed out the issue of false alarm and

foreground-background imbalance. Our paper focuses on

the large intra-class variance issue for both background

(identified in [58]) and foreground objects, which is first

pointed out in our paper.

Contrastive Learning Contrastive learning aims to learn

representations by contrasting similar (positive) data sam-

ples against dissimilar (negative) samples often in an un-

supervised manner. Various contrastive learning methods

develop different strategies to generate instance features.

Memory bank was introduced to store the instance class rep-

resentation vectors [44] and was widely adopted in various

tasks [6, 17, 33]. Others explored the approach of in-batch

negative sampling [12, 23, 26, 48] as an alternative of the

memory bank. These approaches treat each image as an

instance where they use augmented images to form positive

samples and randomly selected images as negative samples.

Recently, pixel-to-pixel level contrastive learning for se-

mantic segmentation was proposed [20, 42] in a fully super-

vised manner by introducing a label-based contrastive loss.

It enforces pixel embeddings pertained to the same seman-

tic class to be more alike than embeddings from different

classes in the latent space. Zhao et al. [57] also proposed

three variants of label-based and pixel-level contrastive loss

and a two-stage training process of cross-entropy and con-

trastive losses. These works only focus on discrimination

among foreground categories; however, different from the

task of general semantic segmentation, geospatial semantic

segmentation faces the serious false alarm issue due to large

background variance. In our work, we first model the rela-

tionship between foreground and background in contrastive

learning literature.

3. Method
In this section, we provide a detailed description of our

approach as shown in Figure 3. We start by discussing

the local prototypical contrastive loss that leverages the

information within-image information in Section 3.1; we

then discuss the global repulsion force and foreground-

background repulsion loss that utilize the global informa-

tion within the dataset to avoid latent space structural bias

(shown in Figure 2) and mitigate false alarm in Section

3.2 and Section 3.3; finally, we discuss the patch shuffle

data augmentation, a newly proposed data augmentation for

contrastive learning in geospatial semantic segmentation in

Section 3.4.

3.1. Within-image Prototypical Contrastive Learn-
ing

Ground Truth-Guided Prototype Extraction Given a

set of pairs (x,y) in the training set, we denote x as the

input image and y as the corresponding ground truth seg-

mentation mask, where x ∈ RH×W×3 and y ∈ RH×W .

Semantic segmentation aims to classify each pixel from the

input image into a semantic class c ∈ C, where C is the set

of all categories appearing in the dataset. Modern seman-

tic segmentation models typically consist of an encoder-

decoder network E and a convolutional segmentation head

G to output the segmentation score map S = E ◦ G(x) ∈
RH×W×|C|. We denote the feature map F = E(x) with the

same spatial dimension H × W of the ground truth segmen-

tation mask y.

For each image, we extract prototypes from its feature

map F guided by ground truth segmentation masks y. For

the class c ∈ Cx, where Cx is the set of foreground cat-

egories appearing on the image x, the prototype for class

c is computed by taking the average of all the pixels cor-

responding to class c in ground truth semantic mask y. In

formal terms, the prototype of category c, pc, can be written

as:

pc =
1

|�yw,h = c�|
W,H∑

w,h

Fw,h�yw,h = c� (1)

where Fw,h denotes the feature vector at the spatial location

of (w,h) in the feature map F and �yw,h = c� indicates

pixels at spatial location (w,h) in yn corresponding to class

c and | · − · | is the cardinality.

Local Prototypical Contrastive Loss The core idea of

prototypical contrastive learning is to have prototypes of the

same category clustering together, and meanwhile to force

prototypes of the different categories to be far away from

the others. For an anchor prototype Pc, we treat prototypes

of class c from data augmentation as our positive samples

and other prototypes from the original images as our nega-

tive samples. Given a set of pairs (x,y) in the training set,

we perform data augmentation on image x to generate N
augmented pairs {(x1,y1), (x2,y2).., (xn,yn)} so that the

n-th augmented prototype of class c ∈ Cx are calculated

by:

pnc+ =
1∣∣∣�yn

w,h = c�
∣∣∣

W,H∑

w,h

Fn
h,w�yn

w,h = c� (2)

where Fn = E(xn) is the feature map of xn.

To encourage the model to be invariant to multiple

transformations, we propose an attraction loss to make

augmented prototypes to be as close to corresponding
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Figure 3. Overview of our approach. The latent space organization is shown in the pink box, where we want our anchor prototype (in the

white circle) to be far ways from all negative samples (in red circles) and to be close to positive samples (in green circles). Mfore and

Mback denotes foreground and background memory banks storing global prototypes and background prototypes.

the anchor prototype as possible thus reducing the large

foreground intra-class variance in remote sensing images,

which is defined by:

Lattr =
1

|Cx|
∑

c∈Cx

n∑

i=1

∥∥(Pc − pic+)
∥∥2 (3)

where pc is the anchor prototype of class c and ‖· − ·‖ de-

notes Euclidean distance.

In the meantime, our anchor prototypes are separated

from negative prototypes (prototypes of different fore-

ground categories in the same image) to enhance the dis-

crimination. To this end, we propose a local repulsion force

within the image, which is defined as:

Llocal
rep =

1

|Cx|
∑

ci∈Cx

∑

cj∈Cx

ci �=cj

1
∥∥Pci − pcj

∥∥2 (4)

So the within-image local prototypical contrastive loss

Llocal
pcl can be expressed as:

Llocal
pcl = λattr · Lattr + λlocal

rep · Llocal
rep (5)

where λ are hyperparamters that balance the loss weights

between attraction force and local repulsion force.

3.2. Global Repulsion Loss

Latent space constructed with only within-image infor-

mation will lead to the latent space structural bias, as shown

in Figure 2. In this case, the anchor prototype will be pushed

to other global foreground categories (categories existing in

the dataset while not appearing in the image), which un-

dermines the discrimination from other global foreground

classes. To alleviate this issue and increase the richness of

our latent representation, we maintain a foreground proto-

type memory bank Mfore. We adopt the nearest neigh-

bor algorithm to fetch prototypes of global foreground cate-

gories, and fulfill them into the latent space as complemen-

tary negative samples besides within-image negative sam-

ples. Then, similar to the local repulsion force, we impose a

global repulsion force to separate the anchor prototype from

the additional negative sample. In formal terms, the global

repulsion loss Lglobal
rep can be defined as:

Lglobal
rep =

1

|Cx|
∑

ci∈Cx

∑

cj∈C
cj /∈Cx

1

‖Pci −NN(Pci , cj ,Mfore)‖2

(6)

where Pci is the anchor prototype of class ci and

NN(pci , cj ,M) is the nearest neighbor operator to find the

closest prototype of class cj in memory bank M to the pro-
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totype pci , as defined below:

NN(pci , cj ,M) = argmin
pcj

∈M

∥∥pci − pcj
∥∥2 (7)

Foreground Prototype Memory Bank The foreground

memory bank consists of independent queues q to store

prototypes of each foreground category. The size of the

foreground memory bank is mf · d · |C|, where mf is

a hyperparameter of the length of each queue, d is the

dimension of each prototype (i.e., the channel of the feature

map where the prototypes are extracted from), and |C| is

the number of all the foreground categories in the dataset.

The memory bank is first randomly initialized, and we

adopt the FIFO (first-in-first-out) method to update these

queues at the end of each training step and remove the

oldest prototypes.

3.3. Background Prototype

Background class is a unique category in semantic

segmentation and other pixel-level tasks. It contains pixels

that do not belong to any of the foreground categories.

Recent approaches in contrastive learning of semantic seg-

mentation only model the relationship among pixels from

foreground classes while ignoring the background pixels.

However, in geospatial semantic segmentation, with much

more complex context than general semantic segmentation,

background class suffers from large intra-class variation.

Failing to model the relationship between anchor prototype

and background class will aggravate the false alarm issue

due to the limited size of latent space (anchor prototypes

may be pushed closer to background objects). To this end,

we propose to take k-nearest background prototypes as our

negative samples while structuring the latent space.

Background Prototype Extraction To extract back-

ground prototypes, we adopt average pooling on back-

ground areas. However, background class contains more

diverse information than foreground categories, so simply

taking the average pooling as the prototype is an ineffective

and inaccurate representation of the background informa-

tion. Thus we utilize k-means clustering to obtain a better

representation of the background. The objective function

can be expressed as follow:

min
μk

W,H∑

w,h

k∑

n=1

‖Fw,h�Mw,h = 0� − μn‖2 (8)

where μ represents the center of the clusters. M ∈ RH×W

is a binary foreground mask where Mw,h = 0 represents

pixels from the background class. The k-th background

prototype Pk
b are then equal to μk, which is the average

pooling of all the embedding of pixels belonging to the

cluster k.

Foreground-Background Repulsion Loss To reduce

false alarm issue in geospatial semantic segmentation and

mitigate the latent space structural bias shown in Figure 2,

we propose a foreground-background repulsion loss Lfb
rep

to set the anchor prototype apart from the k nearest back-

ground prototypes in the background memory bank Mback,

which is defined as:

Lfb
rep =

1

|Cx|
∑

c∈Cx

k∑

n=1

1

‖Pc − kNN(Pc, n,Mback)‖2
(9)

where Pc is the anchor prototype of class c ∈ Cx and

kNN(pc, n,M) is the k-nearest neighbor operator that

finds the kth nearest prototypes to the prototype pc in the

memory bank M.

Background Prototype Memory Bank The back-

ground memory bank consists of background prototypes

Pb extracted using the k-means clustering algorithm, as

mentioned above. The size of the background memory

bank is mb · d, where mb is a hyperparameter representing

the number of background prototypes stored in this mem-

ory bank and d is the dimension of each prototype. It is

randomly initialized at the beginning of the training. We

first adopt FIFO for update until all randomly initialized

background prototypes are removed. After that, we update

the background memory bank by replacing the earliest used

(least active) background prototypes after each epoch.

3.4. Patch Shuffle Augmentation

Data augmentation is a critical technique in contrastive

learning. By conducting data augmentation, we expect our

model can learn better features that are robust and invariant

to multiple data transformations of a single sample. Com-

mon data augmentation focuses on the image transforma-

tions to generate image-level samples for contrastive learn-

ing such as rotation, cropping, mixing, and color transfor-

mation [10, 41]. However, semantic segmentation is con-

sidered as a pixel-level dense prediction task, where we

treat pixels as our samples. In this case, conventional data

augmentation methods can not provide sufficient variance,

and positive samples extracted from those data augmenta-

tion are considered relatively easy. To tackle this issue, we

design a patch shuffle augmentation for contrastive learning

in semantic segmentation, which has been only marginally

investigated in the current literature. Specifically, we first

split an image into fixed-sized patches and then randomly

rearrange these patches to form augmented images. It is

worth noting that different augmented images contain dif-
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Table 1. Comparison with the state-of-the-art results on iSAID dataset in terms of MeanIoU, best in bold. The categories are defined

as: ship (Ship), storage tank (ST), baseball court (BC), ground field track (GTF), bridge (Bridge), large vehicle (LV), small vehicle (SV),

helicopter (HC), swimming pool (SP), roundabout (RA), soccerball field (SBF), plane (Plane), harbor (Harbor). All the results except for

ours are from [28].

Method Backbone mIoU (%) IoU per Category (%)
Ship ST BD TC BC GTF Bridge LV SV HC SP RA SBF Plane Harbor

DenseASPP [46] ResNet-50 57.3 55.7 63.5 67.2 81.7 54.8 52.6 34.7 55.6 36.3 33.4 37.5 53.4 73.3 74.7 46.7

RefineNet [31] ResNet-50 60.2 63.8 58.6 72.3 85.3 61.1 52.8 32.6 58.2 42.4 23.0 43.4 65.6 74.4 79.9 51.1

PSPNet [56] ResNet-50 60.3 65.2 52.1 75.7 85.6 61.1 60.2 32.5 58.0 3.0 10.9 46.8 68.6 71.9 79.5 54.3

OCNet-(ASP-OC) [51] ResNet-50 40.2 47.3 40.2 44.4 65.0 24.1 29.9 2.71 46.3 13.6 10.3 34.6 37.9 41.4 68.1 38.0

EMANet [30] ResNet-50 55.4 63.1 68.4 66.2 82.7 56.0 18.8 42.1 58.2 41.0 33.4 38.9 46.9 46.4 78.5 47.5

CCNet [22] ResNet-50 58.3 61.4 65.7 68.9 82.9 57.1 56.8 34.0 57.6 38.3 31.6 36.5 57.2 75.0 75.8 45.9

EncodingNet [55] ResNet-50 58.9 59.7 64.9 70.0 84.2 55.2 46.3 36.8 57.2 38.7 34.8 42.4 59.8 69.8 76.1 48.0

SemanticFPN [27] ResNet-50 62.1 68.9 62.0 72.1 85.4 54.1 48.9 44.9 61.0 48.6 37.4 42.8 70.2 58.6 84.7 54.9

UPerNet [27] ResNet-50 63.8 68.7 71.0 73.1 85.5 55.3 57.3 43.0 61.3 45.6 30.3 45.7 68.7 75.1 84.3 56.2

SFNet [29] ResNet-50 64.3 68.8 71.3 72.1 85.6 58.8 60.9 43.1 62.9 47.7 30.4 47.8 69.8 75.1 83.1 57.3

GSCNN [40] ResNet-50 63.4 65.9 71.2 72.6 85.5 56.1 58.4 40.7 63.8 51.1 33.8 48.8 58.5 72.5 83.6 54.4

RANet [34] ResNet-50 62.1 67.1 61.3 72.5 85.1 53.2 47.1 45.3 60.1 49.3 38.1 41.8 70.5 58.8 83.1 55.6

FarSeg [58] ResNet-50 63.7 65.4 61.8 77.7 86.4 62.1 56.7 36.7 60.6 46.3 35.8 51.2 71.4 72.5 82.0 53.9

PFSegNet [28] ResNet-50 66.9 70.3 74.7 77.8 87.7 62.2 59.5 45.2 64.6 50.2 37.9 50.1 71.7 75.4 85.0 59.3

SCO (Ours) ResNet-50 69.1 74.7 75.0 78.5 89.0 66.3 63.6 46.3 63.0 46.9 41.1 56.5 73.3 84.0 85.3 64.3

ferent patch arrangements without repetition so that aug-

mented images are different from each other and from the

original image. Meanwhile, we split the corresponding

ground truth labels into patches and rearrange them into

the same pattern to match the corresponding augmented im-

ages. Compared to image-level data augmentation, patch

shuffle augmentation leverages the inherent properties of

geospatial semantic segmentation: 1) semantic segmenta-

tion is a context-dependent task, where semantic informa-

tion on a pixel is strongly correlated with its surrounding

context. 2) the background is much more complex in the

remote sensing images where the same foreground objects

have very different contexts at a large scale, intensifying

foreground intra-class variance. By doing patch shuffle aug-

mentation, we restrict the correlation of foreground objects

to the limited information within the patch specific to its

category to further reduce large intra-class variance within

foreground objects and enhance the discrimination.

4. Experiments
In this section, we conduct extensive experiments to val-

idate the effectiveness of our approach on iSAID [43], a

large scale remote sensing dataset. We first start with the

description of our experimental setup and implementation

details in Section 4.1. We then demonstrate our experimen-

tal results compared to existing state-of-the-art methods in

Section 4.2. Finally, we show our results from comprehen-

sive ablation studies for our method in Section 4.3.

4.1. Experiments Setup and Implementation Details

Dataset We evaluate our method on a commonly used

large scale remote sensing dataset iSAID. iSAID consists

of 2,806 remote sensing images acquired by multiple satel-

Table 2. Ablation study on the effectiveness of modules on iSAID

val set. Starting from baseline, the proposed modules are gradually

added for the module analysis.

Lce Lattr Llocal
rep Lglobal

rep Lfb
rep mIoU

� 63.7

� � 65.1

� � 64.8

� � � 65.4

� � � � 67.8

� � � � 67.4

� � � � � 69.1

Table 3. Ablation study of different augmentation methods on our

approach.

Data Augmentation Method mIoU
Cutout 67.8

Mixup 68.1

Manifold Mixup 68.3

CutMix 68.5

Patch Shuffle Augmentation 69.1

lites and sensors with original image sizes ranging from

800×800 pixels to 4000×13000 pixels. As one of the

largest datasets for geospatial semantic segmentation on re-

mote sensing imagery, iSAID contains 655,451 object in-

stances for 15 categories across 2,806 high-resolution im-

ages that are densely annotated. For predefined training set,

validation set, and test set, iSAID dataset has 1411, 458,

and 937 images respectively.
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Figure 4. Ablation studies on the number of data augmentation

and the size of patches in patch shuffle data augmentation.

Evaluation metric We report the performance using

mean Intersection-over-Union (mIoU) in percentage, which

calculates the average of Intersection-over-Union (IoU) of

all classes including the background class. We adopt mIoU

as our main metric unless specifically specified, which is a

common practice.

Compared Methods We benchmark our model against

the latest state-of-the-art methods in remote sensing

semantic segmentation: FarSeg [58] and PFSegNet [28].

Additionally, we compare our method to state-of-the-art

approaches for general semantic segmentation methods on

remote sensing datasets.

Implementation Details Our method is implemented with

PyTorch. We follow the implementation of the state-of-the-

art method, FarSeg [58] and adopt it as our baseline. Fol-

lowing the same setting of FarSeg, we adopt ResNet-50 [18]

pretrained on ImageNet [9] as our backbone within all ex-

periments. We use the “poly” learning rate policy where

current learning rate equals to the base one multiplying

(1 − step
max step

power
). Models are all trained with 60,000

iterations using the above ”poly” learning rate policy and

we set base learning rate to 0.007 and power to 0.9. We

train our network using SGD with weight decay of 0.0001

and momentum of 0.9. The length of foreground memory

bank, mf , is set to 10 and the length of background mem-

ory bank, mb, is set to 256. To balance the number of fore-

ground and background prototypes in latent space, we take

30 background prototypes. The number of the patch shuffle

augmentation (positive samples) is set to 15. Also, we set

the patch size equal to 64× 64 in the patch shuffle augmen-

tation. We train our model on 2 NVIDIA 2080 Ti GPU for

all datasets and models. We set the batch size to 4 and in

total 8 images are allocated on two GPUs. We adopt the

synchronized batch normalization for multi GPU training.

We also use apex to speed up the training and the opt level

O1 of mixed precision. We crop the image into the size of

896×896 using a sliding window striding 512 pixels.

https://github.com/Z-Zheng/FarSeg

Figure 5. Patch Size = 16× 16 (left), Patch Size = 64× 64 (right)

4.2. Comparison to state-of-the-art

Table 1 demonstrates the quantitative results of the over-

all mIoU and IoU per category. The results suggest that our

method outperforms its closest contender, PFSegNet [28]

by a significant margin of 2.2 % increasing from 66.9% to

69.1%. Particularly, our method shows significant improve-

ments in categories of ship, baseball court, ground field

track, swimming pool, soccerball field, and harbor. Under

these categories, baseball court - ground field track, soc-

cerball field - ground field track, ship-harbors are pairs that

are visually similar, and often appear together and easy to

be misclassified. We can show numerically that our method

successfully enhances the discrimination between these cat-

egories.

4.3. Ablation Studies

In this section, we perform ablation studies on several

different aspects to analyze our proposed modules and

some important hyperparameters setting in our method.

Effects of local (within-image) contrastive loss We evalu-

ate the effectiveness of local (within-image) contrastive loss

in Table 2, which is composed of Lattr and Llocal
rep . From the

table, we can see that adding Lattr and Llocal
rep separately

resulting in the increase in performance by 1.4% and 1.1%
compared to the baseline with only pixel-wise cross entropy

loss (Lce). After combining the above loss together, the

performance reaches 65.4%, which is 1.7% higher than the

baseline and 0.3% and 0.6% higher than adding two losses

separately.

Effects of global repulsion loss To demonstrate the ef-

fectiveness of our global repulsion loss (Lglobal
rep ), we eval-

uate performance of local (within-image) contrastive loss

with global repulsion loss (Lglobal
rep ). From Table 2, we can

see that the performance with Lglobal
rep surpass that without

Lglobal
rep . In particular, by adding Lglobal

rep to the local (within-

image) contrastive loss, we obtain a significant increase of

2.4% with respect to the mIoU (from 65.4% to 67.8%).

Effects of foreground-background repulsion loss We

evaluate the performance of local (within-image) con-

trastive loss with foreground-background repulsion force
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Figure 6. Visualization results on iSAID validation dataset.

(Lfb
rep) and Table 2 summarizes the experimental results on

iSAID validation set. The mIoU of that adds the Lfb
rep is

2.0% higher than that without it (from 65.4% to 67.4%),

which demonstrates that taking background information

into account can significantly boost the performance.

Effectiveness of patch shuffle data augmentation In Ta-

ble 3, we compare the patch shuffle augmentation method

with state-of-the-art data augmentation methods including

Cutout [10], Manifold Mixup [41], Mixup. [54], and Cut-

Mix [52] based on our approach. Compared to previous

work, our patch shuffle augmentation prominently exceeds

its closest contender CutMix with an increase from 68.5%
to 69.1 %, showing the effectiveness of our approach under

remote sensing images.

Design choice of patch shuffle augmentation In Figure 4

(a), we evaluate the best number of data augmentation. We

observe that the optimal number is 15, which is approxi-

mately the sum of negative foreground prototypes. After

generating more augmented images, the performance en-

counters a drop. The reason is there will be a stronger at-

traction force to guide the movement of prototypes in the la-

tent space that undermines the overall structure. We further

evaluate the best size of patches in patch shuffle augmenta-

tion in Figure 4. (b). Our idea is to have the patch to cover

object itself with local context (Figure 5 Right) but not too

small to cut objects into unrecognizable fragments (Figure

5 Left). We find that the best patch size is 64 × 64. When

patch size is too small (e.g., 14x14, 16x16), the foreground

objects are split into fractions. Thus the model learns lit-

tle about foreground objects but noise (consider the extreme

case when patch size is 1x1), which harms the performance.

On the other hand, if patches are generated on a larger scale,

we do not add enough variance for contrastive learning.

Visualization Figure 6 demonstrates the visualization of

our model compared to several existing state-of-the-art

methods including PFNet [28], FarSeg [58], and a base-

line semantic segmentation Semantic FPN [27] on iSAID

validation dataset. Overall, our method has a better seg-

mentation results handling easily misclassified objects and

complicated context.

5. Conclusion
In this paper, we propose a sparse and complete latent

organization for geospatial semantic segmentation in re-

mote sensing images to tackle the large intra-class variance

issue in both foreground and background categories jointly.

We further design a novel data augmentation method for

geospatial semantic segmentation that further reduces

intra-class variance and enhances the discrimination among

objects. Lastly, we perform extensive evaluations on a

large scale remote sensing dataset to demonstrate the

effectiveness of our model.
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Malik. Learning rich features from rgb-d images for object

detection and segmentation, 2014. 2
[16] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Ji-
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