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Abstract

Recently vision transformer has achieved tremendous
success on image-level visual recognition tasks. To effec-
tively and efficiently model the crucial temporal informa-
tion within a video clip, we propose a Temporally Efficient
Vision Transformer (TeViT) for video instance segmenta-
tion (VIS). Different from previous transformer-based VIS
methods, TeViT is nearly convolution-free, which contains
a transformer backbone and a query-based video instance
segmentation head. In the backbone stage, we propose a
nearly parameter-free messenger shift mechanism for early
temporal context fusion. In the head stages, we propose a
parameter-shared spatiotemporal query interaction mecha-
nism to build the one-to-one correspondence between video
instances and queries. Thus, TeViT fully utilizes both frame-
level and instance-level temporal context information and
obtains strong temporal modeling capacity with negligible
extra computational cost. On three widely adopted VIS
benchmarks, i.e., YouTube-VIS-2019, YouTube-VIS-2021,
and OVIS, TeViT obtains state-of-the-art results and main-
tains high inference speed, e.g., 46.6 AP with 68.9 FPS
on YouTube-VIS-2019. Code is available at https://
github.com/hustvl/TeViT.

1. Introduction

Video Instance Segmentation (VIS) [62] is a representa-
tive and challenging video understanding task that requires
detecting, segmenting and tracking video instances across
frames simultaneously. Similar to other instance-level
video recognition tasks, making full use of temporal con-
text information is critical for building high-performance
VIS systems. Vision transformer (ViT) [13], which is based
on self-attention [51], has shown strong long-range con-
text modeling ability and obtained great successes on im-
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age classification [13, 15,21, 31,47, 50, 55], object detec-

tion [7, 33, 44, 68], semantic segmentation [ 1,43, 59], in-

stance segmentation [12, 17, 66], and video recognition [1,
,14,32,36,65,67].

Recently, how to design ViTs for instance-level video
understanding, especially VIS, becomes an emerging prob-
lem. Different from the detection transformers [7,16,33,44,

], semantic segmentation transformers [ 1 1,43,59], and in-
stance segmentation transformers [12, 17, 66], which focus
on 2D contextual information modeling, VIS transformers
additionally require to perform temporal context modeling.
To this end, VisTR [57] firstly proposes a transformer en-
coder to fuse patch features from a sequence of frames using
a CNN backbone and leverages a query-based decoder to
predict video instances, [FC [22] introduces memory tokens
to store frame-level features and performs cross-frame fea-
ture interaction by computing self-attention among memory
tokens, and then decodes instance-level results using a con-
ditional mask head.

In this paper, we focus on the efficiency of model-
ing temporal information for ViT-based VIS. This is a
very important problem since (1) computing self-attention
among all video patches has extremely high time and space
complexity [57], (2) additional multi-head self attention
(MHSA) layers for temporal modeling have extra param-
eters and are sensitive to pre-training [22], (3) the CNN or
transformer backbones in these methods [22,37,57,64] only
support single frame feature extraction and fail to capture
temporal information in the backbone stage. To remedy the
above issues, we present Temporally Efficient ViT (TeViT)
to fully utilize temporal contextual information for efficient
and effective video instance segmentation.

TeViT contains a transformer backbone and a series of
query-based VIS heads. In the backbone stage, we use
messenger tokens [15] to extract intra-frame information
via self-attention and propose a messenger shift mechanism
for frame-level context modeling, in which messenger to-
kens are divided into several groups to perform temporal
shift with various of time steps. Different from previous
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VIS methods, the messenger shift transformer enables early
temporal feature fusion. In the head stages, we convert
the Querylnst [ | 7] instance segmentation head into our VIS
head by reusing the multi-head self-attention (MHSA) [51]
parameters for instance-level temporal information interac-
tion. The instance-level MHSA fuses the features for a sin-
gle video instance among input frames, thus it realizes the
concept of a video instance as a query.

Experiments are conducted on three large-scale VIS
datasets, i.e., YouTube-VIS-2019 [62], YouTube-VIS-
2021 [61], and OVIS [39]. New state-of-the-art (SoTA) per-
formance has been obtained, e.g., TeViT obtains 46.6 AP
with 68.9 FPS on YouTube-VIS-2019. Our main contribu-
tions are summarized as follows.

e TeViT is the first video instance segmentation trans-
former that can efficiently capture temporal contextual
information at both frame level and instance level.

* Benefiting from the flexibility of self-attention, the
proposed temporal modeling modules, i.e., messenger
token shift and spatiotemporal query interaction, both
are friendly to the image-level pre-trained models, cost
marginal extra computation overhead and parameters.

* TeViT is a nearly convolution-free framework and ob-
tains SOTA VIS results. In TeViT, the concepts of
“early temporal feature fusion” and “a video instance
as a query” shield lights on how to build effective video
transformers for instance-level recognition tasks.

2. Related Work

Video instance segmentation. How to achieve efficiently
temporal modeling is always the focus of video tasks, such
as video object segmentation (VOS) [5, 5, 38], multi-object
tracking and segmentation (MOTS) [52] and VIS [62].
Though VOS and MOTS are very related with VIS, MOTS
mainly focuses on the urban scene understanding and VOS
aims at tracking specific object by a given mask. Rep-
resentative VIS works are reviewed as follows. Mask-
Track R-CNN [62] extends Faster R-CNN [41] and Mask
R-CNN [19] to VIS with a tracking branch and external
memory that saves instance features across multiple frames.
MaskProp [3] builds on the Hybrid Task Cascade Net-
work [9] and propagates instance region features to adjacent
frames to perform temporal modeling. STEm-Seg [2] treats
video clip as 3D spatiotemporal volume and captures tem-
poral information by 3D convolutional backbone network.
CompFeat [ 18] refines temporal features at both frame-level
and instance-level. CrossVIS [63] introduces a crossover
learning scheme upon [45, 46] to make use of contextual
information across video frames. SeqMask R-CNN [26] es-
tablishes temporal relation across frames by adding an extra

sequence propagation head upon Mask R-CNN. Both Vis-
RGNN [23] and VisSTG [53] model temporal information
in VIS by a graph neural network. VisTR [57] proposes the
first fully end-to-end VIS method upon DETR [7], tempo-
ral contexts are fused by the multi-head attention mecha-
nism in transformer encoder layers. IFC [22] presents inter-
frame communication to exchange frame-level information.
In this paper, we present a temporally efficient framework to
model temporal contexts at both frame-level and instance-
level.

Vision Transformer. Transformer [51] is firstly proposed
to model long-range sequence data in natural language pro-
cess (NLP). ViT [13] firstly adopts transformer to image
domain. After that various high-performance vision trans-
formers [15,21,31,47,50, 54, 55] have been proposed as
backbones for image understanding. Beyond serving as
backbone networks, transformer has motivated lots of novel
object detection [7, 16, 33, 44, 68], instance segmentation
[12,17,66], and semantic segmentation [ 1,43, 59] frame-
works. Recently, VisTR [57], IFC [22], QueryTrack [64],
and TCIS [37] bring transformer to video instance segmen-
tation and achieve excellent performance. In this paper,
we investigate how to efficiently model temporal context
across video frames and propose TeViT. TeViT is a nearly
convolution-free transformer while VisTR and IFC both use
ResNet [20] backbone.

Temporal context modeling. Temporal context modeling
is the key issue in video understanding. A lot of works
[8,40,48,49,60] model temporal context by 3D convolu-
tional block. TSM [27] proposes an efficient temporal shift
module by moving the convolutional feature map along
the temporal dimension. Non-local network [56] applies
self-attention to capture long-range spatiotemporal depen-
dencies directly. Recently, TimeSFormer [4], ViViT [l1],
VidTR [67], and MVIiT [14] extends ViT to capture spa-
tiotemporal context for video classification. Video Swin
Transformer [32] extends Swin Transformer [31] to video
by conducting shift window MHSA in both space and
time. TokShift [65] proposes a temporal shift mechanism
on CLASS tokens of ViT. Different from these video trans-
formers focus on video classification, we target at building
temporally efficient transformer for instance-level video un-
derstanding.

3. Method
3.1. Overall Architecture

The overall architecture of our VIS method TeViT is
shown in Fig. 1, which contains a transformer-based back-
bone network and a query-driven head network. Given a
sequence of video frames, the transformer backbone per-
forms feature extraction and generates multi-scale pyramid
features. The query-driven head network takes randomly
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The overall illustration of our TeViT framework. TeViT contains a messenger shift transformer backbone and a series of

spatiotemporal query-driven instance heads. The messenger shift mechanism performs efficient frame-level temporal modeling by sim-
ply shifting messenger tokens along the temporal axis. Spatiotemporal query interaction conducts two successive and parameter-shared
multi-head self attention (MHSA) with feed forward network (FFN) upon video instance queries. The “Dynamic Conv” design follows

Querylnst [17]. Best viewed in color.
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Figure 2. An illustration of the messenger shift mechanism. Mes-
senger tokens are first segmented into several groups (4 in the fig-
ure) and then shifted along the temporal axis with different stride
(S) and direction (D) to exchange frame-level information. For
every two successive messenger shift mechanisms, we apply an in-
verse shift operation. As shown in figure above, the shift direction
(D) of each token group in the second shift mechanism (right) is
exactly inverse to the first (medium). Messenger tokens are shown
by green cubes, while blue cubes denote the patch tokens.

initialized instance queries with backbone feature maps to
predict video instances. Our whole network is end-to-end
for both training and inference.

3.2. Messenger Shift Transformer Backbone

In previous VIS methods, the backbone networks only
perform feature extraction in per-frame fashion [22,57] and
neglect the rich contextual information inherent in video
frames. In contrast, inspired by MSG-Transformer [15],
we propose messenger shift transformer (MsgShifT) which
performs highly efficient temporal context modeling in a
bottom-up manner, as shown in Fig. 1 (Ieft). Without loss of
generality, we build MsgShifT based on the pyramid vision
transformer (PVT) [54,55].

To be specific, given an input video with 7' frames of

resolution H x W, denoted as {xl}T_l € RTX3XHXW e
Hiy

by-frame, where P denotes the size of each patch. Then we
feed the flattened patch tokens to a linear projection and get

embedded patches { fo} with size of T x £ x C, C
denotes the channel dlmensmn. Meanwhile, a group of ran-
domly initialized learnable embeddings with size of M x C
are introduced as messenger tokens, denoted as m?, where
M indicates the number of messenger tokens. Then we sim-
ply copy and concatenate messenger tokens with patch to-

kens:
T
{2, m1}_,
0

where m!? indicates the copycat of messenger tokens m°.

RTX(%+M)XC7 (1)

The concatenated joint tokens {[f?, m?]}?zl are taken as
inputs for our MsgShifT.

Our transformer architecture consists of Ng = 4 stages
and each stage has the same architecture as in Fig. 1 (left).
The multi-head self attention (MHSA) and feed forward

network (FFN) act on the concatenated joint tokens in a

per-frame manner:
T
miil])) }izl )
@)

Next, a messenger shift manipulation performs temporal in-
formation exchange across video frames.
In short, the messenger shift mechanism takes temporal

(Ut mily i, = (PR (uassa (717

messenger tokens { mﬁ}lll as inputs and builds temporal
context modeling by shifting messenger tokens along the
temporal axis. Fig. 2 gives a detailed illustration. First,
messenger tokens are divided into G = 4 groups and shifted
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along the temporal axis with different time steps (S =
or 2) and direction (forward or backward). With various
time steps and directions, messenger tokens are able to
achieve temporal context exchange with both past and fu-
ture frames. Moreover, for every two messenger shift op-
erations, we apply an inverse operation to the second one,
which implies the messenger tokens will be shifted back
to their original corresponding frames after two contiguous
messenger shift manipulations. This design aims to main-
tain a stable temporal receptive field as the network goes
deeper.

After the above process, the messenger tokens and patch
tokens go through one of four stages and the output tokens
are reshaped to feature maps {Fl} which is § smaller
than the original image. In the same Way, using the output
messenger tokens and patch tokens of prior stage as inputs,

we obtain the following pyramid feature maps {F2}Z 1’

{F3} and {F4} ._,» Whose strides are 8, 16 and 32 pix-
els w1th respect to the input image. The pyramid feature
maps {F}, F?, F?, Ff}l.T:1 will be used to predict video
instances in the head network.

MsgShifT performs early temporal fusion in the back-
bone network, while the previous transformer-based VIS
approaches [22, 37, 57, 64] only perform temporal feature
fusion using transformer encoders after image-level feature
extraction. It is almost parameter-free, friendly to image-
level pre-training models, and brings negligible computa-
tion costs. The messenger tokens are randomly initialized
and the shift manipulation has no parameter, so this mod-
ule is insensitive to the pre-training process, which will be
further discussed in the experiments in Tab. 6.

3.3. Spatiotemporal Query Interaction Head

MsgShifT achieves frame-level spatiotemporal context
modeling. Meanwhile, in the VIS head network, our
method still emphasizes temporally efficient spatiotempo-
ral context modeling, but at the instance level. To this end,
we propose a spatiotemporal query interaction (STQI) head
network based on the recent SOTA query-based image-level
instance segmentation method, i.e., Querylnst [17].

As shown in Fig. 1 (right), our head network contains
Ng = 6 STQI heads and takes a fixed-length instance
queries Q € RNe*® along with pyramid features extracted
by MsgShifT {F},Ff,Ff,Ff}iT:l as inputs, and gener-
ates N, x T instance predictions. N, and C' denotes the
numbers and the channel dimensions of instance query re-
spectively. Instance queries () are randomly initialized and
optimized during training. Additionally, our VIS network
also contains a set of proposal boxes B € R™a*% as prior
proposals, for more details about this, we refer readers to
Querylnst [17].

Instance queries are firstly copied by 7' times to each

frame. Two successive and parameter-shared MHSA mod-
ules act on instance queries along spatial and temporal di-

mensions:
; T
) TG

N T

“1:K” denotes ranging from 1 to K. Enhanced instance
queries () are fed into a dynamic convolution module and
perform interactions with instance region features. Its out-
put serves as the input queries of the next head. Finally, task
specific heads (i.e., classification head, box head and mask
head) predict a sequence of video instances:

g, = {peaa} oo

where p(c), b and 7h denotes predicted confidence scores,
bounding boxes and instance foreground masks, respec-
tively.

The advantages of STQI mainly stem from the minimum
modifications on the still-image instance prediction head
in [17]. STQI achieves highly efficient temporal context
modeling at instance-level by a parameter-shared MHSA
(Eq. 3 and Eq. 4) while does not involve extra parameters.

Qiik, = {vmsa

3.4. Matching and Loss Function

The loss function is motivated by [7]. We first compute
the one-to-one assignment between predicted instances and
ground-truth annotations. The ground-truth annotations are
denoted as follows:

{y }11\79t {(Cwb;’ )1;” (6)

in which N, indicates the number of ground-truth video in-
stances, ¢, b and m indicates the category, bounding box and
mask respectively. We then perform sequence-level bipar-
tite matching between predictions and annotations by Hun-
garian algorithm [25]. The cost matrix with size of Ny x N
between each predicted video instance and each annotation
is defined as follows.

Lotung @7 y)™) = Aets - Las (017 (), )7
+ A1 Lo (bFT,bET) 7)
+ )\giou . Acgigu(bzl:T, b]l:T)’

where L., indicates the focal loss [28] for classification,
L1 and Lg;,, indicates the L1 loss and GloU loss [42]
respectively. Acis, An1, Agiow € R are hyper-parameters
which we simply follow [17,44,68]. Besides we use dice
coefficient [34] to optimize mask predictions. For more de-
tails, please refer to [17].
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Method Backbone MST | FPS AP APso AP7s AR, ARy
MaskTrack R-CNN [62] ResNet-50 32.8 30.3 51.1 32.6 31.0 35.5
MaskTrack R-CNN [62] ResNet-101 28.6 31.9 53.7 32.3 32.5 37.7
SipMask [6] ResNet-50 v 34.1 33.7 54.1 35.8 35.4 40.1
SG-Net [30] ResNet-50 — 34.8 56.1 36.8 35.8 40.8
SG-Net [30] ResNet-101 — 36.3 57.1 39.6 35.9 43.0
CrossVIS [63] ResNet-50 v 39.8 36.3 56.8 38.9 35.6 40.7
CrossVIS [63] ResNet-101 v 35.6 36.6 57.3 39.7 36.0 42.0
STEm-Seg [2] ResNet-50 v 3.0 30.6 50.7 33.5 31.6 37.1
STEm-Seg [2] ResNet-101 v — 34.6 55.8 37.9 34.4 41.6
MaskProp [3] ResNet-50 v — 40.0 — 42.9 — —

MaskProp [3] ResNet-101 v - 42.5 — 45.6 — —

MaskProp [3] STSN-X-101 v — 46.6 — 51.2 44.0 52.6
SeqMask R-CNN [26] ResNet-50 v — 40.4 63.0 43.8 41.1 49.7
SeqMask R-CNN [26] ResNet-101 v — 43.8 65.5 47.4 43.0 53.2
VisTR [57] ResNet-50 51.1 36.2 59.8 36.9 37.2 42.4
VisTR [57] ResNet-101 43.5 40.1 64.0 45.0 38.3 44.9
EfficientVIS [58] ResNet-50 v 36.0 37.9 59.7 43.0 40.3 46.6
EfficientVIS [58] ResNet-101 v 32.0 39.8 61.8 44.7 42.1 49.8
IFC [22] ResNet-50 v 107.1 41.2 65.1 44.6 42.3 49.6
IFC [22] ResNet-101 v 89.4 42.6 66.6 46.3 43.5 51.4
TeViT (ours) MsgShifT 68.9 45.9 69.1 50.4 44.0 53.4
TeViT (ours) MsgShifT v 68.9 46.6 71.3 51.6 44.9 54.3

Table 1. Comparisons on YouTube-VIS-2019 dataset [62]. “v"* under “MST” indicates using multi-scale training strategy, The FPS is
measured with a single TESLA V100 GPU. All methods in the figure are organized into four groups. According to their basic architectures,
the first two groups of methods are built upon CNN architecture, while the last two are transformer-based. According to their training
inference paradigms, the first group follows the online and track-by-detect fashion, while the rest all follow offline and sequence-in-

sequence-out paradigm.

3.5. Online and Offline Inference

Our method is flexible for both offline and online in-
ference. Under the offline scenario, our TeViT takes the
whole video clips as inputs and then outputs all possible
video instances with a single run. No post-tracking process
is needed. When it comes to the near online [2] scenario,
an entire video is split into several overlapping segments.
TeViT takes clips in time order and generates predictions.
A rule-based post-tracking procedure is applied to linking
instances across different video clips. For instances from
two overlapping video clips, we first compute the similarity
score between each instance, and then a Hungarian matcher
gives the assignment according to the similarity matrix. The
similarity score is defined as a combination of box IoU and
mask IoU.

4. Experiments

4.1. Datasets and Evaluation Metrics

We evaluate TeViT on three challenging video instance
segmentation benchmarks, i.e., YouTube-VIS-2019 [62],
YouTube-VIS-2021 [61], and OVIS [39]. YouTube-VIS-
2019 is the first dataset that focuses on the VIS problem. It

contains 40 common object categories, 4, 883 unique video
instances and about 131k high-quality instance-level anno-
tations. YouTube-VIS-2021 dataset is the new version of
YouTube-VIS-2019 with 1.5x more video frames and 2 x
more annotations. OVIS dataset aims to explore the VIS
problem under high-occlusion scenarios. It consists of 296k
high-quality instance masks and 5.80 instances per video
from 25 semantic categories. Following previous works,
we report the performance on the validation set for all three
datasets. We follow the standard VIS evaluation metrics de-
fined in [62].

4.2. Implementation Details

TeViT is built upon the mmdetection toolbox [10]. Un-
less otherwise noted, hyper-parameters follow the settings
of Querylnst [17]. We use Ng = 100 video instance
queries as [17,22]. Due to the temporal efficient designs
in TeViT, we do not need to create pseudo video data, e.g.
[2,22], to train the temporal modeling parameters, instead,
we first train a transformer-based QueryInst for image-
level instance segmentation on the COCO dataset [29] and
then initialize TeViT with the COCO pre-trained QuerylInst
weights. Besides, we provide a MindSpore [35] implemen-
tation of TeViT.
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Methods | AP APs; APrs AR: ARy

Methods | AP AP, APrs AR: ARy
MaskTrack R-CNN' [62,63] [ 28.6 48.9 29.6 26.5 33.8
SipMask [6,63] 31.7 525 34.0 30.8 37.8
CrossVIS [63] 342 544 37.9 304 38.2
IFC [22] 35.2 57.2 375 —  —
TeViT 37.9 61.2 42.1 35.1 44.6

SipMask' [6,63] 10.3 254 7.8 7.9 158
MaskTrack R-CNNT [62,63]1[10.9 26.0 81 83 15.2
STEm-Seg* [2,39] 13.8 321 11.9 9.1 20.0
CrossVIS [63] 149 327 121 10.3 19.8
CMaskTrack R-CNN¥ [39] | 15.4 33.9 13.1 9.3 20.0
TeViT 17.4 349 150 11.2 21.8

Table 2. Comparisons with previous VIS methods on YouTube-VIS-

2021 datasets. Methods with superscript “t” are reported in [63].

When training on the VIS datasets, we use the
AdamW [24] optimizer with an initial learning rate of
0.00025, and a weight decay of 0.0001. Especially, the
backbone learning rate is slightly lower with a multiplier
set to 0.1. We also apply gradient clipping with a maxi-
mal gradient norm of 0.1. TeViT is trained with a batch
size of 16 and a clip length of ' = 5. The total train-
ing process contains 12 epochs, and the learning rate is
decreased by 10 at the 8-th and 11-th epoch respectively.
For example, our TeViT can be trained in about 4 hours
with 8 Tesla V100 GPUs on YouTube-VIS-2019, which is
much faster than previous transformer-based method (i.e.,
VisTR [57]). The number of instance queries IV, is set to
100 for all experiments. Following [62], all input frames are
resized to 360 x 640 in single-scale experiments. Settings
of multi-scale training simply follow [6]. For inference, all
frames are resized to 360 x 640 regardless of the training
setups. During inference, we use 7' = 36 for most re-
sults and report the near online results in ablation study. For
main results, we evaluate our framework on YouTube-VIS-
2019, YouTube-VIS-2021, and OVIS datasets, with PVT-
B1 based MsgShifT as backbone.

It’s noted that all reported results in main results and ab-
lation studies are average performance from multiple runs
(i.e., we choose five different random seeds and run each
random seed for three times). The standard deviations (i.e.,
oap in following tables) are calculated in the same way.

4.3. Main Results

Main results on YouTube-VIS-2019 dataset. We compare
our TeViT to state-of-the-art methods on YouTube-VIS-
2019 dataset in Tab. 1. The longest video in YouTube-VIS-
2021 dataset only contains 36 frames, so that our TeViT
executes fully offline inference on this dataset. Without
bells and whistles, our TeViT achieves 45.9 AP when using
a single-scale training strategy and outperforms the previ-
ous state-of-the-art methods by a large margin. Multi-scale
training strategy further boosts the performance to 46.6 AP.
Meanwhile, our method also achieves competitive inference
speed. With about 10 AP higher, our method is still faster
than VisTR.

Main results on YouTube-VIS-2021 dataset. Tab. 2

Table 3. Comparisons on OVIS dataset. Methods with superscript
“1” and “1” are reported in [63] and [39] respectively.

shows the final results of several VIS methods and ours
on YouTube-VIS-2021 dataset. Due to the video length in
YouTube-VIS-2021 is longer than our inference clip length
(T = 36), TeViT performs near online tracking described
in Sec. 3.5 on this dataset. TeViT obtains 37.9 AP, outper-
forming the previous state-of-the-art method by 2.7 AP.
Main results on OVIS dataset. The results on the OVIS
dataset are shown in Tab. 3. Our method also performs near
online inference on OVIS dataset. TeViT achieves a rel-
atively higher performance of 17.4 AP on the val split,
surpassing previous state-of-the-art methods. Compared
to CMaskTrack R-CNN [39] which presents an elaborate-
designed feature calibration plug-in to alleviate occlusion,
our TeViT still gains 2.0 AP improvement, which shows
that our temporal context modeling designs are helpful to
segment occluded instances.

4.4. Ablation Study

Effect of frame-level & instance-level temporal context
modeling. We investigate the effects of messenger shift
mechanism and spatiotemporal query interaction individu-
ally and simultaneously in Tab. 4. Using messenger shift
mechanism and spatiotemporal query interaction individu-
ally brings 0.6 and 2.7 AP improvements respectively. The
results show that both frame-level and instance-level tem-
poral context modeling can obviously improve VIS per-
formance. In addition, the instance-level one brings more
significant performance gain. The two designs together
brings 3.4 (> 0.6 4+ 2.7) AP improvements over a high-
performance baseline. Besides the remarkable performance
improvements, our designs only bring 0.27% computa-
tion overhead on our baseline (82.19 GFLOPs vs. 81.97
GFLOPs), which demonstrates our design is very efficient.
Variants of spatiotemporal query interaction. In Tab. 5,
we investigate the effectiveness of our spatiotemporal query
interaction comparing to its variants. A naive query interac-
tion method in [17] without using temporal interaction, de-
noted as “Spatial Only”, serves as a baseline. “Fused Space-
Time” in the Row 2 denotes fusing video instance queries
together and performing spatial and temporal interaction
within a single MHSA, which is the same as in [57]. As
the results show: (1) Our spatiotemporal query interaction
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MSM STQI‘GFLOPS AP £oap APso AP7s AR; ARyo Interaction AP APs, APss AR; ARy
81.97 42.5 4+ 0.47 67.6 44.0 43.0 52.7 -
Spatial Onl 43.1 67.2 47.8 43.5 524
v 82.19 43.14( 00 £ 0.71 67.2 47.8 43.5 52.4 patial Only [17]

Table 4. Component-wise analysis on TeViT. MSM denotes the
messenger shift mechanism and STQI denotes spatiotemporal query
interaction. Without applying STQI implies only one MHSA is per-
formed for query interaction within each frame (excluding Eq. 4).

Table 5. Variants of spatiotemporal query interaction. “Spatial
Only” denotes the image-level instance segmentation heads in [17],
“Fused Space-Time” denotes applying MHSA to all video instance
queries at a single run, which is the same as in [57].

Manip. AP+ow | APy AP Manip. | AP APs; APy M | AP AP, AP;s AR, ARy
None 4524085 | 689 502 None 452 68.9 50.2 8 | 453 690 489 445 524
Conv 41.8 63.7 45.1
MHSA + FFN | 4454107 | 69.2 493  \HGA 4 FFN | 431 67.2  49.1 16 | 454 703 499 440 517
Shift 45.9+0.58 | 69.1 504 Msg Shift 459 69.1 504 32 | 459 69.1 504 440 531
Table 6. Study of the manipulations upon Table 7. Study of frame-level feature Table 8. Impact of messenger token numbers.

messenger tokens. Our method obtains the
highest AP and a relatively stable perfor-
mance (oap) among all settings.

achieves the best performance among three variants. (2)
Compared to the spatial-only query interaction, joint spa-
tiotemporal query interaction brings only 0.8 AP improve-
ments. However, our method achieves 2.7 AP gains. We
argue this is because the one-to-one corresponding between
instance queries are misaligned in the joint spatiotemporal
attention, while ours is not.

Different messenger token manipulation methods. We
compare our messenger shift mechanism with two other op-
tional manipulations in Tab. 6. None indicates there are no
extra manipulations conducted on messenger tokens, thus
no temporal information is employed. MHSA +FFN stands
for the same operation in [22] which performs extra MHSA
and FFN on messenger tokens, and Shift denotes our mes-
senger shift mechanism. Different from [22], we do not
conduct any extra pre-training process so that both the mes-
senger tokens and MHSA layers with FFN are randomly
initialized and trained from scratch. As results have shown:
(1) Our method achieves the best AP and outperforms None
by 0.7 AP and MHSA + FFN by 1.4 AP. (2) Compared
to conducting MHSA + FFN upon messenger tokens, our
method obtains a more stable performance. MHSA + FFN
shows more fluctuating final results (see oap in Tab. 6)
while ours is much more stable. The results confirm that
the randomized MHSA + FFN is unable to capture tempo-
ral context while our parameter-free shift operation works.

Different manipulations on frame-level feature aggre-
gation. We also compare our messenger shift mechanism
with other optional frame-level feature aggregation manip-
ulations in Tab. 7. None indicates no manipulation is con-
ducted to aggregate frame-level temporal features. Conv.
and MHSA + FFN denotes using newly introduced con-

aggregation. Compared to other frame-
level feature manipulations, our messen-
ger shift (Row 4) obtains the best results.

M indicates the number of messenger tokens.
We increase M from 8 to 32 and observe the
effects on final performance.

volution layers or transformer layers to achieve temporal
feature aggregation. As results have shown, our messenger
shift mechanism achieves the best performance (i.e., 45.9
AP) compared to its all counterparts. Meanwhile, we ob-
serve apparent performance decrease by using newly intro-
duced Conv. or MHSA + FFN as aggregation layers. We
infer such a performance decrease comes from the enor-
mous newly introduced parameters, while our messenger
shift mechanism eliminates this performance decrease by
the nearly parameter-free design.

Number of messenger tokens. In Tab. 8, we test our
method with number of messenger tokens increases from
8 to 32. Compared to less messenger tokens (M = 8, 16),
more messenger tokens (M = 32) achieves better results.
Unless specified, our experiments are conducted with 32
messenger tokens.

Training and inference clip length. We also investigate
the effects of clip length in both the training and testing
phase. From Tab. 9, we find that: (1) Our method shows
great tolerance to short length of training clip. Only trained
with 2 or 3 frames, our method can effectively learn tempo-
ral context and obtains comparable results to previous meth-
ods. (2) The performance improvements by increasing the
length of the training clip gradually gets saturated. Increas-
ing training clip length from 2 to 3 and 3 to 5 brings 3.2 AP
and 1.6 AP gains respectively while increasing training clip
length from 5 to 7 only obtains slight 0.4 AP profit. Besides,
a longer training clip requires more training computations
and memory budgets. To this end, we set the training clip
length of our method to 7" = 5 as a compromise between
performance and training costs.

Tab. 10 gives the results of TeViT under different in-
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T AP APso APrs AR; ARjo
2 41.1 64.8 44.3 41.2 50.2
3 44.3 69.2 49.3 43.7 52.1
5 45.9 68.9 50.2 44.0 53.0
7 46.3 71.9 51.6 44.0 53.4

T S AP APso AP7s ARy ARjo
5 1 42.1 66.8 46.7 41.5 51.3
5 3 41.7 63.2 46.1 41.8 50.8
10 5 44.1 66.4 48.3 42.9 51.9
15 8 44.7 67.0 48.7 43.4 52.5
20 10 46.0 67.5 50.0 43.7 53.1
36 18 45.9 68.9 50.2 44.0 53.0

Table 9. Effect of training clip length on AP. “T” indicates the num-
ber of frames for each video clip during training.

Table 10. Study the impact of clip length and stride during inference
phase. “T” and “S” indicates the clip length and overlapping stride
respectively.

Method MST FPS AP AP50 AP75 AR1 AR10
VisTR [57] 51.1 | 36.2 59.8 36.9 372 424
IFC [22] v 107.141.2 65.1 44.6 42.3 49.6
Ours w/o. Eq. 4 78.1 | 36.8 783 38.8 38.3 46.2
Ours 76.8 | 41.7 67.8 44.8 41.3 49.9
Ours v 76.8 | 42.3 67.6 44.0 43.0 52.7

Train  Inference AP APs, AP7s AR; ARy
learnable  learned 45.9 68.9 50.2 44.0 53.0
learnable zero 455, (—04) 685 499 438 525
learnable random | 45.6 (_¢.3) 68.2 49.7 43.7 52.4

Table 11. Comparisons with ResNet-50 as backbone.

ference settings. “T” indicates the input clip length dur-
ing the inference phase, and “S” indicates strides. It shows
that our TeViT obtains promising performance under vari-
ous inference setups. Even with " = 5 and S = 3, TeViT
still achieves 41.7 AP, which indicates TeViT can serve as
a strong baseline for both offline and online video under-
standing scenarios.

Performance under ResNet backbone. We compare our
method with previous transformer-based methods using
ResNet-50 [20] as backbone network in Tab. 11. As re-
sults show, our method achieves 41.7 AP on YouTube-VIS-
2019 dataset with single-scale training (Row 4), even out-
performing VisTR and IFC with multi-scale training strat-
egy. The performance goes a step further to 42.3 AP when
the multi-scale strategy is applied (Row 5). It’s worth not-
ing that with ResNet-50 as backbone network, the messen-
ger tokens, and messenger shift mechanism are unable to
proceed, so our method achieves such high performance
with only the STQI mechanism. We also investigate the im-
provements by our STQI head. Simply taking off the spatial
MHSA in Eq. 4, the final performance drops from 41.7 AP
to 36.8 AP (Row 3), demonstrating the effectiveness of our
STQI head directly.

Revisiting messenger tokens. Inspired by MSG-
Transformer [15], we re-initialize messenger tokens in in-
ference phase and obvious the influence on performance in
Tab. 12. As the results show, when we re-initialize mes-
senger tokens to zero, the performance merely drops 0.4
AP (compare Row 2 to Row 1). Randomly initialize the
messenger token in inference phase leads to a similar per-
formance decrease (Row 3). We think this phenomenon im-
plies that the messenger tokens contain only a few or not

Table 12. Revisiting messenger tokens in inference phase.

specific information in themselves. On the contrary, they
play the role of summarizing frame-level contexts, and ex-
changing them across adjacent frames.

5. Conclusion

In this paper, we provide lightweight and effective solu-
tions to fully exploit temporal context for VIS. Based on ex-
isting ViTs and query-based image-level instance segmen-
tation methods, we proposes the TeViT VIS method that
contains the messenger shift and spatiotemporal query in-
teraction mechanisms. TeViT performs both frame-level
and instance-level temporal feature interactions while only
bringing a few parameters and marginal extra computational
costs. Experiments on YouTube-VIS-2019, YouTube-VIS-
2021, and OVIS show that TeViT can obtain remark-
ably better results than previous SoTA methods, e.g., IFC,
VisTR, MaskProp, and STEm-Seg. We believe the pro-
posed temporal context modeling mechanisms have great
potential to be extended to other video understanding tasks.
Limitations. Although the extensive experiments have
demonstrated the capacity and efficiency of our TeViT on
temporal context modeling, it still suffers effects from oc-
clusion, motion deformation and long time-span videos
(i.e., results of TeViT in Tab. 2 and Tab. 3 are far from satis-
fying). We leave these promising directions as future work.
Broader impact. Although our research does not make di-
rect negative impacts in society, it may be misused by ille-
gal video applications, which could be a potential invasion
to human privacy.
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