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Abstract

Visual recognition is recently learned via either super-
vised learning on human-annotated image-label data or
language-image contrastive learning with webly-crawled
image-text pairs. While supervised learning may result
in a more discriminative representation, language-image
pretraining shows unprecedented zero-shot recognition ca-
pability, largely due to the different properties of data
sources and learning objectives. In this work, we intro-
duce a new formulation by combining the two data sources
into a common image-text-label space. In this space, we
propose a new learning paradigm, called Unified Con-
trastive Learning (UniCL) with a single learning objective
to seamlessly prompt the synergy of two data types. Ex-
tensive experiments show that our UniCL is an effective
way of learning semantically rich yet discriminative repre-
sentations, universally for image recognition in zero-shot,
linear-probing, fully finetuning and transfer learning sce-
narios. Particularly, it attains gains up to 9.2% and 14.5%
in average on zero-shot recognition benchmarks over the
language-image contrastive learning and supervised learn-
ing methods, respectively. In linear probe setting, it also
boosts the performance over the two methods by 7.3% and
3.4%, respectively. Our study also indicates that UniCL
stand-alone is a good learner on pure image-label data,
rivaling the supervised learning methods across three im-
age classification datasets and two types of vision back-
bones, ResNet and Swin Transformer. Code is available at:
https://github.com/microsoft/UniCL.

1. Introduction

Learning to recognize visual concepts in an image has
been a fundamental and long-standing research problem.
Typically, this can be tackled via either supervised learning
on human-annotated image-label pairs [10] or contrastive
learning on webly-crawed image-text pairs [29,47]. When
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Figure 1. Unified contrastive learning paradigm in the

space, which recovers the supervised learning (e.g.,
Cross-Entropy (CE) [46] or Supervised Contrastive Learning (Sup-
Con) [30]) on image-label data, and language-image contrastive
learning (e.g., CLIP [47] or ALIGN [29]) on data.

fueled with clean and large-scale human-annotated image-
label data, e.g., ImageNet [10], supervised learning can
attain decent visual recognition capacities over the given
categories [23, 34, 53] and also powerful transfer learning
abilities [14, 32]. Nevertheless, collecting precise image-
label data can be a laborious and expensive process, not to
say its difficulty to scale up to numerous visual concepts'.
On the other hand, language-image contrastive learning has
recently emerged as a promising approach by leveraging
huge amounts of webly-crawled image-text pairs. These
pairs are usually noisy, free-form but cover lots of visual
concepts. As demonstrated in CLIP [47] and ALIGN [29],
models learned from hundreds of millions of image-text pairs
can attain impressive low-shot recognition performance for a
wide range of visual understanding scenarios. Though these
image-text models show a broad coverage of visual concepts,
we find in our experiments that they usually lack the strong

I'The largest scale but private JET-300M covers 18,291 concepts.
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discriminative ability required by transfer learning. A natural

question is: can we have one model for both discriminative

representations and broad visual concept coverage?

In this work, we take the first step to answer this question.
We start with a new perspective, illustrated in Fig. 1. Instead
of isolating image-label and image-text data, we define an
image-text-label space and show how we can eliminate the
boundary between two data types. As shown in Fig. | left
part, supervised learning [30] on image-label data typically
aims at mapping images to discrete labels, and completely
ignores the textual concept associated with each label during
the training. In contrast, language-image contrastive learn-
ing [47] aims at learning a pair of visual and textual encoders
to align images and texts as shown in Fig. | right part. This
learning method implicitly assumes that each image-text pair
has a unique label. Comparing these two learning paradigms
side by side, we can see that both of them actually reside in
the common image-text-label space, which is constructed by
mapping each label to a textual concept for supervised learn-
ing, and assigning each textual description a unique label
for language-image pretraining, as shown in Fig. 1 bottom.
Based on this new perspective, we can simply use a visual
encoder and a language encoder to encode the images and
texts, and align the visual and textual features with the guide
of labels (unique labels for image-text pairs and manual la-
bels for image-label data). However, learning from these
combined labels cannot be supported in existing supervised
learning and language-image contrastive learning paradigms.
For this purpose, we propose a unified contrastive learning
method, called UniCL to seamlessly accommodate both data
types for visual-semantic representation learning. It takes
images, texts as input and compute the loss with softened
targets derived from the labels. With UniCL, we combine
image-label and image-text data together to learn discrimina-
tive and semantic-rich representations, which are beneficial
to a variety of downstream tasks. To summarize, our main
contributions are:

* We introduce a new perspective of image-text-label space,
which can seamlessly unify the commonly used image-
label and image-text data.

* We propose a unified contrastive learning method called
UniCL in the image-text-label space, that can learn from
either of the image-label and image-text data, or both.

» Extensive experiments show that our UniCL can leverage
both types of data effectively and achieve superior per-
formance universally on standard zero-shot, linear probe,
fully-finetuning and transfer learning settings.

2. Related works

Supervised Learning. Supervised learning for image clas-
sification has a long history. As mentioned earlier, a canoni-
cal way of supervised learning is mapping images to man-
ual labels. With this goal, numerous works have pushed

the image recognition performance from different direc-
tions, such as data scale from MNIST [36] to ImageNet-
1K [10], model architectures from convolutional neural
networks (CNNs) [23, 26, 34, 35,40, 52, 53] to Transform-
ers [15,43,57,61,64,67,72], and learning objectives from
original Cross-Entropy [46] to marginal losses [11,42,50]
and recent supervised contrastive loss [30]. In this paper, we
develop a unified contrastive learning method that regards
image-label as image-text-label data to learn a generic visual-
semantic space. It calls back the textual concepts behind
the labels and use them as a special format of language. In
this sense, our work is also related to conventional zero-shot
classification [9,28,45,62,65,66]. Most of these works pay
attention to recognize fine-grained categories at a small scale.
Our work goes beyond such restricted setting and is targeted
to learn a good and rich visual-semantic representation from
the combined image-label and image-text pairs.

Language-Image Contrastive Learning. Vision-and-
language is a rapidly growing field. Existing works can
be broadly categorized into two classes. (i) Inspired by
the success of BERT [13], the first line of research fo-
cuses on learning generic multi-modal fusion layers based
on masked token prediction and/or image-text matching,
given the pre-extracted features from visual and textual
encoder [17,31,38,39,44,51,63,73]. They aim to im-
prove downstream tasks such as visual question answer-
ing [2,27], image captioning [ 1,4 1], visual commonsense
reasoning [70]. (i¢) Another line of works focuses on learn-
ing transferable visual representation from natural language
supervisions, including generative [12,48] and contrastive
methods [16,29,47,59,60,74]. Recently, contrastive learning
has been scaled up in representative works such as CLIP [47]
and ALIGN [29], by pretraining on hundreds of millions of
webly-crawled image-text pairs. Our work is close to these
works in that we also use the image-text data as one of the
major data sources. However, image-label data is ignored in
these works. Our work presents the first unified contrastive
learning method that can seamlessly leverage both.

Self-supervised Learning. Self-supervised learning (SSL)
for vision aims to learn general-purpose visual representa-
tions from raw pixels without supervisions from label or
text [19]. Contrastive learning has laid the foundation for
the best performing SSL models [3,6,8,21,24,55,56]. It
maximizes agreement of learned representations between
differently augmented views of the same image, and min-
imizes agreement of views from different images. This
augmented-view-based paradigm has also been extended
to non-contrastive methods [4,7,20,37], where only positive
image view pairs are considered in learning. Though image
SSL has great promises in leveraging nearly infinite amounts
of unlabelled image data in training [ 1 8], the lack of language
association renders it hardly applicable to zero-shot recog-
nition. Nevertheless, the success of contrastive learning in
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SSL has inspired the generalization of this methodology to a
much broader range, such as CLIP [47] in image-text setting
and our UniCL in image-text-label setting, where images
and language descriptions can be considered as multi-modal
views of the same underlying concepts.

3. Method
3.1. Preliminaries

Problem setup. We first define a triplet-wise data format
S = {(zn, tn,yn)}_,, where € X is the image, and
t € T is its corresponding language description (ranging
from simple tokens such as category names to free-form text
sequences), and y € ) is a label indicating the index of
the grouped or unique language description in the dataset.
As we discussed earlier, this triplet data representation is a
general format of widely existing image data, including the
commonly used image-text and image-label data. On one
hand, image-text pairs {(z,, t,)}_; from the web usually
have an one-to-one mapping, thus each image-text pair has
unique label and S reduces to {(xy, tn, yn = 1)} ;. On
the other hand, though an image classification problem often
uses simple category labels or indices, each label is induced
from the similarity of concepts in its task definition [10].
Therefore, for image-label data, S reduces to {(x,,t, =
Clyn], yn) Y2, with C as the set of concept names indexed
by y,. Based on this definition, we can represent an image-
label pair as a labeled image-text pair, while an image-text
pair as ones with unique label. An example of how they are
unified is illustrated in Fig. 2.

The goal of this work is to learn from the joint of image-
text-label data S, believing that the rich semantics in lan-
guage description ¢ and structured organizations of labels
y together are beneficial for learning semantic-rich and dis-
criminative visual representations of images .

3.2. Unified Image-Text-Label Contrast

For each image x, an image encoder model fg param-
eterized by 0 first represents a as a visual feature vector
v € R & = fo(x). For each language description
t € T, we encode it with a text encoder fg () parameterized
by ¢ to get its feature vector & € R¥*1 : ¢ = fo(t). For
i-th image «; and j-th language description ¢; in a batch B3,
we normalize their feature vector to a hyper-sphere using

_ _fo(=i) f¢(t ) c e e )
Ui = fo(zny 2d 'UJ SIADIL and their similarity is cal

culated as s;; = u! v;. We consider a bidirectional learning
objective between images and language:

min  Lpic =Lzt + L2, )]
{6,0}
including two contrastive terms (A temperature hyper-
parameter 7 controls the strength of penalties on hard nega-
tive samples):
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Figure 2. An illustration of covering image-label and image-text
data in the image-text-label space. For image-label data, we asso-
ciate a textual concept to each label, and the images and textual
concepts are matched based on the annotated labels (blue tiles). For
image-text data, each pair have unique label index, thus matched
only at the diagonal entries (green tiles). On the right side, we can
simply combine them as image-text-label triplets, and the red tiles
means positive pairs while the blank tiles are negative pairs.

The image-to-text contrastive loss to align matched images
in a batch with a given text

Lo==Y iy 3 los

Les keP( )

{k|k € B,yr = yi}.

exp(Tulvy)

Yjeexp(Tufv))

2

where k € P(i) =

The text-to-image contrastive loss to align matched texts to
a given image

Lizi = Z

where k € P(j) = {klk € B,yr =y, }.

Using Fig. 2 right side as an example, the £;5; is com-
puted for each row, and L;9; computed for each column.
The red tiles indicate the positive pairs while blank tiles the
negative ones, all allocated based on the labels.

exp(Tu} v;)

Ezeb’ eXp(TuT'UJ)

Z log

keP( )

3)

3.3. Discussions & Properties

We discuss the unique properties of our proposed
UniCL and build the connections with previous commonly
used learning paradigms. An illustrative comparison is
shown in Fig. 3, with more detailed analysis below.
Connections to Cross-Entropy [46] We note the proposed
Lpic in (1) is closely related to the standard cross-entropy
loss used in supervised image classification. Specifically, the
text-to-image contrastive term in (3) recovers cross-entropy
as a special case, when the following conditions are satisfied:
() the text encoder fg is represented as a simple linear
embedding layer W with a bias b. (¢4) The batch size |B| is
sufficiently larger than the number of classes K, so that all
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Figure 3. Tllustrative comparisons across different learning paradigms. For a batch of size ||, all image features U, U’ and text features
V are in dimension P, and K is the number of classes. Given a similarity matrix in each method, the labels play the role of defining the

positive pairs whose elements are in
implicitly define the diagonal elements as positives.

the class embedding vectors are used in contrastive learning,
when stochastic sampling is used for training. (i#i) 7 = 1,
and /5 normalization is excluded, so that & = w and v = v.
In this case, Eq. (3) becomes:

exp(wy; + by)
mm Lcg = log 4
oW JEZB K exp(wyd; + by)

where g is the ground-truth label for the j-th image in the
batch. Based on this, we argue that £p;c is more general
than Lo g, from two aspects: (i) Augmentation with £;o;.
The additional text-to-image term L;o; in Lp;c plays the
role of regularizer. Given a language description ¢;, all
image features with the same ¢; in the batch are clustered
towards the text feature; otherwise they are pushed away.
This can help prevent over-fitting, as demonstrated in our
experiment later; (i7) Text encoder fg. The text encoder
can be specified as in more powerful forms such as 12-layer
Transformers or pretrained BERT encoder, and take free-
form text inputs beyond the set of category names.
Connections to SupCon [30] One shared property between
our UniCL and SupCon is that both methods exploit label-
guided contrastive learning: For any query, both methods
leverage samples with the same label to contribute to the
numerator as positives. Note that SupCon is proposed in the
image-label setting, where each image is augmented with
two different views. UniCL and SupCon differ in two as-
pects: (i) Query-vs-Key modality. In SupCon, both query
and key in contrastive learning are from the same modal-
ity: image-and-image pairs; In UniCL, the query and key
are different modalities: image-and-language pairs. (i7) En-
coders. Only one shared image encoder is used in SupCon
for query and key. Two different encoders are used in UniCL
for different modalities, as shown in Fig. 3.

Connections to CLIP [47] For image-texts pairs, there are
only one-to-one mappings between an image and its paired
text in a batch. In another word, P (i) = {i} and P(j) = {j}
for Eq. (2) and Eq. (3), respectively. Then L ;- becomes:

, negatives are in white; CLIP has the one-to-one assumption for an image-text pair, which

* The image-to-text contrastive loss

exp(Tu;v
Li=—) lo 08 = £0:) 5)
ppere jEB exp(Tu;v;)
* The text-to-image contrastive loss
exp(Tu,;v
Lizi=—) log V1) ©6)

et Zleg exp(Tu;v;)

This means that £ z;c reduces to CLIP training objective,
when only image-text data is employed. The major structural
change of (2) over (5) is that for each language description,
any of the image samples with the same label are considered
as positives in a batch, contributing to the numerator. Similar
conclusion is drawn by comparing (3) and (6).

3.4. Model Training and Adaptation

The training process of UniCL is summarized in Algo-
rithm 1. Note that this pseudo code is related to our data
loader construction: all the image-text pairs have an initial
label index y = 0, while all image-label pairs have an ini-
tial label index y € [1,---, K]. The TargetM function
ensures that each unique language description in the batch
has a unique label index. In training, 7 is a trainable variable
initialized as 1. After training, the learned visual and textual
encoder { fg, f4} can be used jointly for open-vocabulary
image recognition, i.e., recognizing the categories seen dur-
ing training or novel ones beyond the annotated categories.
Alternatively, the visual backbone fg can be used indepen-
dently, either for feature extraction in linear probe or for full
model finetuning in object detection.

4. Experiments

In this section, we examine UniCL to answer two research
questions. Q1 learning objective — how does our UniCL
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Algorithm 1: Training process for UniCL.

# n: Dbatch size; d: projected feature dim
# The main training loop
1 for =, t, y in loader:

2 target = TargetM(y)
# Image encoding: nxd

3 u=12 normalize (fg (x), dim=-1)
# Text encoding: nxd

4 v=12 normalize (fg (t), dim=-1)
# Cosine similarities: nXn

5 logits = exp(T) - u * v.T

# Bidirectional contrastive loss
i2t = SoftCE (logits, target)

t21 =SoftCE (logits.T, target.T)
loss = (i2t + t2i)/2
loss.backward()

e ® 9 &

+=

The Target Modification function
10 def TargetM(y) :

# Note y = 0 for image-text in loader
1 capm = (y == 0).sum()
12 clsm = y[y > 0].max ()
13 yly == 0] = arange (0, capm) + clsm + 1
14 return y.view(-1, 1) == y.view(l, -1)
# The SoftTargetCrossEntropy function
15 def SoftCE(s, t):
16 s = softmax (s, dim=-1)
17 loss = - (t * log(s)).sum(dim=-1)
18 return (loss/t.sum(dim=-1)) .mean ()

perform compared with CE and SupCon on image classifi-
cation? Q2 pre-training data — what is the unique benefit of
applying UniCL on the joint image-text-label data?
Datasets. We study our models based on publicly available
datasets, and the statistics are shown in Table 1. For classifi-
cation data (top four rows), the number of visual concepts
are identical to the number of categories. For image-text data
(bottom three rows), we use Spacy [25] to extract the noun
phrases and then count the number of unique noun entities
that appear more than 5 times. Given the pool of concepts,
we then calculate the number of unique words and report it as
the vocabulary size. The ratio of #images/#concepts clearly
illustrates the different trade-off between image diversity
and semantic-richness over different datasets. In our unified
image-text-label space, all these datasets are homogeneous,
and can be jointly used for learning. GCC-15M denotes the
merged version of GCC-3M and 12M.

Training. We use the same prompt strategy and tokenizer for
classification data as proposed in CLIP [47]. We fill the class
names into the prompt templates, followed by a tokenization
before feeding into the text encoder. During training, we
randomly sample one prompt template while averaging over
all 80 templates for validation. For fair comparison, we use
the same text encoder architecture as in CLIP [47], and the
whole model including vision and text encoder are trained
from scratch. More training details are discussed in the
following individual sections.

Dataset #Images #Concepts Vocab. Size #Img/C.
CIFAR-10 [33] 50k 10 10 Sk
CIFAR-100 [33] 50k 100 105 500
ImageNet-1K [10]  1.3M 1,000 1,233 1300
ImageNet-22k [10] 142M 21,841 14,733 650
GCC-3M [49] 3.3M 17,135 7,953 193
GCC-12M [5] 12M 584,261 98,347 21
YFCC-14M [54] 14M 650,236 214,380 22

Table 1. Statistics of training datasets used in our experiments.
#Img/C. is ratio between the numbers of images and concepts.

Evaluation. We evaluate the quality of learned representa-
tions on a set of computer vision tasks, including:

* Standard classification. We report the Top-1 classifica-
tion accuracy on CIFAR-10 [33], CIFAR-100 [33] and
ImageNet-1K [10].

 Zero-shot classification. We evaluate on ImageNet-1K as
well as 14 datasets used in [47], and employ the same text
prompts. Averaged scores is reported.

* Linear probe. We study 18 datasets used in [47]. Auto-
matic hyper-parameter tuning is considered to ensure fair-
ness of comparison. The averaged scores is reported.

* Object detection. We use Mask R-CNN [22] as the detec-
tor and follow the standard 1x schedule. mAP for box and
mask are reported on 80 object categories.

4.1. Results of UniCL on image classification

To gain empirical understanding of our UniCL objective,
we compare UniCL against two supervised learning meth-
ods, Cross-Entropy (CE) [46] and Supervised Contrastive
Learning (SupCon) [30] on image classification datasets. We
employ two representative architectures, ResNet [23] and
Swin Transformer [43] to build the visual encoder, whose
last layer output are pooled as the visual representation. We
use standard random crop as the data augmentation. All
models are trained for 500 epochs with a batch size of 4096.
We report the comparison results in Table 2, Overall, the pro-
posed UniCL achieves comparable if not better performance
across all datasets and model architectures.

Comparison with SupCon [30]. We can find that our
UniCL is superior on CIFAR-10 and CIFAR-100 and on par
with SupCon on ImageNet-1K. Both UniCL and SupCon
pursue bidirectional alignments, one for image-text pairs
and the other one for images from multi-views. Though the
overall performance is comparable on these standard classi-
fication tasks, our UniCL has two unique advantages over
SupCon: 1) it is end-to-end training while SupCon requires
two training stages, i.e., visual encoder training and a linear
classifier tuning; 2) the learned representations in our model
is language-aware, which means we can directly use it for
zero-shot recognition, as demonstrated later.

Comparsion with CE [46]. UniCL in (1) promotes a bidi-
rectional alignment between images and category names,
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Method CIFAR-10 | CIFAR-100 | ImageNet-1K

ResNet-50 ResNet-101 ‘ResNet—SO ResNet-101 ‘ResNet—SO ResNet-101 Swin-Tiny Swin-Tiny*
CrossEntropy 95.0 96.5 75.3 78.2 79.8 76.8 81.4
SupCon [30] 96.0 96.8 76.5 78.7 80.2 77.0 n/a
UniCL (Ours) 96.8 97.0 78.4 78.1 79.9 79.9 81.7

Table 2. Image classification trained with CE, SupCon [30] and our Unified Contrastive Learning. ResNet-50 [23], ResNet-101 [23] and
Swin Transformer Tiny [43] are used as the visual encoders. T means trained with MixUp [71] and CutMix [69] data augmentation as in [57].
The following numbers are from [30]: ResNet-50 trained on CIFAR-10 and CIFAR-100, ResNet-50 and ResNet-101 on ImageNet-1K. Since
there is no clear way to use CutMix or MixUp in SupCon, we leave it as “n/a” for Swin-Tiny" model.

Liz¢  Lg2; TextEncoder | Top-1 Acc.
v v Transformer 79.9
v v Embedding 78.7

- v Embedding 75.7

Table 3. Performance with different losses and text encoders.

Transformer Encoder ‘
Batch Size 1024 2048 4096 \ 1024 2048 4096
799 | 790 789 787

Simple Embedding

Top-1 Acc.  79.9 80.1

Table 4. Performance of UniCL with respect to different batch
sizes. The number of training epochs is kept the same.

which imposes an additional regularization term than CE
in (4). As such, it can be particularly helpful when over-
fitting tends to occur. For example, when training ResNet-50
on small datasets such as CIFAR-10 and CIFAR-100, UniCL
improves around 1-3 points over CE. When training Swin
Transformer on ImageNet-1K, the network tends to over-fit
due to the lack of spatial inductive bias; Our UniCL outper-
forms CE by 3 points. When over-fitting is less severe, such
as training on larger datasets (from CIFAR to ImageNet) or
with strong augmentation (MixUp [71] and CutMix [69]),
our method is still on par with CE.

Ablation of language encoders f,. Our UniCL has the flex-
ibility in constructing its language encoders. In Table 3, we
ablate by comparing two options: Transformers vs a simple
linear embedding layer W. The former is superior by abso-
lute 1.2%. We suspect this is due to its ability to capture the
semantics behind the 1K category names. For example, two
categories “tree frog”,“tailed frog” share the common word
“frog”, which conveys a language prior knowledge about
their similarity. This semantic information, however, can be
hardly captured by an embedding layer indexed with labels.
One may notice that our model using extra language encoder
introduces more parameters, leading to an unfair comparison.
However, during inference, the language encoder is used to
extract the textual embeddings for all concepts and then dis-
carded. Therefore, the effective complexity and time cost
during inference is nearly identical to the other methods.
Ablation of training objectives. The third row in Table 3
shows a significant 3% drop by remaining the term L;o;
only in our bidirectional loss. It indicates the importance
of both loss terms in our UniCL. Though L;5; resembles

CE under certain conditions described in Section 3.3, we
notice a small gap between them (75.7 v.s. 76.8 in Table 2).
This gap is probably attributed to the stochastic training. At
each iteration, CE always compares the visual feature to the
entire 1K class embeddings, while the UniCL updates with
the subset of concept embeddings in the current mini-batch.
Effect of training batch size. We vary the default batch
size from 4096 to 2048 and 1024. Results are shown in
Table 4. UniCL is robust to the variation of batch size,
regardless of which language encoder is employed. This
observation is different from contrastive methods such as
SimCLR [6] in self-supervised learning. This is probably
because: (i) one of the two views is the embeddings of
category names in our UniCL, which are consistently used
with high overlap across different mini-batches, which make
the learning less vulnerable to the batch size; (i¢) The label
information provides a consistent and strong guidance.

4.2. Results on data unification of image-text-label

In this part, we study the benefits of UniCL when learned
with the unification of image-label and image-text data. We
use Swin-Tiny as the visual encoder for consistency.

4.2.1 Benefit of image-text to image-label

We use ImageNet-1K as the base dataset, and gradually add
different sets of image-text pairs, including GCC-3M, GCC-
15M and YFCC-14M. When combining with image-text
pairs, we use a balanced data sampler to ensure that the
model is trained with the same number of image-label and
image-text pairs per epoch. All models are trained with 500
epochs. We report the results in Table 5.

Comparison of objectives. From the first three rows, we
see that the models trained with different objectives on
ImageNet-1K obtain similar performance across different
metrics. However, our UniCL is the only one that is directly
applicable for zero-shot image recognition, though CE can
be partially used for zero-shot with extra label mapping ef-
forts. Surprisingly, the average zero-shot performance over
14 datasets for UniCL trained only on ImageNet-1K reaches
a similar level to CLIP trained on YFCC-14M (30.2 v.s. 36.3
as will be shown in Table 6).

Benefit of image-text pairs. Adding image-text pairs can
generally improve the performance across all metrics. In the
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Metric

Training Data Method

ImaseNet-1K Zero-shot  Linear probe COCO detection
& 14 datasets 18 datasets box mAP  mask mAP

ImageNet-1K CrossEntropy 76.8 n/a 78.1 42.6 39.5
ImageNet-1K SupCon 77.0 n/a 70.6 42.5 39.3
ImageNet-1K UniCL 79.9 30.2 78.0 42.5 39.4
ImageNet-1K + GCC-3M UniCL 80.2 39.0 78.9 43.0 39.5
ImageNet-1K + GCC-15M UniCL 81.8 45.1 81.5 43.7 40.3
ImageNet-1K + YFCC-14M UniCL 81.1 40.0 80.1 42.5 39.3

Table 5. Performance for various training objectives and adding image-text pairs to ImageNet-1K dataset.
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Figure 4. 2D ¢-SNE visualization of textual concepts encoded by
the learned text encoder. We plot 1000 classes for both ImageNet-
1K and ImageNet-21K. Given the category from ImageNet-1K
( ), we find the closest category from ImageNet-21K
( ). Left: UniCL trained on ImageNet-1K; Right: UniCL
trained on ImageNet-1K+GCC-15M. Better viewed in color.

ImageNet-1K
ImageNet-21K
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table, we can see all image-text datasets help to significantly
improve the zero-shot performance. Besides, adding GCC-
3M further improves linear probe and COCO detection by
0.9 and 0.5, respectively. YFCC-14M helps to improve
ImageNet-1K and linear probe by 1.2 and 2.1, respectively.
As summarized in Table 1, image-text pairs are coarsely
aligned, but cover rich visual concepts. Therefore, they
are particularly beneficial for tasks requiring broad visual
concept understanding, such as zero-shot and linear probe on
dozens of datasets. When GCC-15M is used, we observed
much more improvements as well for ImageNet-1K (+1.9),
Linear Probe (+3.5) and COCO detection (+1.2). Note that
we used balanced data sampler to ensure the model sees
equal number of image-text batches during training. This
suggests that concept richness (GCC-15M is much higher
than GCC-3M) and quality (GCC-15M is much cleaner than
YFCC-14M) are both important to compensate classification
data for learning discriminative representations.

For qualitative analysis, we visualize the 2D {-SNE [58]
of the textual feature space in Fig. 4. Given a query con-
cept from ImageNet-1K, we search the closest target concept
from the remained 21K concepts in ImageNet-22K in the
feature space. For better understanding, we also show the ex-
emplar image corresponding to each concept. Clearly, model
trained on ImageNet-1K can hardly generalize to under-
stand the concepts from the other 21K concepts. In contrast,
adding GCC-15M image-text pairs significantly improve the

its understanding ability, as the retrieved target become more
semantically similar to the queries in ImageNet-1K.

4.2.2 Benefit of image-label to image-text

We switch the role to study how image-label data can assist
the learning with image-text pairs. Follow the protocols in
CLIP [47], we use random crop as the data augmentation,
a standard data sampler, and train all models for 32 epochs.
We compare against two baselines: (i) CLIP, a language-
image contrastive learning method without label supervision,
our UniCL can recover CLIP when merely using image-text
pair for the training. (i¢) Multi-task learning that performs
CE on image-label data, and CLIP on image-text data.

We report the results in Table 6. We first reproduced
CLIP on YFCC-14M with Swin-Tiny. The ImageNet-1K
zero-shot accuracy is 30.1%, which closely matches the re-
ported number 31.2% with ResNet-50 in [47]. To ensure
fair comparisons, we build a ImageNet-21K dataset by ex-
cluding the categories in ImageNet-1K from ImageNet-22K
dataset, and train UniCL. Interestingly, it achieves compa-
rable ImageNet-1K zero-shot performance to YFCC-14M.
This indicates image-label data is arguably another good
source of learning visual-semantic representations, which is
nevertheless less studied in previous works. We combine half
of ImageNet-21K and YFCC-14M datasets so that the total
number of training instances remains the same, and train
a UniCL model. This data unification boosts performance
almost on all metrics, especially on zero-shot classification
for ImageNet-1K (absolute 6% > gain) and 14 datastes (ab-
solute 7% > gain). The detailed comparison on 14 datasets
in Fig. 5, shows that UniCL wins on 11 out of 14 datasets.
Besides zero-shot, our UniCL also achieves significant im-
provement (+7.3%) on linear probe compared with the CLIP
baseline. With the full set of both datasets (row 4), the
performance can be uniformly improved further.

We compare our method with multi-task learner with dif-
ferent datasets. First, when using half of YFCC-14M and
ImageNet-21K, our UniCL outperforms multi-task learner
by a large margin across all tasks. When trained with the
ImageNet-22K, the gaps shrink for ImageNet-1K finetun-
ing and linear probe but remain for zero-shot recognition.
This is mainly because ImageNet-22K cover all ImageNet-
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Metric

\
Method |
|

Training Data Zero-shot ImageNet-1K  Linear Probe
ImageNet-1K 14 datasets Finetuning 18 datasets
YFCC-14M CLIP 30.1 36.3 71.5 72.7
ImageNet-21K UniCL 28.5 37.8 78.8 80.5
YFCC-14M(half) + ImageNet-21K(half) UniCL 36.4 455 79.0 80.0
YFCC-14M(half) + ImageNet-21K(half) =~ Multi-task 33.0 41.5 78.0 74.1
YFCC-14M + ImageNet-21K UniCL 40.5 49.1 80.2 81.6
ImageNet-22K UniCL 66.8 38.9 80.3 82.0
YFCC-14M + ImageNet-22K UniCL 70.5 524 80.5 82.0
YFCC-14M + ImageNet-22K Multi-task 40.9 47.6 80.4 82.0
GCC-15M + ImageNet-22K UniCL 71.3 53.8 80.0 82.1
GCC-15M + ImageNet-22K Multi-task 50.6 51.8 79.9 82.5

Table 6. Ablation studies on the training datasets and tasks. Each model is pre-trained with 32 epochs following CLIP [47].
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Figure 5. Zero-shot classification on 14 datasets. The gain between UniCL on mixed data and CLIP on YFCC-14M data is shown. UniCL
combines the advantages of learning rich concept coverage from image-text pairs and discriminative representations from image-label data:
UniCL outperforms both baselines significantly on the first 3 datasets, and shows higher averaged scores on others.
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Figure 6. 2D ¢-SNE visualization of visual features from visual
encoders. We randomly select images from 20 classes of ImageNet-
1K and visualize the distribution for Left: CLIP trained on YFCC-
14M; Right: UniCL trained on YFCC-14M (half)+ImageNet-
21K (half). Three categories “teddy bear”,siberian husky” and
“tibetan terrier” are highlighted. Better viewed in color.

1K concepts and a large portion of categories in the linear
probe datasets. Admittedly, Multi-task learner is a good
representation learning method. However, because it isolates
image-label and image-text pairs, it cannot learn a discrimi-
native and semantic-rich feature space as our method.
Finally, to qualitatively show that how UniCL trained
with image-label data yields a more discriminative feature
space, we visualize the 2D ¢-SNE for the visual features
of ImageNet-1K dataset in Fig. 6. Dogs with fine-grained
breeds are heavily mixed together for the model trained on
image-text pairs only. However, they are clearly grouped
with the aid of image-label data from ImageNet-21K, even

though it contains none of those dog breed concepts.

5. Conclusion

We have presented UniCL, a new contrastive learning

paradigm for generic visual-semantic representation learn-
ing. It is built upon our new image-text-label space, and
empowered by the proposed unified contrastive learning
method. Such unified paradigm prompts a seamless synergy
between image-label and image-text pairs for discriminative
and semantic-rich representation learning, which brings uni-
versal improvements on zero-shot, linear probe, finetuning
benchmarks. Moreover, we theoretically discuss its connec-
tions to existing learning methods, and empirically demon-
strated that our learning method stand-alone is a good alter-
native learner on pure image-label data.
Limitations. This work mainly focused on vision tasks in-
cluding image recognition, object detection, efc. We leave
the exploration of applying the learned visual-semantic rep-
resentations for vision-language tasks such as image-text
retrieval, visual question answering as future works. Due to
the limited computational resources and training data, we
were unable to scale up our experiments to the same level
as in CLIP and ALIGN during submission. However, we
refer the readers to Florence [68] for the large-scale training
results, but recommend the suite of experiments in this paper
as a baseline for future academic research.
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