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Close domains Distant domains Extremely distant domains

Figure 1. We propose a versatile unsupervised image translation framework with generative prior that supports various translations from
close domains to distant domains with drastic shape and appearance discrepancies. Each group shows (left) the input and (right) our result.

Abstract
Unsupervised image-to-image translation aims to learn

the translation between two visual domains without paired
data. Despite the recent progress in image translation mod-
els, it remains challenging to build mappings between com-
plex domains with drastic visual discrepancies. In this
work, we present a novel framework, Generative Prior-
guided UNsupervised Image-to-image Translation (GP-
UNIT), to improve the overall quality and applicability
of the translation algorithm. Our key insight is to lever-
age the generative prior from pre-trained class-conditional
GANs (e.g., BigGAN) to learn rich content correspondences
across various domains. We propose a novel coarse-to-fine
scheme: we first distill the generative prior to capture a ro-
bust coarse-level content representation that can link ob-
jects at an abstract semantic level, based on which fine-
level content features are adaptively learned for more accu-
rate multi-level content correspondences. Extensive exper-
iments demonstrate the superiority of our versatile frame-
work over state-of-the-art methods in robust, high-quality
and diversified translations, even for challenging and dis-
tant domains. Code is available at https://github.
com/williamyang1991/GP-UNIT.

1. Introduction
Unsupervised image-to-image translation (UNIT) aims

to translate images from one domain to another without

paired data. Mainstream UNIT methods assume a bijec-
tion between domains and exploit cycle-consistency [43]
to build cross-domain mappings. Though good results are
achieved in simple cases like horse-to-zebra translations,
such assumption is often too restrictive for more general
heterogeneous and asymmetric domains in the real world.
The performance of existing methods often degrades dra-
matically in translations with large cross-domain shape and
appearance discrepancies such as translating human faces
to animal faces, limiting their practical applications.

Translating across domains with large discrepancies re-
quires one to establish the translation at a higher semantic
level [40]. For instance, to translate a human face to a cat
face, one can use the more reliable correspondence of facial
components such as the eyes between a human and a cat
rather than on the local textures. In the more extreme case
of distant domains, such as animals and man-made objects,
a translation is still possible if their correspondence can be
determined at a higher abstract semantic level, for example
through affirming the frontal orientation of an object or the
layout of an object within the image.

Establishing translations at different semantic levels de-
mands a UNIT model’s ability to find accurate correspon-
dences of different semantic granularity. This requirement is
clearly too stringent since training a translation model with
such a capability requires complex ground truth correspon-
dences that either do not exist or are infeasible to collect.
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Figure 2. Generative space of BigGAN [3]. Objects of different
classes generated from the same latent code have a high degree of
content correspondences.

In this work, we overcome the aforementioned problems
through a novel use of generative prior and achieve promis-
ing results as shown in Fig. 1. Specifically, we show that a
class-conditional GAN, such as BigGAN [3], provides pow-
erful hints on how different objects are linked – objects of
different classes generated from the same latent code have
a high degree of content correspondences (Fig. 2). Through
generating pairs of such cross-domain images, we can mine
the unique prior of the class-conditional GAN and use them
to guide an image translation model in building effective
and adaptable content mappings across various classes (we
will use “domain” instead of “class” hereafter).

However, such prior is not immediately beneficial to
UNIT. BigGAN, by nature, covers a large number of do-
mains, which makes it an ideal choice of prior for our prob-
lem to achieve translation between multiple domains. How-
ever, the coverage of many domains inevitably limits the
quality and intra-domain diversity of the captured distribu-
tion of each domain. Without a careful treatment, such a
limitation will severely affect the performance of UNIT in
generating high-quality and diverse results.

To overcome the problem above, we decompose a trans-
lation task into coarse-to-fine stages: 1) generative prior dis-
tillation to learn robust cross-domain correspondences at a
high semantic level and 2) adversarial image translation to
build finer adaptable correspondences at multiple semantic
levels. In the first stage, we train a content encoder to extract
disentangled content representation by distilling the prior
from the content-correlated data generated by BigGAN. In
the second stage, we apply the pre-trained content encoder
to the specific translation task, independent of the genera-
tive space of BigGAN, and propose a dynamic skip con-
nection module to learn adaptable correspondences, so as
to yield plausible and diverse translation results.

To our knowledge, this is the first work to employ Big-
GAN generative prior for unsupervised1 image-to-image

1Following the definition in Liu et al. [29], we call our method unsuper-

translation. In particular, we propose a versatile Gen-
erative Prior-guided UNsupervised Image-to-image Trans-
lation framework (GP-UNIT) to expand the application
scenarios of previous UNIT methods that mainly handles
close domains. Our framework shows positive improve-
ments over previous cycle-consistency-guided frameworks
in: 1) capturing coarse-level correspondences across var-
ious heterogeneous and asymmetric domains, beyond the
ability of cycle-consistency guidance; 2) learning fine-level
correspondences applicable to various tasks adaptively; and
3) retaining essential content features in the coarse-to-fine
stages, avoiding artifacts from the source domain com-
monly observed in cycle reconstruction.

In summary, our contributions are threefold:
• We propose a versatile GP-UNIT framework that pro-

motes the overall quality and applicability of UNIT
with BigGAN generative prior.

• We present an effective way of learning robust corre-
spondences across non-trivially distant domains at a
high semantic level via generative prior distillation.

• We design a novel coarse-to-fine scheme to learn
cross-domain correspondences adaptively at different
semantic levels.

2. Related Work
Unsupervised image-to-image translation. To learn the
mapping between two domains without supervision, Cy-
cleGAN [43] proposes a novel cycle consistency con-
straint to build a bi-directional relationship between do-
mains. To better capture domain-invariant features, rep-
resentation disentanglement has been investigated exten-
sively in UNIT, where a content encoder and a style en-
coder [6, 7, 17, 18, 29, 30] are usually employed to extract
domain-invariant content features and domain-specific style
features, respectively. However, learning a disentangled
representation between two domains with drastic differ-
ences is non-trivial. To cope with the large visual discrep-
ancy, COCO-FUNIT [37] designs a content-conditioned
style encoder to prevent the translation of task-irrelevant ap-
pearance information. TGaGa [40] uses landmarks to build
geometry mappings. TraVeLGAN [2] proposes a siamese
network to seek shared semantic features across domains,
and U-GAT-IT [25] leverages an attention module to fo-
cus on important regions distinguishing between two do-
mains. These methods struggle to seek powerful and bal-
anced domain-related representation for specific domains so
are less adaptive to the various translation tasks, inevitably
failing in certain cases. Different from these methods, we
propose a new coarse-to-fine scheme – coarse-level cross-
domain content correspondences at a highly abstract seman-

vised since our method and the pre-trained BigGAN only use the marginal
distributions in individual domains without any explicit cross-domain cor-
respondence supervision.
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Figure 3. Comparison of the generative spaces of BigGAN, StyleGAN and GP-UNIT. GP-UNIT realizes multi-modal translation, generate
cats and human faces beyond ImageNet, and build robust mappings between distant domains. StyleGAN images are from [26, 38]

tic level are first built, based on which fine-level correspon-
dences adaptive to the task are gradually learned. Such a
scheme empowers us to build robust mappings to handle
various tasks.
Adversarial image generation. Generative Adversarial
Network (GAN) [11] introduces a discriminator to compete
with the generator to adversarially approximate the real im-
age distribution. Among various models, StyleGAN [23,24]
has shown promising results. Many works [4, 8, 19, 33, 42]
exploit the generative prior from StyleGAN to ensure supe-
rior image quality by restricting the modulated image to be
within the generative space of StyleGAN. However, Style-
GAN is an unconditional GAN that is limited to a single
domain or close domains [26]. BigGAN [3] is able to syn-
thesize images in different domains but at the expense of
quality and intra-domain diversity. Thus it is not straight-
forward to exploit BigGAN prior following the aforemen-
tioned works. To circumvent this limitation, in this paper,
we distill the generative prior from content-correlated data
generated by BigGAN and apply it to the image translation
task to generate high-quality images.

3. Generative Prior Distillation
3.1. Cross-Domain Correspondences Prior

Our framework is motivated by the following observa-
tion [1, 13] – objects generated by BigGAN, despite orig-
inating from different domains, share high content corre-
spondences when generated from the same latent code. Fig-
ure 2 shows the generative space of BigGAN characterized
by three latent codes (z1, z2, z3) across five domains. For
each latent code, fine-grained correspondences can be ob-
served between semantically related dogs and cats, such as
the face features and body postures. For birds and vehicles,
which are rather different, one can also observe coarse-level
correspondences in terms of orientation and layout.

The interesting phenomenon suggests that there is an

inherent content correspondence at a highly abstract se-
mantic level regardless of the domain discrepancy in the
BigGAN generative space. In particular, objects with the
same latent code share either the same or very similar ab-
stract representations in the first few layers, based on which
domain-specific details are gradually added.

In this paper, we exploit this generative prior for build-
ing robust mappings and choose BigGAN for its rich cross-
domain prior. Nevertheless, its generative space is limited
in quality and diversity for our purpose. In terms of qual-
ity, BigGAN sometimes generates unrealistic objects, such
as the dog body with z2 in Fig. 2. As for diversity, first,
the space lacks intra-domain variation, e.g., the diversity in
textures of a dog or colors of a bird in the same domain are
pretty limited. Using such prior in UNIT will overfit the
model to limited appearances. Second, the BigGAN gen-
erative space is limited to 1,000 domains of ImageNet [36],
which is inadequate for an actual UNIT. For instance, it only
has four kinds of domestic cats as in Fig. 3(b) and excludes
the important domain of human faces.

StyleGAN is not suitable for our task despite its gen-
erative space is of high quality and diversity. This is be-
cause it is limited to a single domain, and thus it is mainly
applied to attribute transfer within one domain via latent
editing [8, 33, 42]. Recently, cross-domain translations on
StyleGAN have been achieved via finetuning [26, 34], but
this still assumes a small distance between the models of the
source and target domains and is therefore still restricted to
close domains. The assumption makes StyleGAN prior less
applicable to more complex translation tasks.

Our framework solves the above problems by distilling
a general generative prior from BigGAN instead of directly
constraining the latent or image space. It enables us to de-
sign and train the translation module independently. There-
fore, we can realize multi-modal translation (Fig. 3(a)), gen-
eralize to classes beyond ImageNet (Fig. 3(b)) and build ro-
bust mappings between distant domains (Fig. 3(c)). Next,
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Figure 4. Overview of the proposed GP-UNIT. In the first stage, we use a content encoder Ec to extract shared coarse-level content features
between a pair correlated images (x, y) generated by BigGAN from a common random latent code in two random domains. In the second
stage, we build our translation network based on the content encoder Ec in the first stage. For simplicity, we omit the classifier C.

we detail how we distill the prior.

3.2. Prior Distillation with Content Encoder

Given the correlated images (x, y) generated by Big-
GAN from a common random latent code in two random
domains X and Y , our main goal is to train a content en-
coder Ec to extract their shared coarse-level content fea-
tures, which can be used to reconstruct their shape and ap-
pearance. Figure 4(a) illustrates this autoencoder pipeline
for generative prior distillation.

Specifically, we use a decoder F to recover the appear-
ance x based on its content feature Ec(x), style feature
Es(x) extracted by a style encoder Es and the domain la-
bel lx. We further exploit the shallow layers Fs of F to
predict the shape of x (i.e., instance segmentation map xs,
which is extracted from x by HTC [5]) based on Ec(x) and
lx. We find such auxiliary prediction eases the training on
hundreds of domains. Besides the shape and appearance
reconstruction, we further regularize the content feature in
three ways for disentanglement: 1) x and y should share the
same content feature; 2) We introduce a classifier C with a
gradient reversal layer R [10] to make the content feature
domain-agnostic; 3) We limit Ec(x) to one channel to elim-
inate domain information [39] and add Gaussian noise of a
fixed variance for robustness. Our objective function is:

min
Ec,Es,F,C

Larec + Lsrec + Ldis + Lreg, (1)

where Larec is the appearance reconstruction loss mea-
suring the L2 and perceptual loss [20] between x̄ =
F (Ec(x), Es(x), lx) and x. The shape reconstruction loss,
Lsrec, is defined as

Lsrec = λsEx[∥Fs(Ec(x), lx)− xs∥1]. (2)

The binary loss Ldis with paired inputs narrows the distance
between the content features of x and y. In addition, we

would like to recover the shape of x with the content feature
of y, which simulates translations:

Ldis = E(x,y)[∥Ec(x)−Ec(y)∥1+λs∥Fs(Ec(y), lx)−xs∥1].

Finally, Lreg guides C to maximize the classification accu-
racy and pushes Ec to confuse C, so that the content feature
is domain-agnostic. An L2 norm is further applied to the
content feature:

Lreg = Ex[−lx logC(R(Ec(x)))] + λrEx[∥Ec(x)∥2].

For unary losses of Larec, Lsrec and Lreg , we also use real
images of ImageNet [36] and CelebA-HQ [21] for training
to make Ec more generalizable.

4. Adversarial Image Translation
Given a fixed content encoder Ec pre-trained in the first

stage, we build our translation network following a standard
style transfer paradigm in the second stage. Thanks to the
pre-trained Ec that provides a good measurement for con-
tent similarity, our framework does not need cycle training.

As shown in Fig. 4(b), our translation network receives
a content input x ∈ X and a style input y ∈ Y . The net-
work extracts their content feature Ec(x) and style feature
Es(y), respectively. Then, a generator G modulates Ec(x)
to match the style of y via AdaIN [16], and finally produces
the translated result ŷ = G(Ec(x), Es(y)). The realism of
ŷ is reinforced through an adversarial training with a dis-
criminator D,

Ladv = Ey[logD(y)] + Ex,y[log(1−D(ŷ))]. (3)

In addition, ŷ is required to fit the style of y, while preserv-
ing the original content feature of x, which can be formu-
lated as a style loss Lsty and a content loss Lcon,

Lsty = Ex,y[∥fD(ŷ)− fD(y)∥1], (4)
Lcon = Ex,y[∥Ec(ŷ)− Ec(x)∥1], (5)
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where fD is the style feature defined as the channel-wise
mean of the middle layer feature of D following the style
definition in [16].

4.1. Dynamic Skip Connection

Domains that are close semantically would usually ex-
hibit fine-level content correspondences that cannot be char-
acterized solely by the abstract content feature. To solve
this problem, we propose a dynamic skip connection mod-
ule, which passes middle layer features fE from Ec to G
and predicts masks m to select the valid elements for estab-
lishing fine-level content correspondences.

Our dynamic skip connection is inspired by the GRU-
like selective transfer unit [28]. Let the superscript l denote
the layer of G. The mask ml at layer l is determined by
the encoder feature f l

E passed to the same layer and a hid-
den state hl−1 at the last layer. Specifically, we first set
the first hidden state h0 = Ec(x) and use the upsampling
convolution to match the dimension of hl−1 with f l

E as
ĥl−1 = σ(W l

h◦ ↑ hl−1), where ↑, ◦ and W l
h are the upsam-

ple operator, convolution operator and convolution weights,
respectively. The activation layer is denoted as σ. Then,
our module at layer l updates the hidden state hl and the
encoder feature f̂ l

E , and fuses f̂ l
E with the generator feature

f l
G with the predicted mask ml:

rl = σ(W l
r ◦ [ĥl−1, f l

E ]), ml = σ(W l
m ◦ [ĥl−1, f l

E ]),

hl = rlĥl−1, f̂ l
E = σ(W l

E ◦ [hl, f l
E ]),

f l = (1−ml)f l
G +mlf̂ l

E ,

where [·, ·] denotes concatenation. ml has the same dimen-
sion of f l

G, serving both channel attention and spatial atten-
tion. Moreover, we apply L1 norm to ml to make it sparse,

Lmsk =
∑

l
Ex[∥ml∥1], (6)

so that only the most useful content cues from the source
domain are selected.
Full objectives. Combining the aforementioned losses, our
full objectives take the following form:

min
G,Es

max
D

Ladv + λ1Lcon + λ2Lsty + λ3Lmsk + λ4Lrec.

A reconstruction loss Lrec is added to measure the L1 and
perceptual loss [20] between y and ȳ = G(Ec(y), Es(y)).
Intuitively, we would like the learned style feature of an im-
age to precisely reconstruct itself with the help from its con-
tent feature, which stabilizes the network training.
Style sampling. To sample latent style features directly for
multi-modal generation without the style images, we fol-
low the post-processing of [32] to train a mapping network
to map the unit Gaussian noise to the latent style distribu-
tion using a maximum likelihood criterion [15]. Please refer
to [15] for the details.

5. Experimental Results

Dataset. In the first stage, we prepare both synthesized
data and real data. For synthesized data, we use the offi-
cial BigGAN [3] to generate correlated images associated
by random latent codes for each of the 291 domains includ-
ing animals and vehicles. After filtering low-quality ones,
we finally obtain 655 images per domain that are linked
across all domains, 600 of which are for training. We de-
note this dataset as synImageNet-291. For real data, we ap-
ply HTC [5] to ImageNet [36] to detect and crop the object
regions. Each domain uses 600 images for training. We
denote this dataset as ImageNet-291. Besides, 29K face im-
ages of CelebA-HQ [21, 31] are also included for training.

In the second stage, we perform evaluation on four trans-
lation tasks. 1) Male ↔ Female on 28K training images of
CelebA-HQ [21, 31]. 2) Dog ↔ Cat on AFHQ [7], with
4K training images per domain. 3) Human Face ↔ Cat on
4K AFHQ images and 29K CelebA-HQ images. 4) Bird ↔
Dog or Car: Four classes of birds, four classes of dogs and
four classes of cars in ImageNet-291 are used. Every four
classes form a domain with 2.4K training images. Here, we
use Bird↔ Car as the extreme case to test to what extent
GP-UNIT can handle for stress testing.
Network training. We set λs = 5, λr = 0.001, λ1 = λ3 =
λ4 = 1 and λ2 = 50. For Cat → Human Face, we use
an additional identity loss [9] with weight 1 to preserve the
identity of the reference face following [35]. Dynamic skip
connections are applied to the 2nd layer (l = 1) and the 3rd
layer (l = 2) of G. Except for Male ↔ Female, we do not
use dynamic skip connections to compute Lrec (by setting
ml to an all-zero tensor), which are discussed in Sec. 5.3.

5.1. Comparison with the State of the Arts

Qualitative comparison. We perform visual comparison to
six state-of-the-art methods in Fig. 5 and Fig. 6. As shown
in Fig. 5, cycle-consistency-guided U-GAT-IT [25], MU-
NIT [17] and StarGAN2 [7] rely on the low-level cues of the
input image for bi-directional reconstruction, which leads
to some undesired artifacts, such as the distorted cat face
region that corresponds to the dog ears, and the ghosting
dog legs in the generated bird images. Meanwhile, TraVeL-
GAN [2] and COCO-FUNIT [37] fail to build proper con-
tent correspondences for Human Face ↔ Cat and Bird ↔
Car. By comparison, our method is comparable to the above
methods on Male ↔ Female task and show consistent supe-
riority on other challenging tasks. In Fig. 6, we compare our
model to TGaGa [40], which also deals with large geomet-
ric deformations on exemplar-guided translation. TGaGa
produces blurry results and fails to match the example ap-
pearance precisely, e.g., all the generated faces look alike,
except for the color changes. GP-UNIT surpasses TGaGa
in both vivid details and style consistency.
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Figure 5. Visual comparison with TraVeLGAN [2], U-GAT-IT [25], MUNIT [17], COCO-FUNIT [37] and StarGAN2 [7]. GP-UNIT
consistently outperforms on all tasks and demonstrates greater superiority as the task becomes more challenging (from top to bottom).

Table 1. Quantitative comparison. We use FID and Diversity with LPIPS to evaluate the quality and diversity of the generated images.

Task Male ↔ Female Dog ↔ Cat Human Face ↔ Cat Bird ↔ Dog Bird ↔ Car Average

Metric FID Diversity FID Diversity FID Diversity FID Diversity FID Diversity FID Diversity

TraVeLGAN 66.60 − 58.91 − 85.28 − 169.98 − 164.28 − 109.01 −
U-GAT-IT 29.47 − 38.31 − 110.57 − 178.23 − 194.05 − 110.12 −

MUNIT 22.64 0.37 80.93 0.47 56.89 0.53 217.68 0.57 121.02 0.60 99.83 0.51
COCO-FUNIT 39.19 0.35 97.08 0.08 236.90 0.33 30.27 0.51 207.92 0.12 122.27 0.28
StarGAN2 14.61 0.45 22.08 0.45 11.35 0.51 20.54 0.52 29.28 0.58 19.57 0.50
GP-UNIT 14.63 0.37 15.29 0.51 13.04 0.49 11.29 0.60 13.93 0.61 13.64 0.52
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(b) Cat →Human Face(a) Dog→ Cat Figure 6. Comparing exemplar-guided translation with TGaGa2.
GP-UNIT surpasses TGaGa in vivid details and style consistency.

Quantitative comparison. We follow [7, 40] to perform
quantitative comparison in terms of quality and diversity.
FID [14] and LPIPS [41] are used to evaluate the image
quality of generated results against the real data and the out-
put diversity, respectively. For methods supporting multi-
modal transfer (MUNIT, COCO-FUNIT, StarGAN2, GP-
UNIT), we generate 10 paired translation results per test

2At the time of this submission, the code and training data of TGaGa
are not released. We directly use the test and result images kindly provided
by the authors of TGaGa. Since the training data of GP-UNIT and TGaGa
does not match, this comparison is for visual reference only.

Table 2. User preference scores in terms of content consistency
and overall preference. Best scores are marked in bold.

Metric Content Consistency Overall Preference

TraVeLGAN 0.012 0.006
U-GAT-IT 0.076 0.050
MUNIT 0.045 0.033
COCO-FUNIT 0.065 0.044
StarGAN2 0.199 0.171
GP-UNIT 0.603 0.696

image from randomly sampled latent codes or exemplar im-
ages to compute their average LPIPS distance. The quanti-
tative results averaged over all test images are reported in
Table 1, which are consistent with Fig. 5, i.e., our method
is comparable or superior to the compared methods, and the
advantage becomes more distinct on difficult tasks, obtain-
ing the best overall FID and diversity. We find GP-UNIT
tends to preserve the background of the input image. This
property does not favor diversity, but might be useful in
some applications. Although StarGAN2 yields realistic hu-
man faces (best FID) on Cat → Human Face, it ignores the
pose correspondences with the input cat faces (lower con-
tent consistency than GP-UNIT), as in Fig. 5.

We further conduct a user study to evaluate the input-
output content consistency and overall translation perfor-
mance. A total of 25 subjects participate in this study to
select what they consider to be the best results from the six
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Figure 7. Ablation study on the generative prior and the dynamic skip connection.
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input ml=0, m2=0 m2=0 full model

Figure 8. Our framework learns multi-level content correspondences that are robust and adaptable to different translation tasks.

methods, and a total of 2,500 selections on 50 groups of re-
sults are tallied. Table 2 summarizes the average preference
scores, where the proposed method receives notable prefer-
ence for both content consistency and overall performance.

5.2. Ablation Study

Generative prior distillation. As shown in Fig. 7(a), if we
train our content encoder from scratch along with all other
subnetworks in the second stage, like most image transla-
tion frameworks, this variant fails to preserve the content
features such as the eye position. By comparison, our pre-
trained content encoder successfully exploits the generative
prior to build effective content mappings. It also suggests
the necessity of the coarse-level content feature, only based
on which valid finer-level features can be learned. Hence,
the generative prior is the key to the success of our coarse-
to-fine scheme of content correspondence learning.
Dynamic skip connection. As shown in Fig. 7(b), without
dynamic skip connections (DSC), the model cannot keep
the relative position of the nose and eyes as in the con-
tent images. We show that the 135th and 301st channels of
the mask m1 predicted by our full model effectively locate
these features for accurate content correspondences.
Multi-level cross-domain correspondences. Figure 8 ana-
lyzes the learned multi-level correspondences. The most ab-
stract Ec(x) only gives layout cues. If we solely use Ec(x)
(by setting both masks m1 and m2 to all-zero tensors), the
resulting tiger and dog faces have no details. Meanwhile,
m1 focuses on mid-level details like the nose and eyes of
cat face in the 305th channels, and eyes of human face in
the 85the channels, which is enough to generate a realis-

content input full modelw/o ℒsrec w/o ℒreg w/o ℒdis

content input style input full modelw/o ℒcon w/o ℒsty

Figure 9. Effects of the loss terms.

tic result with Ec(x). Finally, m2 pays attention to subtle
details like the cat whiskers in the 169th channel for close
domains. Therefore, our full multi-level content features
enable us to simulate the extremely fine-level long whiskers
in the input. As expected, such kind of fine-level correspon-
dences are not found between more distant human and dog
faces, preventing the unwanted appearance influence from
the source domain (e.g., clothes in the generated cat faces
in Fig. 5). Note that such reasonable and adaptable seman-
tic attentions are learned merely via the generation prior,
without any explicit correspondence supervision.
Loss functions. Figure 9 studies the effects of the loss
terms. In Stage I, Lsrec is the key to learn correct content
features, or correspondence is not built. Lreg makes con-
tent features more sparse to improve robustness to unim-
portant domain-specific details. Ldis finds domain-shared
features to prevent the output from affected by objects from
the source domain like the dog tail. In Stage II, Lcon helps
strengthen the pose correspondence while Lsty makes the
output better match the style of the exemplar image.
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randomly sampled resultsinput randomly sampled resultsinput

Figure 10. Applicability to domains beyond BigGAN: (top) Gi-
raffe ↔ Bird, (middle) Summer ↔ Winter, (bottom) Face → Art.

input (red)synthesized views synthesized views

Figure 11. Unseen view synthesis.

5.3. More Results

Generalization to domains beyond BigGAN. Figure 10
shows three applications of species translation, season
transfer and facial stylization. Even if MS-COCO gi-
raffes [27], Yosemite landscapes [17] and Art portraits [22]
are not within the ImageNet 1,000 classes and are not ob-
served by the content encoder in Stage I, our method can
well support these domains and generate realistic results.
Unseen view synthesis. Our exemplar-guided framework
allows unseen view synthesis. Figure 11 shows our synthe-
sized realistic human and cat faces in various pan angles
according to the reference faces from the Head Pose Image
Database [12]. To transfer identity and prevent low-level
content correspondence, we add an identity loss [9] and do
not use DSC for Lrec. We further show the usage of DSC
for Lrec can flexibly control the facial attribute to be trans-
ferred in Fig. 12. Using DSC for Lrec helps preserve the
identity of the content face, which is suitable for gender and
color transfer. Meanwhile, using identity loss without DSC
for Lrec, most attributes of the style face except pose can be
transferred, which is suitable for pose transfer.

5.4. Limitations

Figure 13 gives three typical failure cases of our method.
First, it is hard to learn certain semantic correspondences
solely from the object appearance, such as which side of a
car is its front. We observe that a bird tail is often trans-

content

st
yl

e

(a) gender (b) gender+color+hair (c) pose

train with DSC when computing ℒrec train with identity loss 

Figure 12. Flexible multi-level attribute transfer.

input result input result style resultcontent

Figure 13. Failure cases caused by (left) the lack of semantical
supervision, (middle) imbalanced training data, and (right) scale
mismatch of the content and style objects.

lated into the front of a car since they are both the thinner
part of the objects. Second, our method fails to generate
a bird sharing the same head direction as the dog, due to
the lack of training images of birds looking directly at the
camera. Therefore, special attention should be taken when
applying this method to applications where the possible data
imbalance issue might lead to biased results towards minor-
ity groups in the dataset. Finally, when the objects in the
content and style images have very different scales, some
appearance features cannot be rendered correctly.

6. Conclusion and Discussion
In this paper, we explore the use of GAN generative prior

to build a versatile UNIT framework. We show that the pro-
posed two-stage framework is able to characterize content
correspondences at a high semantic level for challenging
multi-modal translations between distant domains. An ad-
vantage is that such content correspondences can be discov-
ered with only domain supervision (i.e., only knowing the
domain each image belongs to). We further find in Sec. 5.2
that fine-level correspondences are learned merely via a
generation task. This might suggest an intriguing behavior
of deep neural networks to automatically find and integrate
shared appearance features across domains in a coarse-to-
fine manner in order to reconstruct various objects. It poses
a potential of Learning by Generation: building object re-
lationships by generating and transforming them. Another
interesting topic is to learn semantic correspondences be-
yond object appearance, such as the frontal side of an ob-
ject discussed in Sec. 5.4. One possible direction is semi-
supervised learning where a small amount of data could be
labeled to specify the semantic correspondences.
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