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Abstract

Batch normalization is a staple of computer vision models,
including those employed in few-shot learning. Batch nor-
malization layers in convolutional neural networks are com-
posed of a normalization step, followed by a shift and scale
of these normalized features applied via the per-channel
trainable affine parameters γ and β. These affine param-
eters were introduced to maintain the expressive powers
of the model following normalization. While this hypoth-
esis holds true for classification within the same domain,
this work illustrates that these parameters are detrimen-
tal to downstream performance on common few-shot trans-
fer tasks. This effect is studied with multiple methods on
well-known benchmarks such as few-shot classification on
miniImageNet, cross-domain few-shot learning (CD-FSL)
and META-DATASET. Experiments reveal consistent perfor-
mance improvements on CNNs with affine unaccompanied
batch normalization layers; particularly in large domain-
shift few-shot transfer settings. As opposed to common
practices in few-shot transfer learning where the affine pa-
rameters are fixed during the adaptation phase, we show
fine-tuning them can lead to improved performance.

1. Introduction

Over the last decade, the growing availability of data has
allowed deep neural networks to achieve remarkable per-
formance on various visual recognition tasks [10, 12, 13].
However, the size and variability of the dataset can have a
huge impact on the effectiveness of these models. Deep neu-
ral networks trained on datasets from a specific distribution
often fail to generalise their performance to new domains,
creating a compelling need for large-scale datasets [33]. De-
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Figure 1. Aggregated distributions of normalization layers from
a ResNet10 model, pre-trained on miniImageNet, and fed with
samples from EuroSat. Although the input distributions differ,
the model with FN appears to accomodate the role of the affine
parameters, resulting in a more centered input to the normalization
layer (left) with relatively similar output distributions (right).

velopments in few-shot learning (FSL) have enabled deep
neural networks to draw data representations from target
classes with just a few labelled samples [7, 29, 35].

Throughout the literature, batch normalization (BN) [14]
layers are ubiquitous in FSL techniques. They speed up
model convergence and are believed to add regularization
[22]. Adding BN layers to deep learning models stabilizes
the distribution of layer input features by modulating their
mean and variance [14]. This results in a smoother optimiza-
tion landscape and improved performance across a variety of
computer vision problems [28]. Despite these achievements,
there persists a poor understanding of the source of effective-
ness from BN layers. Moreover, recent work has revealed
that these gains may not be the result of alleviating internal
covariate shift, as initially believed [28].

BN layers typically consist of two steps. First, the input
features are normalized by the mean and standard deviation
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over the spatial dimensions of each channel across a mini-
batch. These normalized features are then scaled and shifted
by the trainable coefficient γ and bias β (the affine param-
eters). In this paper, we refer to the initial step as “Feature
Normalization” (FN). The affine parameters acting in the
second step serve to preserve the expressive capabilities of
the neural network following the normalization of features.

In order to bridge distributional gaps between the source
and target datasets, notable efforts have been directed to-
wards the area of domain adaptation. Li et al. [21] state
that the label information is usually stored in the network’s
weight matrix while the statistics of the BN layer represent
domain-related knowledge. This interpretation leads to a
reasonable question – upon facing a novel target distribution,
are the BN’s affine parameters still helpful? Recent work has
touched upon the auxiliary benefits of these affine parame-
ters towards weight layers [8]. However, the negative effect
of this biased adaptation to training labels when facing novel
labels of a distant target domain is yet to be explored.

In this work, we investigate the effect of replacing BN
with FN layers towards the generalizability of convolu-
tional neural networks (CNN) in few-shot transfer learning.
Our experiments on multiple few-shot transfer benchmarks
such as miniImageNet [35], cross-domain few-shot learn-
ing (CDFSL) [11] and META-DATASET [34] confirm that
using batch normalization when learning on the source do-
main harms few-shot generalization on the target domain.
We show Feature Normalization achieves significantly better
results in similar settings. We hypothesize the decrease in
performance in models using BN could be related to BN’s
sparsifying effect in conjunction with the ReLU (See sec-
tion 4.4 for quantitative evaluation). Ablation studies are
conducted to determine the isolated influence of γ and β
towards few-shot transfer tasks.

To learn more generalizable features from the source
domain and to better adapt to the target domain, we develop
a novel methodology for few-shot transfer where we apply
Feature Normalization during representation learning on the
source domain (we refer to this learning phase as “base
training”) and batch normalization when adapting to the
target domain—we refer to this technique as “Fine-Affine”.
With this methodology, we gain from the best of both worlds
and achieve an overall better result.

The rest of this paper is structured as follows. Few-shot
transfer and normalization-based approaches are reviewed in
Section 2. Formal definitions for Feature Normalization and
Fine-Affine are presented in Section 3, Section 4 describes
the benchmarks and experimental setups as well as the eval-
uation results. Finally, we draw conclusions in Section 5.

2. Related work

2.1. Few-Shot learning

In recent years, significant efforts have been directed
towards the development of few-shot learning (FSL) [3,
7, 9, 18, 25, 30, 35]. FSL aims to adapt learners to novel
classes using only a limited number of labelled samples.
Research in FSL has typically been predicated to settings
with limited domain shifts between the source and novel
classes. Meta-learning techniques have garnered signifi-
cant attention in FSL based on their coherent and simplistic
qualities. Current meta-learning methods can be broadly
classified into metric and optimization-based approaches.
Metric-based approaches [15, 26, 29, 31, 35] utilize the dis-
tance between embeddings of the support and query sam-
ples to classify the novel query images, wherein only the
classifier is adapted to the downstream task. Optimization
approaches [7, 25] incorporate the entire network within the
adaptation phase. Furthermore, several works propose a
transfer learning [3, 17, 32, 37] approach following the hy-
pothesis that the base and novel classes share discriminative
features. Other methods instead employ model initialization
techniques to speed up convergence and improve the clas-
sifier, based on the assumption that the initialization which
works well on the source domain will be effective on the
novel target domain [18, 30].

Recently, research in FSL has focused on settings where
there is a significant domain gap between the source and
target data [11, 34]. Despite the popularity of meta-learning,
Guo et al. [11] demonstrated that the standard transfer learn-
ing and fine-tuning approach outperforms current state-of-
the-art meta-learning methods when facing a large distribu-
tion shift. Furthermore, several methods utilize unlabelled
data from the target domain in the evaluation stages in order
to reduce the distributional shift [19, 26, 27, 38]. Progress
in self-training [39] and self-supervised learning [6] meth-
ods have led to promising solutions for CDFSL problems.
STARTUP [24] is a notable state-of-the-art approach in dis-
tant tasks which employs a combination of self-supervised
and self-training components for CDFSL.

2.2. Batch Normalization

The introduction of batch normalization layers [14] have
sped up model convergence and enabled the training of
deeper networks. The initial hypothesis stated that BN allevi-
ates the issue of internal covariate shift following the notion
that the standardization of features reduces dramatic shifts
to the inputs of convolutional layers [14]. Since then, this
explanation has been cast into doubt in [28], where internal
covariate shift was induced in BN layers to find a negligible
effect on BN effectiveness. Another study suggests that the
optimization of weight magnitude and direction is decou-
pled by BN [16]. Empirical experiments demonstrate that
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BN layers smoothen the optimization landscape [28]; while
providing a slight regularization effect [22] and aiding in
deterring the exploding activations problem [1].

Our work investigates the role of BN and its affine param-
eters when facing extreme domain shift, particularly in few-
shot settings. Li et al. [20] use BN layers towards domain
adaptation in their AdaBN method. This method assumes
that data from different domains will be transformed into
representations with similar distributions following standard-
ization. The authors of AdaBN present its benefits through
empirical experiments carried out on CNNs for image classi-
fication tasks. MetaNorm [5] is a BN-based domain adapta-
tion technique that utilizes a meta-learning approach to pre-
dict domain-specific BN statistics for domain-independent
batch normalization. Frankle et al. [8] highlight the expres-
sive powers of the BN affine parameters. They conduct
experiments that show that BN affine parameters play a posi-
tive role in improving model performance. However, their
work does not take into consideration settings where there is
a distributional gap between the training and target data.

In this paper, we explore the role of affine parameters
towards the generalizability of few-shot learners in the pres-
ence of extreme distribution shift between the source and
target data. We perform experiments on state-of-the-art meth-
ods such as STARTUP. Furthermore, we adapt AdaBN to an
FSL environment to study the effect of the affine parameters
on BN-based domain adaptation techniques on cross-domain
few-shot transfer.

3. Methods

3.1. Definitions

Notations here are adopted from the survey paper [36].
Domain D consists of a feature space X and marginal prob-
ability distribution P (X), where X = {x1, ..., xn} ∈ X .

3.2. Feature Normalization

Let S be a batch of labelled examples {(xs
i , y

s
i )}Ni=1 of

size N from a source domain Ds where xs
i ∈ X s and ysi ∈

Ys, and Θ be a deep convolutional neural network consisting
of L layers with weight matrices θl where l represents the
layer index. If h represents the intermediate features of
Θ for layer l, the Feature Normalization layer at layer l is
computed for each channel and can be defined as1:

FN(hc) =
hc − µc√
σ2
c + ϵ

. (1)

Here, subscript c represents the channel index, ϵ is a small
number added to prevent divisions by zero, µc and σc are

1For the sake of simplicity, we implement the Feature Normalize layer
using standard Batch Norm modules with disabled affine parameters.

the first and second moments of hc respectively defined as:

µc =
1

NHW

∑
n,h,w

hnchw (2)

σc =

√
1

NHW

∑
n,h,w

(hnchw − µc)
2
, (3)

where H and W are the spatial dimensions of hc.

3.3. Fine-tuning affines (Fine-Affine)

In much of the few-shot learning literature [3, 24], only
the linear classifier is adapted in the fine-tuning stage, leav-
ing the backbone frozen. Typically this is done to allow for
rapid adaptation, but also because fine-tuning the backbone
does not improve performance as the model becomes over-
parameterized. In another work [23], the affine parameters
are utilized to provide task specific conditioning. The affines
represent a small number of parameters and may allow the
model to adapt without overfitting to the few samples pre-
sented in the few-shot fine-tuning stage. It is thus natural to
consider adapting both the linear layer and the affine param-
eters. In this paper, we refer to the joint fine-tuning of the
linear classifier and the affine parameters as Fine-Affine.

BN FN BN✗ FN✗

5-WAY, 1-SHOT

EuroSAT 65.17±0.46 67.04±0.44 66.32±0.46 68.69±0.45
CropDisease 72.98±0.47 76.97±0.44 74.01±0.46 77.52±0.43
ISIC 29.33±0.29 30.89±0.31 31.08±0.32 31.40±0.31
ChestX 22.37±0.22 22.67±0.23 22.28±0.22 22.71±0.22

5-WAY, 5-SHOT

EuroSAT 84.32±0.31 86.43±0.28 84.07±0.34 86.75±0.29
CropDisease 91.86±0.25 93.59±0.23 91.92±0.25 94.02±0.22
ISIC 42.11±0.32 45.12±0.33 47.50±0.36 46.39±0.33
ChestX 25.38±0.23 26.22±0.24 25.21±0.23 26.39±0.24

5-WAY, 20-SHOT

EuroSAT 91.32±0.20 92.49±0.19 92.43±0.19 93.02±0.19
CropDisease 96.80±0.15 97.65±0.13 97.48±0.15 98.01±0.12
ISIC 54.53±0.33 56.92±0.33 62.00±0.35 60.04±0.33
ChestX 29.55±0.24 30.73±0.24 30.20±0.26 31.77±0.26

5-WAY, 50-SHOT

EuroSAT 93.55±0.17 94.34±0.15 95.18±0.15 95.15±0.14
CropDisease 98.09±0.10 98.62±0.09 98.86±0.07 98.88±0.07
ISIC 60.78±0.31 63.16±0.31 69.05±0.32 68.25±0.32
ChestX 32.33±0.25 33.64±0.25 34.36±0.28 35.85±0.27

Table 1. Fine-tuning the linear classifier versus affines + linear
classifier (methods marked with ✗: stands for Fine-Affine). All
methods make use of a ResNet18 pre-trained on ImageNet and
evaluated over 2000 episodes. BN: BN configuration, linear classi-
fier finetuned; BN✗: BN configuration, linear classifier + affines
fine-tuned; FN: FN configuration, linear classifier fine-tuned; FN✗:
FN configuration, linear classifier + affines fine-tuned.
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EuroSAT CropDisease ISIC ChestX Adapt Time Base-Train Time

5-WAY, 1-SHOT

Baseline BN 61.54±0.89 68.87±0.84 31.96±0.60 22.43±0.40 1.00 1.00
FN 62.61±0.87 70.91±0.85 32.80±0.61 22.20±0.40 1.00 1.00

Baseline ✗
BN 61.49±0.91 68.94±0.85 31.77±0.58 22.54±0.40 1.00 1.00
FN 61.81±0.87 71.11±0.86 32.58±0.60 22.33±0.40 1.00 1.00

AdaBN BN 59.44±0.84 68.07±0.85 33.82±0.62 22.41±0.40 7.25 1.00
FN 63.27±0.86 71.50±0.85 33.67±0.63 22.11±0.39 7.25 1.00

AdaBN ✗
BN 60.40±0.87 68.04±0.85 33.31±0.61 22.32±0.40 7.25 1.00
FN 63.29±0.88 71.32±0.86 33.43±0.63 22.14±0.40 7.25 1.00

STARTUP BN 63.88±0.84 75.93±0.80 32.70±0.60 23.09±0.43 1251 1.00
FN 64.00±0.88 74.56±0.85 35.12±0.64 22.93±0.43 1251 1.00

5-WAY, 5-SHOT

MAML* BN 71.70±0.72 78.05±0.68 40.13±0.58 23.48±0.96 0.70 4.83

ProtoNet* BN 73.29±0.71 79.72±0.67 39.57±0.57 24.05±1.01 0.35 4.18

Baseline BN 79.90±0.69 89.93±0.52 43.47±0.60 26.17±0.43 1.00 1.00
FN 80.51±0.67 91.14±0.49 45.03±0.62 25.90±0.43 1.00 1.00

Baseline ✗
BN 79.81±0.71 90.15±0.51 43.11±0.58 26.39±0.43 1.00 1.00
FN 80.03±0.70 91.11±0.49 45.34±0.60 25.78±0.42 1.00 1.00

AdaBN BN 80.47±0.63 90.11±0.52 47.97±0.64 26.00±0.42 7.25 1.00
FN 82.34±0.62 91.29±0.49 47.92±0.64 25.87±0.43 7.25 1.00

AdaBN ✗
BN 80.39±0.65 89.95±0.51 46.74±0.61 25.93±0.43 7.25 1.00
FN 82.00±0.64 90.99±0.50 47.20±0.62 25.86±0.43 7.25 1.00

STARTUP BN 82.29±0.60 93.02±0.45 47.20±0.61 26.94±0.44 1251 1.00
FN 82.51±0.62 92.86±0.43 48.54±0.63 27.17±0.44 1251 1.00

5-WAY, 20-SHOT

MAML* BN 81.95±0.55 89.75±0.42 52.36±0.57 27.53±0.43 0.70 4.83

ProtoNet* BN 82.27±0.57 88.15±0.51 49.50±0.55 28.21±1.15 0.35 4.18

Baseline BN 87.59±0.45 95.83±0.29 54.67±0.58 32.24±0.46 1.00 1.00
FN 88.31±0.46 96.50±0.27 56.71±0.59 32.11±0.46 1.00 1.00

Baseline ✗
BN 88.31±0.48 96.06±0.28 56.62±0.57 32.58±0.46 1.00 1.00
FN 88.94±0.46 96.62±0.26 58.92±0.57 31.88±0.46 1.00 1.00

AdaBN BN 88.90±0.45 96.03±0.28 59.04±0.60 31.33±0.46 7.25 1.00
FN 89.95±0.42 96.68±0.27 59.65±0.60 31.57±0.45 7.25 1.00

AdaBN ✗
BN 88.87±0.46 95.99±0.28 58.23±0.58 31.58±0.46 7.25 1.00
FN 89.91±0.43 96.55±0.27 59.24±0.59 31.68±0.47 7.25 1.00

STARTUP BN 89.26±0.43 97.51±0.21 58.60±0.58 33.19±0.46 1251 1.00
FN 89.63±0.43 97.43±0.23 59.98±0.59 33.54±0.46 1251 1.00

5-WAY, 50-SHOT

ProtoNet* BN 80.48±0.57 90.81±0.43 51.99±0.52 29.32±1.12 0.35 4.18

Baseline BN 90.43±0.41 97.58±0.21 60.84±0.56 35.71±0.47 1.00 1.00
FN 91.10±0.39 98.03±0.19 63.17±0.56 35.80±0.47 1.00 1.00

Baseline ✗
BN 91.64±0.39 97.85±0.19 64.29±0.57 36.25±0.48 1.00 1.00
FN 92.34±0.36 98.27±0.17 65.90±0.58 34.81±0.49 1.00 1.00

AdaBN BN 91.75±0.37 97.77±0.20 63.69±0.58 34.36±0.47 7.25 1.00
FN 92.73±0.34 98.13±0.19 64.56±0.58 35.09±0.47 7.25 1.00

AdaBN ✗
BN 92.04±0.37 97.73±0.20 64.15±0.56 35.08±0.47 7.25 1.00
FN 92.86±0.34 98.11±0.18 65.28±0.56 35.18±0.48 7.25 1.00

STARTUP BN 91.99±0.36 98.45±0.17 64.20±0.58 36.91±0.50 1251 1.00
FN 92.59±0.33 98.53±0.16 65.90±0.56 37.67±0.47 1251 1.00

Table 2. Few-shot transfer results under extreme distribution shift. All methods make use of a ResNet10 backbone evaluated over 600
episodes. (BN): BN configuration, linear classifier fine-tuned; (FN): FN configuration, linear classifier fine-tuned; methods marked with ✗:
stands for Fine-Affine, linear classifier + affines fine-tuned.; The affines of (FN Fine-Affine) are restored prior to the fine-tuning stage. *
Results from [11].
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BN (γ, β) BN (γ) BN (β) FN (ours)

5-WAY, 1-SHOT

EuroSAT 65.17±0.46 66.67±0.80 66.69±0.80 67.04±0.44
CropDisease 72.98±0.47 75.32±0.88 75.68±0.84 76.97±0.44
ISIC 29.33±0.29 30.11±0.54 29.41±0.55 30.89±0.31
ChestX 22.37±0.22 22.62±0.39 22.47±0.41 22.67±0.23

5-WAY, 5-SHOT

EuroSAT 84.32±0.31 85.56±0.52 86.18±0.52 86.43±0.28
CropDisease 91.86±0.25 92.91±0.47 93.09±0.43 93.59±0.23
ISIC 42.11±0.32 44.48±0.58 43.26±0.59 45.12±0.33
ChestX 25.38±0.23 26.09±0.43 26.01±0.44 26.22±0.24

5-WAY, 20-SHOT

EuroSAT 91.32±0.20 91.73±0.35 92.11±0.34 92.49±0.19
CropDisease 96.80±0.15 97.26±0.26 97.51±0.23 97.65±0.13
ISIC 54.53±0.33 56.41±0.59 56.25±0.60 56.92±0.33
ChestX 29.55±0.24 30.26±0.43 30.15±0.44 30.73±0.24

5-WAY, 50-SHOT

EuroSAT 93.55±0.17 93.59±0.29 94.11±0.27 94.34±0.15
CropDisease 98.09±0.10 98.31±0.19 98.57±0.16 98.62±0.09
ISIC 60.78±0.31 62.46±0.58 63.25±0.57 63.16±0.31
ChestX 32.33±0.25 33.03±0.45 32.60±0.46 33.64±0.25

Table 3. Ablation studies on the affine parameters of the BN layer.
All methods utilize a ResNet18 backbone pre-trained on the Ima-
geNet dataset and evaluated over 2000 episodes. BN (γ, β): Stan-
dard BN configuration; FN: FN configuration; BN (γ): BN with
disabled β; BN (β): BN with disabled γ.

4. Experiments

We study the effect of Feature Normalization (FN) ap-
plied on state-of-the-art few-shot learning frameworks, such
as STARTUP [24], and evaluate FN in few-shot transfer set-
tings. We adapt AdaBN [20], a BN-based domain adaptation
technique, to FSL setup and investigate the effect of replac-
ing BN with FN. Ablation studies are carried out on the BN
affine parameters γ and β to evaluate their isolated influence
towards performance in cross-domain few-shot transfer. The
adaptation time overhead relative to the baseline is calculated
for all methods to emphasize on the computational cost of
more complex methods while achieving similar performance
gains to FN. We compare the sparsity of feature represen-
tations trained with BN and FN across different datasets.
Finally, we investigate the effect of Fine-Affine (i.e. reacti-
vating the affine parameters while fine-tuning on the target
domain).

4.1. Benchmarks

CDFSL The challenging CDFSL benchmark [11] is used
as the basis for our experiments. MiniImageNet [35], which
consists of images based on object recognition tasks, is uti-
lized as the base training dataset (source). Experiments
are conducted on the more extensive ImageNet [4] dataset
as well. The benchmark’s target data is composed of four

datasets, each from very different domains with respect to
the source images of miniImageNet and ImageNet. These
datasets consist of EuroSAT (satellite imagery to determine
land usage), CropDiseases (plant images to identify botani-
cal diseases), ChestX (chest X-rays to detect pathology), and
ISIC2018 (images of skin lesions to detect melanoma).

Following [24], for methods with an unsupervised com-
ponent namely STARTUP and AdaBN, we randomly sample
20% of the unlabelled images from novel classes in the tar-
get dataset to be used in the base training. The remaining
examples are used for inference. Similar to [11], we perform
experiments in FSL classification setting where the support
set is composed of 5 classes with k samples per class (5-way
k-shot), where k ∈ {1, 5, 20, 50}. Evaluation of models
pre-trained on source miniImageNet are carried out over 600
target episodes, and reported with mean accuracy and 95%
confidence intervals. Models that were pre-trained on source
ImageNet are evaluated in a similar fashion, except over
2000 target episodes.

META-DATASET Further empirical experiments are car-
ried out on META-DATASET [34]. Here, ImageNet is
used as the base representation learning dataset. The target
dataset comprises of Omniglot, Aircraft, Birds, VGG Flower,
Quickdraw, Fungi, Textures, TrafficSigns and MSCOCO. In
addition to the domain shifts between the source and tar-
get datasets, there are additional challenges with META-
DATASET in that task generation does not follow the stan-
dard K-way N-Shot tasks. The tasks are generated with a ran-
dom number of ways, support and query shots. Additional
details on the task generation process for META-DATASET
can be found in [34].

4.2. Implementation and Evaluation Details

The few-shot transfer experiments in Table 2 are carried
out on the publicly available CDFSL benchmark [11]. The
Baseline is standard transfer learning, trained for 400 epochs
on miniImageNet with a batch size of 128. STARTUP’s
teacher model is trained for 400 epochs on miniImageNet
and its student model is trained for 1000 epochs on unla-
belled samples from 20% of each target dataset, both using a
batch size of 256. The remaining 80% of target datasets are
utilized for fine-tuning, as described in Sec. 4.1. All methods
in Table 2 make use of the ResNet10 architecture [12]. The
experiments on META-DATASET in Table 4 were carried on
ResNet18 models [12], based on the implementation in [2].
The experiments in this paper were carried out using the
Tesla V100 SXM2 16 GB GPU.

For minImageNet source cases with very-low shot cases
such as 1-shot, we observe a high variance in results across
different seeds. For instance, on 5 different seeds, the
fine-tuned baseline trained in [24] produced the following
mean accuracies for 5-way 1-shot classification on EuroSAT:
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{63.11%; 63.01 %; 61.50%; 62.68 %; 61.91 %}, each with
95% confidence interval of about 0.9 across episodes. We
note as well some reported improvements are often in the
range of 2-3% in the mean [24], thus we can see the variance
due to the training procedure can be higher than typically as-
sumed. In order to take into consideration this high variance
that has been unaccounted for in other studies, we average
the results obtained from experiments carried out over 5
seeds.

BN FN

Omniglot 60.73±1.35 65.86±1.34
Aircraft 51.96±1.03 54.74±1.04

Birds 63.51±1.03 62.93±1.02
Textures 73.86±0.77 74.52±0.75

QuickDraw 58.02±1.06 63.96±0.99
Fungi 34.77±1.03 36.67±1.04

VGG Flower 82.97±0.81 85.44±0.78
Traffic signs 54.80±1.13 58.18±1.09

MSCOCO 40.66±1.13 41.88±1.14

Table 4. Evaluation of FN and BN on META-DATASET. Both
methods make use of a ResNet18 backbone pre-trained on source
ImageNet and finetuned to the target tasks. We observe substantial
gains with the FN based ResNet18.

Overhead calculation It is worth noting that different
methods have varying computational demands and complex-
ity. To make a fair comparison of the computational costs
relative to performance gains, we calculate the base training
and adaptation times as a means of elaborating cost differ-
ences among the evaluated methods. The base train time
for each method relative to that of the Baseline is presented
in Table 2. Having an overhead of 1 shows equivalency
to the base training of the Baseline, while 0.75 indicates
that the method only requires 75% of the Baseline training
time. Using the same approach, the adaptation time ratio
is calculated as the time needed to adapt a single sample
of the target domain Dt, either supervised or unsupervised,
for each episode relative to the amount of time taken by the
Baseline.

Evaluation setting Any inference technique that is depen-
dent on a feature representation and is built with BN in its
backbone can be used agnostically with FN. For fairness
and simplicity, in this work, we follow the same evaluation
setting used for experiments on the CDFSL benchmark [11]
and STARTUP [24]. For META-DATASET, we follow the
evaluation settings used in [2]. Here, the weights of the
feature extractor are frozen after base training on the source
dataset. A linear classifier is then trained on the support set
of the down stream task. Finally, the model is evaluated on
the task query set.

4.3. BatchNorm related methods

Our work focuses on batch normalization and thus we
consider comparison with AdaBN, an approach that is not
commonly used in the few-shot literature, to facilitate more
rigid comparisons. AdaBN is based on adjusting BN statis-
tics to the statistics of the target domain. In the following
paragraph we describe how AdaBN was adapted to an FSL
paradigm.

AdaBN few-shot setup AdaBN, introduced in [20], is a
lightweight BN-based domain adaptation technique that has
been shown to improve performance on transfer learning
methods towards image classification tasks. The method
is an unsupervised technique that utilizes unlabelled data
from the target domain and adapts the BN statistics to bridge
the domain gap between the source and target distributions.
Despite the efficacy of this approach in transfer learning, it
has been neglected in the few-shot literature. In this study,
we evaluate AdaBN in few-shot settings both in near-domain
and when facing a significant domain shift, with both BN
and FN configurations. AdaBN utilizes the standard Base-
line model pre-trained on the source dataset, and adapts for
an additional few epochs of forward passes on unlabelled
samples Dt. Here, the statistics of the model’s normalization
layer are updated based on the target feature distribution
p(x)t while the learnable parameters of the model remain
frozen.

4.4. Few-Shot Learning Results

In this section we first run a study to give insight into how
affine parameters affect the distribution of features under
domain shift. We then present our results in multiple few
shot transfer tasks.

Post-activation distributions We hypothesize that the is-
sue with BN affine parameters under domain shift is related
to the sparsifying properties of ReLU. Due to the thresh-
olding property of ReLU, a potentially small shift in a neu-
ron’s pre-activation output distribution, for example the dis-
tribution becoming more peaked, can result in substantial
shifts in the post-activation distribution. Moreover excessive
thresholding can lead to information loss. To obtain fur-
ther insights, we investigate the average number of non-zero
entries (the sparsity) in the feature representations of the
penultimate layer of imagenet trained ResNet18 and min-
imagenet ResNet10 models under distribution shift. For
each model we compute its sparsity on the source data (Ima-
geNet or miniImageNet) and subsequently compare this to
the sparsity of other datasets from the CDFSL benchmark.
Furthermore, as seen from Table 6, distribution shift (going
from imagenet to CDFSL data) tends to induce substantially
sparser representations relative to in-distribution data. We
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hypothesize this excessive sparsity leads to degraded per-
formance and less general features. On the other hand, the
centered distributions produced by the FN trained models
do not have as high a sparsity both for source data and for
target datasets, motivating their potential for alleviating this
issue with affine parameters and distribution shifts.

1-shot 5-shot 20-shot

Baseline (BN) 54.56±0.84 76.18±0.69 84.53±0.52
Baseline (FN) 55.16±0.83 76.03±0.67 84.23±0.53
AdaBN (BN) 54.21±0.85 76.10±0.68 84.43±0.53
AdaBN (FN) 55.10±0.84 76.06±0.67 84.16±0.54

Table 5. Near-domain few-shot evaluation on Baseline and AdaBN.
Models are pre-trained on miniImageNet and evaluated on novel
classes of ImageNet over 600 episodes.

ImageNet Eurosat ISIC ChestXRay CropDisease

ResNet18 (BN) 53.5 37.2 47.3 58.4 54.2
ResNet18 (FN) 60.9 53.7 58.9 64.5 62.1
ResNet10 (BN) 30.0 16.9 16.2 20.7 30.4
ResNet10 (FN) 50.7 26.3 27.6 37.3 47.7

Table 6. The percentage of non-zero entries in the feature maps
is computed after the final ReLU activation in each pre-trained
model. Small changes in the continuous distribution lead to large
changes in the discrete distribution. From in-domain to cross-
domain transfer, we find that sparsity increases as we move cross-
domain. ResNet10 and ResNet18 are pre-trained on miniImageNet
and ImageNet respectively.

Feature distribution analysis We evaluate the cross-
domain feature distribution before and after the BN (light
green) and FN (dark green) layers, as presented in Figure 1.
In both cases, models are pre-trained on miniImagenet while
the recorded distributions are samples from EuroSat. For the
sake of simplicity, per-sample channel wise spatial means
are aggregated to one distribution per layer in order to negate
the visual biases of the channel distributions. The left and
right column represent the normalization layer’s input and
output distributions respectively.

Cross-domain few-shot transfer Table 2 reports the re-
sults of our experiments on the CDFSL benchmark. Across
all datasets and 1, 5, 20, and 50 shot settings (consistent with
the CDFSL benchmark), the average performance of the
models configured with FN exceed that of the BN models.
Notably, there is an average improvement of 2.04% for 1
shot classification on the CropDisease dataset when the the
Baseline is equipped with FN across 5 seeds. Simply config-
uring the Baseline model with FN obtains results that rival
(within error bars) the more complex and computationally

expensive STARTUP, which employs a large amount of unla-
belled data to bridge the domain gap. Relative performance
gains can be observed across all three methods (Baseline,
AdaBN and STARTUP) when equipped with FN. The best
overall results were produced by STARTUP with FN. The re-
sults of the experiments on the META-DATASET, presented
in Table 4, show that FN brings significant improvements on
this benchmark was well. The superior results produced by
FN models indicate that the BN affine parameters, γ and β,
have a generally negative impact on downstream few-shot
transfer tasks when facing a significant domain shift.

Near-domain few-shot transfer Further analysis was car-
ried out on few-shot transfer tasks to determine FN’s effec-
tiveness on target data that are not as distant from the source
training data as datasets from the CDFSL benchmark. In this
experiment, we used miniImageNet as the source dataset and
novel unseen classes from ImageNet as the target data. Even
though these source and target images are essentially from
the same dataset, the unseen classes of the target presents a
task with some domain shift from the source. Upon inspect-
ing the results presented in Table 5, it can be observed that
FN does not improve on the performance of BN. Moreover,
BN produced better results than FN on in-domain valida-
tion data while training on ImageNet, as seen from Figure 2.
These results support the hypothesis that FN is more bene-
ficial for Few-Shot transfer tasks when facing a significant
domain shift.

Fine-Affine (Fine-tuning the γ and β) The results of
the affine fine-tuning experiment are presented in Table 1.
Baseline models equipped with both BN and FN were eval-
uated with the Fine-Affine configuration. After the affine
parameters of FN Fine-Affine were disabled during the base
training phase, they are restored and initialized to 1 and
0 for γ and β. The ImageNet dataset was chosen as the
source domain on which both the BN and FN models are
pre-trained on. It can be observed from the results that there
are strong performance gains as a result of the Fine-Affine
setup on both BN and FN models, but that FN models still
outperform BN models. Improvements are noted for 1, 5,
20 and 50 shot classification across all four datasets, with
noteworthy gains of 7.57% on 20-shot classification of ISIC
and 2.21% on 50-shot classification of ChestX by the BN
Fine-Affine and FN Fine-Affine models respectively. These
results suggest that affine parameters are useful towards task
specific adaption in few-shot transfer settings, without caus-
ing the models to overfit to the small number of samples
presented in few-shot environments. The Fine-Affine adap-
tation was not as effective when using miniImageNet as the
source dataset, as observed from Table 2. However, on both
ImageNet and miniImageNet base datasets, FN provides a
marked improvement over BN on the Fine-Affine method.
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Computational overhead The computation overhead for
each evaluated method is presented in Table 1. From a practi-
cal perspective, even though STARTUP produced the overall
best results, its adaptation time ratio is 1251 times than that
of the Baseline approach. This is due to an expensive un-
supervised learning step. This makes such computationally
complex methods inapplicable in tight situations. On the
other hand, despite the slow paced base training for MAML
and ProtoNet (time ratios to Baseline are 4.83 and 4.18 re-
spectively), they are relatively faster in adaptation time with
a lower ratio for MAML (0.70) and a considerably small por-
tion relative to the Baseline time for ProtoNet (0.35). AdaBN
is a computationally expensive method with overhead adapt
time larger than that of MAML, ProtoNet and the Baseline.
In practice, the adaptation time is not of the same scale as
that of base training; the adaptation happens on small num-
ber of annotated samples from the target domain. It can thus
be considered as a negligible overhead compared to base
training which benefits from a large supervised sample set.
Finally, the proposed FN modification, results in improving
all methods, without imposing extra overhead cost. It is
noteworthy that FN even slightly decreases the base-train
time overhead due to its reduced number of parameters.

AdaBN AdaBN is a domain adaptation technique based
on batch noramalization that has been adapted to a few-
shot learning in this paper. The evaluation of AdaBN on
cross-domain few-shot transfer can be viewed in Table 2.
The results indicate that AdaBN, with both BN and FN
configurations, produce considerable improvements on ISIC
few-shot benchmark, with a notable 4.86% gain over the
baseline on 5-shot classification. However, on the rest of
the target datasets, AdaBN produced more marginal gains
relative to the Baseline. In terms of AdaBN with the BN
and FN configuration, FN consistently outperforms BN on
most of the experiments. Further analysis was carried out
on near-dormain target data with unseen novel classes from
ImageNet. The results, presented in Table 5, show that
AdaBN does not produce any benefits over the standard
Baseline. Furthermore, AdaBN with FN does not improve
over the BN version in near-domain experiment. This shows
that replacing BN with FN can produce substantial gains for
BN-based domain adaptation techniques when facing a large
domain shift, but is not effective towards small domain shift
tasks.

4.5. Ablation studies

As described in Section 1, the batch normalization layer
consists of two learnable affine parameters whereas the Fea-
ture Normalization layer performs normalization in the ab-
sence of these affines. In this section, we carry out ablation
experiments on these parameters to determine their isolated
influence on few-shot transfer performance. The results of

Figure 2. Top 1 validation accuracy while training on the Ima-
geNet dataset over 90 epochs. ResNet18 (BN): BN configuration;
ResNet18 (FN): FN configuration; ResNet18 (γ): BN with dis-
abled β; ResNet18 (β): BN with disabled γ. Even though source
performance is lower, the few shot transfer performance is higher
as seen in Table 3

the ablation experiments on the CDFSL benchmark are pre-
sented in Table 3. It can be observed that both BN(γ) and
BN(β) produce more accurate classification than BN across
1, 5, 20 and 50 shots on all four datasets. The margin of
improvement is higher on BN(β) relative to BN(γ). Fea-
ture Normalization, where both γ and β are removed, is the
best performing configuration for distant domain few-shot
transfer.

5. Conclusion

Feature Normalization layers improve few-shot general-
ization performance on shifted domains, leveraging a smaller
number of model parameters. By stabilizing the output dis-
tribution of convolutional layers, Feature Normalization im-
proves robustness against distribution shifts. It captures and
normalizes the statistical distribution of data features while
preventing the affines from overfitting to the training source
labels. Feature Normalization is consistent with widely used
batch normalization implementations and can be easily inte-
grated into existing CNN architectures. It is observed that
the proposed normalization technique only helps in few-shot
transfer and the effect is more pronounced as the data distri-
bution shift increases.
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