
Deformable Sprites for Unsupervised Video Decomposition

Vickie Ye1 Zhengqi Li2 Richard Tucker2 Angjoo Kanazawa1 Noah Snavely2

1University of California, Berkeley 2Google

Input: 
Video with Flow Propagated Edits

Output: Deformable Sprites
Per-frame Masks & Transforms Global Sprites

Layer 2

Layer 1

Edits

Layer 1 Layer 2

Figure 1. Video Decomposition with Deformable Sprites. Given an RGB video and its optical flow (left), we present a method that
decomposes the video into layers of persistent motion groups. We represent each group as a Deformable Sprite (center), which consists of an
RGB sprite image, and masks and non-rigid transforms mapping the sprite to each frame. We fit Deformable Sprites to each input video
independently without any pre-training or user input. The resulting decomposition captures long-term correspondences of sprites over time,
enabling effects such as propagating edits on the sprite across the entire video (right). We show full videos of our results at the project site.

Abstract

We describe a method to extract persistent elements of
a dynamic scene from an input video. We represent each
scene element as a Deformable Sprite consisting of three
components: 1) a 2D texture image for the entire video, 2)
per-frame masks for the element, and 3) non-rigid deforma-
tions that map the texture image into each video frame. The
resulting decomposition allows for applications such as con-
sistent video editing. Deformable Sprites are a type of video
auto-encoder model that is optimized on individual videos,
and does not require training on a large dataset, nor does
it rely on pre-trained models. Moreover, our method does
not require object masks or other user input, and discovers
moving objects of a wider variety than previous work. We
evaluate our approach on standard video datasets and show
qualitative results on a diverse array of Internet videos.

1. Introduction

When we observe a video of a dynamic scene, such as
the bear video in Fig. 1, we do not see a disjoint set of pixels
over time, but rather a bear walking in a zoo. However,
computer vision methods often represent videos as 3D raster

pixel grids. While this low-level representation is convenient
for processing on hardware, it does not capture our intuitive
notion of high-level objects moving through a 3D scene.

Moving layers are an alternative representation proposed
in the seminal work of Wang & Adelson, in which scene
elements are modeled as persistent image layers that trans-
form over time to compose each video frame [34]. Such
layered representations capture the idea that there are persis-
tent motion groups that move smoothly in the scene, while
still accounting for sharp edges that result from occlusions.
However, these classic methods were limited by machinery
of the time to relatively simple motions and scenes.

Inspired by these classic ideas [10, 26, 34], we present a
new approach that decomposes videos of complex dynamic
scenes into sets of persistent motion groups. We do so by
introducing Deformable Sprites (Fig. 1, center), representa-
tion of motion groups across an entire video. A Deformable
Sprite for a motion group consists of three key components:
1) a canonical texture image, or sprite, describing the group’s
appearance over all input frames, 2) masks locating the group
in each input frame, and 3) a non-rigid geometric transfor-
mation that maps each sprite into each frame. The resulting
decomposition captures the correspondences of each motion
group across the entire video, such that modifications of the

2657

https://people.eecs.berkeley.edu/~vye/deformable-sprites


sprite can be propagated consistently throughout the video
(Fig. 1, right).

We achieve this decomposition by fitting the Deformable
Sprites representation to a video without any user input or
even an a priori notion of what kind of objects will be present.
Instead, the decomposition is derived solely from image and
motion cues present in the video. Our approach optimizes
the Deformable Sprites for each video independently, and
does not require training on a dataset. This freedom from the
need for training data allows our method to handle videos of
novel objects and categories that are not labeled in standard
segmentation benchmarks.

Our approach can handle videos with moving camera and
articulated or deformable objects. To capture such non-rigid
motion, we model the transformation as composition of a
homography with 2D spatial splines that evolve smoothly
over time. This explicit parameterization has the benefit of
modeling non-rigid deformation with relatively few parame-
ters while being continuous. The sprites and the masks are
optimized through a convolutional neural network.

Our method has several advantages over recent ap-
proaches for video decomposition, which do not recover
persistent layer appearances [21,38], or require user inputs in
the form of segmentation masks [20]. Although our method
outputs a rich video decomposition, and not simply object
masks, we evaluate it on standard video object segmenta-
tion benchmarks where we obtain competitive results. On
DAVIS [25], we obtain decomposition results that are sim-
ilar to recent approaches that require user mask initializa-
tion [11], while being faster to optimize (30 minutes vs. 10
hours) due to the low dimensionality of our deformation
model. We further demonstrate our approach on a variety
of Internet clips, where off-the-shelf segmentation methods
do not generalize to discover meaningful groupings. To our
knowledge, we present the first work that demonstrates video
decomposition with a global texture model on in-the-wild
videos without any user supervision.

2. Related work
Layer-based video decomposition. Our work is inspired
by the rich history of work that factorizes appearance and mo-
tion in videos by representing video frames as compositions
of moving layers or sprites. Wang & Adelson introduced
this concept to computer vision in the 1990’s [34], building
on earlier work on estimation of multiple motions in image
sequences [2, 5]. Wang & Adelson solve for a set of ordered
RGBα layers with associated affine transformations using
optical flow as a motion cue, and a number of other layer-
based decomposition methods followed [3,10,15,35]. These
methods generally factor image sequences into appearance
and motion according to different motion models (e.g. rigid,
affine). Closely related is unwrap mosaics [26], which model
objects in a video with a single global texture plus per-image

warp fields and occlusion masks.
More recently, layered video decomposition methods ex-

tend these formulations to handle more complex, realistic
videos. For instance, Lao et al. [16] extends the layered
model to explicitly handle 3D motion. More modern meth-
ods utilize neural networks in various ways, such as aug-
menting object masks [21] or computing texture atlases and
uv-coordinates for multiple layers using coordinate-based
neural networks [11]. One shared aspect of these works
is that they require reasonable input masks of an object of
interest, usually provided by the user or by segmentation net-
works trained on pre-defined object categories. In contrast,
we explore this problem in a fully unsupervised setting.

Our work is also closely related to MarioNette [31], which
decomposes a video into set of static sprites, and like us op-
erates in an unsupervised manner. However, their learned
sprites are static, not deformable, and so they mainly demon-
strate their work on video game imagery, where even ani-
mated sprites are just repetitions of a few discrete frames.
They must learn multiple representations of a single object
to account for such motion. In contrast, we can learn a single
global sprite per object, and model complex object motion
using non-rigid transformations.

Motion segmentation. As one aspect of computing our
video representation, we also solve a motion grouping prob-
lem. Approaches to motion segmentation include treating the
problem as one of a spatio-temporal image clustering [30],
or alternatively starting from motion estimates in the form
of optical flow or point trajectories, and solving a grouping
problem to associate pixels into a number of motion clus-
ters [4, 12, 13, 22, 24]. Recent approaches have also explored
optimizing neural networks to map image and/or flow inputs
to segmentation masks [6, 36]. Yang et al., recognizing that
the motion of a foreground object should not be predictable
from background motion (and vice versa), propose an adver-
sarial approach to compute segmentations that are mutually
uninformative [39]. While these works combine motion
and appearance cues for segmentation, they are designed for
frame-by-frame prediction. In contrast, our work computes
explicit global texture images for each scene element, shared
over all frames of a video. Our resulting representation thus
gives us long-term correspondences across entire videos.

Unsupervised video object segmentation. While motion
segmentation may or may not result in groups corresponding
to semantic objects; video object segmentation (VOS) meth-
ods seek to detect objects in videos. Such methods are often
trained on videos in advance—either in a fully supervised
manner on datasets like DAVIS [25], or via self-supervision—
to learn what constitutes objects in videos. Relevant to our
work are approaches that do not consider full supervision.
Such methods include that of Koh et al. [14] and Hu et
al. [9], which leverage low- and mid-level cues like flow

2658



<latexit sha1_base64="iVQSMIJ/4TP4uOXQRB9UpLeZ/iA=">AAAB/HicbZDLSsNAFIYn9VbjLdqlm8FSaEVKUoq6LLpxWcFeoI1lMp20QycXZiZCDPFV3LhQxK0P4s63cdJmoa0/DHz85xzOmd8JGRXSNL+1wtr6xuZWcVvf2d3bPzAOj7oiiDgmHRywgPcdJAijPulIKhnph5wgz2Gk58yus3rvgXBBA/9OxiGxPTTxqUsxksoaGaXK431StWrpGcygUUv105FRNuvmXHAVrBzKIFd7ZHwNxwGOPOJLzJAQA8sMpZ0gLilmJNWHkSAhwjM0IQOFPvKIsJP58SmsKGcM3YCr50s4d39PJMgTIvYc1ekhORXLtcz8rzaIpHtpJ9QPI0l8vFjkRgzKAGZJwDHlBEsWK0CYU3UrxFPEEZYqL12FYC1/eRW6jbp1Xm/eNsutqzyOIjgGJ6AKLHABWuAGtEEHYBCDZ/AK3rQn7UV71z4WrQUtnymBP9I+fwB8a5K8</latexit>⇤

Imaget

Mt(1)

Mt(2)

Tt(1)

Tt(2)

<latexit sha1_base64="nnc0FA3xHA0g1hgrjN0q79+/7Mw=">AAAB9XicbVBNS8NAEN3Ur1q/qh69BItQLyWRoh6LXjxWsB/QpmWznbRLN5uwO1FK6P/w4kERr/4Xb/4bt20O2vpg4PHeDDPz/FhwjY7zbeXW1jc2t/LbhZ3dvf2D4uFRU0eJYtBgkYhU26caBJfQQI4C2rECGvoCWv74dua3HkFpHskHnMTghXQoecAZRSP1ujgCpH3spWX3fNovlpyKM4e9StyMlEiGer/41R1ELAlBIhNU647rxOilVCFnAqaFbqIhpmxMh9AxVNIQtJfOr57aZ0YZ2EGkTEm05+rviZSGWk9C33SGFEd62ZuJ/3mdBINrL+UyThAkWywKEmFjZM8isAdcAUMxMYQyxc2tNhtRRRmaoAomBHf55VXSvKi4l5XqfbVUu8niyJMTckrKxCVXpEbuSJ00CCOKPJNX8mY9WS/Wu/WxaM1Z2cwx+QPr8wf3qpIs</latexit>

✓
(1)
t

<latexit sha1_base64="OAD1Yr1tU9LymKPrIEAAikurfAA=">AAAB9XicbVBNT8JAEN3iF+IX6tFLIzHBC2kJUY9ELx4xETCBQrbLFDZst83uVEMa/ocXDxrj1f/izX/jAj0o+JJJXt6bycw8PxZco+N8W7m19Y3Nrfx2YWd3b/+geHjU0lGiGDRZJCL14FMNgktoIkcBD7ECGvoC2v74Zua3H0FpHsl7nMTghXQoecAZRSP1ujgCpH3speXq+bRfLDkVZw57lbgZKZEMjX7xqzuIWBKCRCao1h3XidFLqULOBEwL3URDTNmYDqFjqKQhaC+dXz21z4wysINImZJoz9XfEykNtZ6EvukMKY70sjcT//M6CQZXXsplnCBItlgUJMLGyJ5FYA+4AoZiYghliptbbTaiijI0QRVMCO7yy6ukVa24F5XaXa1Uv87iyJMTckrKxCWXpE5uSYM0CSOKPJNX8mY9WS/Wu/WxaM1Z2cwx+QPr8wf5MJIt</latexit>

✓
(2)
t

<latexit sha1_base64="Xd3gyLIYwIKGfUqzX4L7dZ07Kl4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1iEFqQkpajLohuXFewF2lgm00k7dHJhZlKoIW/ixoUibn0Td76NkzYLbf1h4OM/53DO/G7EmVSW9W2srW9sbm0Xdoq7e/sHh+bRcVuGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MltVu9MqZAsDB7ULKKOj0cB8xjBSlsD03x6TMp2Jb1AGdQq6cAsWVVrLrQKdg4lyNUcmF/9YUhinwaKcCxlz7Yi5SRYKEY4TYv9WNIIkwke0Z7GAPtUOsn88hSda2eIvFDoFyg0d39PJNiXcua7utPHaiyXa5n5X60XK+/aSVgQxYoGZLHIizlSIcpiQEMmKFF8pgETwfStiIyxwETpsIo6BHv5y6vQrlXty2r9vl5q3ORxFOAUzqAMNlxBA+6gCS0gMIVneIU3IzFejHfjY9G6ZuQzJ/BHxucPeYmSRQ==</latexit>

z(1), z(2)

<latexit sha1_base64="Xd3gyLIYwIKGfUqzX4L7dZ07Kl4=">AAAB+XicbZDLSsNAFIZPvNZ6i7p0M1iEFqQkpajLohuXFewF2lgm00k7dHJhZlKoIW/ixoUibn0Td76NkzYLbf1h4OM/53DO/G7EmVSW9W2srW9sbm0Xdoq7e/sHh+bRcVuGsSC0RUIeiq6LJeUsoC3FFKfdSFDsu5x23MltVu9MqZAsDB7ULKKOj0cB8xjBSlsD03x6TMp2Jb1AGdQq6cAsWVVrLrQKdg4lyNUcmF/9YUhinwaKcCxlz7Yi5SRYKEY4TYv9WNIIkwke0Z7GAPtUOsn88hSda2eIvFDoFyg0d39PJNiXcua7utPHaiyXa5n5X60XK+/aSVgQxYoGZLHIizlSIcpiQEMmKFF8pgETwfStiIyxwETpsIo6BHv5y6vQrlXty2r9vl5q3ORxFOAUzqAMNlxBA+6gCS0gMIVneIU3IzFejHfjY9G6ZuQzJ/BHxucPeYmSRQ==</latexit>

z(1), z(2)

Shared Sprites
<latexit sha1_base64="I01vWBUao9i4LcuyHn1KITpTQT4=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXspuKeqx6sVjBfsB7VqyabYNTbJLkhXK0h/hxYMiXv093vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLR0litAmiXikOgHWlDNJm4YZTjuxolgEnLaD8e3Mbz9RpVkkH8wkpr7AQ8lCRrCxUvv6MS1Xz6f9YsmtuHOgVeJlpAQZGv3iV28QkURQaQjHWnc9NzZ+ipVhhNNpoZdoGmMyxkPatVRiQbWfzs+dojOrDFAYKVvSoLn6eyLFQuuJCGynwGakl72Z+J/XTUx45adMxomhkiwWhQlHJkKz39GAKUoMn1iCiWL2VkRGWGFibEIFG4K3/PIqaVUr3kWldl8r1W+yOPJwAqdQBg8uoQ530IAmEBjDM7zCmxM7L86787FozTnZzDH8gfP5A0aujuM=</latexit>

A(2)
<latexit sha1_base64="rCvaEW1kjTowFtyRod9Fh/0DAbM=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBDiJexKUI9RLx4jmAcka5iddJIhs7PLzKwQlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXEAuujet+Oyura+sbm7mt/PbO7t5+4eCwoaNEMayzSESqFVCNgkusG24EtmKFNAwENoPR7dRvPqHSPJIPZhyjH9KB5H3OqLFS8/oxLXlnk26h6JbdGcgy8TJShAy1buGr04tYEqI0TFCt254bGz+lynAmcJLvJBpjykZ0gG1LJQ1R++ns3Ak5tUqP9CNlSxoyU39PpDTUehwGtjOkZqgXvan4n9dOTP/KT7mME4OSzRf1E0FMRKa/kx5XyIwYW0KZ4vZWwoZUUWZsQnkbgrf48jJpnJe9i3LlvlKs3mRx5OAYTqAEHlxCFe6gBnVgMIJneIU3J3ZenHfnY9664mQzR/AHzucPRSiO4g==</latexit>

A(1)

<latexit sha1_base64="rCeWpIUf7xsr+IKzA6zF3lxkNiQ=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OKxQr+kXUs2zbahSXZJskJZ+iu8eFDEqz/Hm//GtN2Dtj4YeLw3w8y8IOZMG9f9dnJr6xubW/ntws7u3v5B8fCopaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvp357SeqNItkw0xi6gs8lCxkBBsrPTQe07J3Pu2bfrHkVtw50CrxMlKCDPV+8as3iEgiqDSEY627nhsbP8XKMMLptNBLNI0xGeMh7VoqsaDaT+cHT9GZVQYojJQtadBc/T2RYqH1RAS2U2Az0sveTPzP6yYmvPZTJuPEUEkWi8KEIxOh2fdowBQlhk8swUQxeysiI6wwMTajgg3BW355lbQuKt5lpXpfLdVusjjycAKnUAYPrqAGd1CHJhAQ8Ayv8OYo58V5dz4WrTknmzmGP3A+fwDw2o/c</latexit>

T
(1)
t

<latexit sha1_base64="9FxjZWDMdoRmqSToVHKHx8BELys=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSLUS9ktRT0WvXis0C9p15JNs21okl2SrFCW/govHhTx6s/x5r8xbfegrQ8GHu/NMDMviDnTxnW/nbX1jc2t7dxOfndv/+CwcHTc0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTsY38789hNVmkWyYSYx9QUeShYygo2VHhqPaalyMe2bfqHolt050CrxMlKEDPV+4as3iEgiqDSEY627nhsbP8XKMMLpNN9LNI0xGeMh7VoqsaDaT+cHT9G5VQYojJQtadBc/T2RYqH1RAS2U2Az0sveTPzP6yYmvPZTJuPEUEkWi8KEIxOh2fdowBQlhk8swUQxeysiI6wwMTajvA3BW355lbQqZe+yXL2vFms3WRw5OIUzKIEHV1CDO6hDEwgIeIZXeHOU8+K8Ox+L1jUnmzmBP3A+fwDyYo/d</latexit>

T
(2)
t

<latexit sha1_base64="MHel89EfJhcSYf81BGc+EuXEV1A=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsquFPVY9OJFqGA/pF1LNs22oUl2SbJCWforvHhQxKs/x5v/xrTdg7Y+GHi8N8PMvCDmTBvX/XZyK6tr6xv5zcLW9s7uXnH/oKmjRBHaIBGPVDvAmnImacMww2k7VhSLgNNWMLqe+q0nqjSL5L0Zx9QXeCBZyAg2Vnq4fUzL3umkZ3rFkltxZ0DLxMtICTLUe8Wvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDST5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSPKt455XqXbVUu8riyMMRHEMZPLiAGtxAHRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB5gaP1Q==</latexit>

M
(1)
t

<latexit sha1_base64="AcgSm3nJyuz7TihMQRunflcQsyw=">AAAB8HicbVBNSwMxEM36WetX1aOXYBHqpeyWoh6LXrwIFeyHtGvJptk2NMkuyaxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL4gFN+C6387K6tr6xmZuK7+9s7u3Xzg4bJoo0ZQ1aCQi3Q6IYYIr1gAOgrVjzYgMBGsFo+up33pi2vBI3cM4Zr4kA8VDTglY6eH2MS1VziY96BWKbtmdAS8TLyNFlKHeK3x1+xFNJFNABTGm47kx+CnRwKlgk3w3MSwmdEQGrGOpIpIZP50dPMGnVunjMNK2FOCZ+nsiJdKYsQxspyQwNIveVPzP6yQQXvopV3ECTNH5ojARGCI8/R73uWYUxNgSQjW3t2I6JJpQsBnlbQje4svLpFkpe+fl6l21WLvK4sihY3SCSshDF6iGblAdNRBFEj2jV/TmaOfFeXc+5q0rTjZzhP7A+fwB546P1g==</latexit>

M
(2)
t

Frame Input
<latexit sha1_base64="vGSosZE3qH0OZU3IO/S9yyVySjE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi94q2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WV1bX1jeJmaWt7Z3evvH/QNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbqZ+64lrI2L1iOOE+xEdKBEKRtFKD3c97JUrbtWdgSwTLycVyFHvlb+6/ZilEVfIJDWm47kJ+hnVKJjkk1I3NTyhbEQHvGOpohE3fjY7dUJOrNInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tOyYbgLb68TJpnVe+i6t2fV2rXeRxFOIJjOAUPLqEGt1CHBjAYwDO8wpsjnRfn3fmYtxacfOYQ/sD5/AErmo26</latexit>

It

<latexit sha1_base64="lVUxE1FXkKStd2iD0SgLA1bKuBo=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHoRW8V7Ie0oWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4WV1bX1jeJmaWt7Z3evvH/QNHGqKWvQWMS6HRLDBFesgRwFayeaERkK1gpHN1O/9cS04bF6wHHCAkkGikecErTSY3dIMLub9LBXrnhVbwZ3mfg5qUCOeq/81e3HNJVMIRXEmI7vJRhkRCOngk1K3dSwhNARGbCOpYpIZoJsdvDEPbFK341ibUuhO1N/T2REGjOWoe2UBIdm0ZuK/3mdFKOrIOMqSZEpOl8UpcLF2J1+7/a5ZhTF2BJCNbe3unRINKFoMyrZEPzFl5dJ86zqX1T9+/NK7TqPowhHcAyn4MMl1OAW6tAAChKe4RXeHO28OO/Ox7y14OQzh/AHzucP+pmQhw==</latexit>

Ît

<latexit sha1_base64="O/tcxrQx4FsnY19a2TyvGBuHQzQ=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYBDiJeyKqMdgLh4jmIckMcxOZpMhM7vLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXeXH0th0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiGa+zSEa65VPDpQh5HQVK3oo1p8qXvOmPqlO/+cS1EVF4j+OYdxUdhCIQjKKVHqqPack7m/SwVyi6ZXcGsky8jBQhQ61X+Or0I5YoHiKT1Ji258bYTalGwSSf5DuJ4TFlIzrgbUtDqrjpprODJ+TUKn0SRNpWiGSm/p5IqTJmrHzbqSgOzaI3Ff/z2gkG191UhHGCPGTzRUEiCUZk+j3pC80ZyrEllGlhbyVsSDVlaDPK2xC8xZeXSeO87F2WvbuLYuUmiyMHx3ACJfDgCipwCzWoAwMFz/AKb452Xpx352PeuuJkM0fwB87nD9WYj8g=</latexit>

C
(1)
t

<latexit sha1_base64="R8GnBKQAzgSoRfNqWqdGRMz7iuI=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BItQL2W3iHos9uKxgv2Qdi3ZNNuGJtklmRXK0l/hxYMiXv053vw3pu0etPXBwOO9GWbmBbHgBlz328mtrW9sbuW3Czu7e/sHxcOjlokSTVmTRiLSnYAYJrhiTeAgWCfWjMhAsHYwrs/89hPThkfqHiYx8yUZKh5ySsBKD/XHtFw9n/ahXyy5FXcOvEq8jJRQhka/+NUbRDSRTAEVxJiu58bgp0QDp4JNC73EsJjQMRmyrqWKSGb8dH7wFJ9ZZYDDSNtSgOfq74mUSGMmMrCdksDILHsz8T+vm0B47adcxQkwRReLwkRgiPDsezzgmlEQE0sI1dzeiumIaELBZlSwIXjLL6+SVrXiXVa8u4tS7SaLI49O0CkqIw9doRq6RQ3URBRJ9Ixe0ZujnRfn3flYtOacbOYY/YHz+QPXII/J</latexit>

C
(2)
t

<latexit sha1_base64="5BE7jyWW+m563d6rgPXTMOwh4oU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPVgx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDVh8MPN6bYWZekAiujet+OYWl5ZXVteJ6aWNza3unvLvX1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoeuq3HlFpHssHM07Qj+hA8pAzaqx0f9O77JUrbtWdgfwlXk4qkKPeK392+zFLI5SGCap1x3MT42dUGc4ETkrdVGNC2YgOsGOppBFqP5udOiFHVumTMFa2pCEz9edERiOtx1FgOyNqhnrRm4r/eZ3UhBd+xmWSGpRsvihMBTExmf5N+lwhM2JsCWWK21sJG1JFmbHplGwI3uLLf0nzpOqdVb2700rtKo+jCAdwCMfgwTnU4Bbq0AAGA3iCF3h1hPPsvDnv89aCk8/swy84H9/bM42F</latexit>

GA

<latexit sha1_base64="WkQ1FM24VdIuZ+AU4g35Q6lyuLU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRg16EivYD2lA220m7dLMJuxuhhP4ELx4U8eov8ua/cdvmoNUHA4/3ZpiZFySCa+O6X05haXllda24XtrY3NreKe/uNXWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupr6rUdUmsfywYwT9CM6kDzkjBor3V/3bnvlilt1ZyB/iZeTCuSo98qf3X7M0gilYYJq3fHcxPgZVYYzgZNSN9WYUDaiA+xYKmmE2s9mp07IkVX6JIyVLWnITP05kdFI63EU2M6ImqFe9Kbif14nNeGFn3GZpAYlmy8KU0FMTKZ/kz5XyIwYW0KZ4vZWwoZUUWZsOiUbgrf48l/SPKl6Z1Xv7rRSu8zjKMIBHMIxeHAONbiBOjSAwQCe4AVeHeE8O2/O+7y14OQz+/ALzsc37WONkQ==</latexit>

GM

<latexit sha1_base64="PDEw10WwrF9MraoFekQKhPz4ito=">AAAB+nicbVBNS8NAEN34WetXqkcvwSLUS0lE1GPRi8cK/YI2hs120i7dfLA7UUrsT/HiQRGv/hJv/hu3bQ7a+mDg8d4MM/P8RHCFtv1trKyurW9sFraK2zu7e/tm6aCl4lQyaLJYxLLjUwWCR9BEjgI6iQQa+gLa/uhm6rcfQCoeRw0cJ+CGdBDxgDOKWvLMUq8xBKQe3meVHghxOvHMsl21Z7CWiZOTMslR98yvXj9maQgRMkGV6jp2gm5GJXImYFLspQoSykZ0AF1NIxqCcrPZ6RPrRCt9K4ilrgitmfp7IqOhUuPQ150hxaFa9Kbif143xeDKzXiUpAgRmy8KUmFhbE1zsPpcAkMx1oQyyfWtFhtSSRnqtIo6BGfx5WXSOqs6F1Xn7rxcu87jKJAjckwqxCGXpEZuSZ00CSOP5Jm8kjfjyXgx3o2PeeuKkc8ckj8wPn8A3wCTwA==</latexit>

⇥
(`)
t

Deformation Parameters
<latexit sha1_base64="MTSgKCHapZCDz1Ya9nMOlAAQfRk=">AAACEnicbVDLSgMxFM34rONr1KWbYCm0IGWmFHVZdONGqNAXtGPJpGkbmnmQ3BHK0G9w46+4caGIW1fu/BvTdha19UDg5JxzSe7xIsEV2PaPsba+sbm1ndkxd/f2Dw6to+OGCmNJWZ2GIpQtjygmeMDqwEGwViQZ8T3Bmt7oZuo3H5lUPAxqMI6Y65NBwPucEtBS1yrk7h6SfKkw6YLZqQ0ZkC5owSlMzvHCfRqwsnbRngGvEiclWZSi2rW+O72Qxj4LgAqiVNuxI3ATIoFTwSZmJ1YsInREBqytaUB8ptxkttIE57TSw/1Q6hMAnqmLEwnxlRr7nk76BIZq2ZuK/3ntGPpXbsKDKAYW0PlD/VhgCPG0H9zjklEQY00IlVz/FdMhkYSCbtHUJTjLK6+SRqnoXBTL9+Vs5TqtI4NO0RnKIwddogq6RVVURxQ9oRf0ht6NZ+PV+DA+59E1I505QX9gfP0C3JybvQ==</latexit>

⇥
(1)
t ,⇥

(2)
t

<latexit sha1_base64="HkhCvLpNmProCorCluMWAgx5+2Y=">AAACXXicbVHBbhMxEPUuFNpQ2lAOHLhYREhFVNEuQsCxwKE9FKlITVspDqtZZ5JY9dore5YSWfuT3ODCr+CkOUCbJ4309N6MPH5T1lp5yrJfSXrv/saDh5tbnUfbj3d2u0/2zr1tnMSBtNq6yxI8amVwQIo0XtYOoSo1XpRXnxf+xXd0XllzRvMaRxVMjZooCRSlokuiUqYIR8WXA35UfDzgIoizGRKItqBvYV+g1q/alosKaCZBh5O2EIQ/KDiU1rT89Rpr6mxTr7euwdVt0e1l/WwJfpfkK9JjK5wW3Z9ibGVToSGpwfthntU0CuBISY1tRzQea5BXMMVhpAYq9KOwTKflL6My5hPrYhniS/XfiQCV9/OqjJ2Ldf1tbyGu84YNTT6MgjJ1Q2jkzUOTRnOyfBE1H6uYEel5JCCdirtyOQMHkuJBOjGE/PaX75LzN/38XT//+rZ3+GkVxyZ7zl6wfZaz9+yQHbNTNmCS/U5YspV0kj/pRrqd7ty0pslq5in7D+mzv0+Qtog=</latexit>

min
GM ,GA,{⇥}(`)

t

Lrecon + Lgroup + Lwarp

Figure 2. Deformable Sprites, a representation for persistent motion groups in a video of a dynamic scene. Here we represent L = 2
motion groups: the elephant and background. Deformable Sprites disentangle video into groups of three components: 1) a single global
appearance model, in the form of canonical per-layer RGB texture (sprites) used across the entire video (denoted as A(`)), 2) per-frame
masks indicating each group (denoted as M (`)

t ), and 3) spatio-temporal non-rigid transformations that capture the deformation and camera
motion in each frame (denoted as T (`)

t ). Transforming then masking the sprites results in a set of layers that are composited to reconstruct the
input frame t while preserving occlusion effects. Deformable Sprites are optimized by minimizing per-frame losses on the reconstructions,
masks and transformations described in Sec 4.

and edges to compute foreground objects (where the latter
requires training an edge detector), and Yang et al. [37],
which uses slot attention [19] and self-supervision to learn
to detect objects from optical flow. DyStaB learns object
saliency models using object motion in video, which can
then be applied at test time to segment objects, even in static
images [38]. In contrast to these approaches, we do not
seek to detect semantic object categories, but to find the
decomposition that best explains the scene motion and its
resulting appearance. As we show below, this allows us to
represent moving elements that do not fall into traditional
object categories.

3. Deformable Sprites

The inputs to our method are video frames of a dynamic
scene {It ∈ RH×W }Nt=1, and optical flow computed be-
tween consecutive frames, {Ft→t+1}N−1t=1 . From these in-
puts, we aim to recover a set of L distinct motion groups
in the dynamic scene. We want these groups to capture the
underlying elements in the video, moving smoothly through
the scene. To do this, we introduce Deformable Sprites to
consistently represent motion groups as they evolve through-
out a video. A Deformable Sprite consists of a canonical
appearance model in the form of a texture image, or sprite,
for each group, used to describe the motion group’s appear-
ance across all video frames, and geometric transformation
and mask models, used to relate the motion group’s position
and geometry in each input frame to the sprite.

We illustrate our representation, and our approach to fit-

ting it to an input video, in Fig. 2. For each frame It, we
predict a mask for each of the L motion groups, denoted
{M (`)

t }L`=1. In the figure, there are two masks correspond-
ing to two motion groups, elephant and background. Each
motion group has its own RGB texture sprite describing the
group’s appearance across the entire video. We denote these
L texture images as {A(`)}L`=1. Finally, we need to know
where to place and how to deform each sprite in each frame,
e.g. to match the position and pose of the elephant in the fig-
ure. To that end, we estimate a spatio-temporal spline-based
transformation T (`)

t between the canonical texture coordi-
nates and the frame coordinates of It, for every motion group
` and every frame t. Given a set of Deformable Sprites, we
can reconstruct any video frame It by using the associated
transformations to warp the global textures into the given
frame, masking each layer according to the computed masks,
then composing the layers into a single RGB image. This
yields a reconstructed image Ît.

Design motivations. A natural way to fit any kind of layered
model to images is to simply optimize the layers and trans-
forms to minimize a reconstruction loss. However, this video
decomposition problem is severely ill-posed—a large variety
of layer decompositions might perfectly reproduce the video
but yield nonsensical group separations. We seek a natural
decomposition where the discovered layers correspond to
objects that are coherent within a frame and consistent across
time. This desire for a coherent decomposition suggests that
the decomposition should be compact and low-dimensional,
which is a key motivation for representing the appearance

2659



of each motion layer with a fixed sprite texture. As a conse-
quence, we must also represent the geometry of each sprite
per frame—where to place it, and how to pose it. We employ
a spatio-temporal spline to achieve this non-rigid transfor-
mation, which can be parameterized with a small number of
explicit parameters.

3.1. Grouping

A key question in computing our layered representation
from a video is: for each frame, which pixels belong to
which layer? Many prior works use optical flow cues to
compute explicit motion groups, either with robust paramet-
ric model fitting (e.g. [34, 35]), or with robust clustering
methods (e.g. [12, 18, 22–24]). However, explicit techniques
struggle to handle objects with multiple motions and com-
plex trajectories. Moreover, we are not solely interested in
computing motion groups per-frame, but rather in represent-
ing the both the appearance and the motion of a group as it
evolves through the entire video. For these reasons, we opt
to learn a single CNN grouping model, Gm, for each video
sequence (and shared across all frames of that sequence),
to predict masks that are consistent with appearance cues.
Gm takes in an RGB image It and predicts L soft masks
{B(`)

t }L`=1 ∈ [0, 1]H×W for that frame, one per group. We
then use back-to-front compositing to convert these to prob-
ability masks that sum to 1 (per pixel) across the groups:

M
(`)
t = B

(`)
t ·

L∏
i=`+1

(1−B(i)
t ). (1)

Our final grouping is the per-pixel mask, M (`)
t , for each

layer ` and video frame t. We use optical flow in computing
motion groups; however, rather than explicitly computing
groups directly from flow, we use it in our losses as supervi-
sion (Sec. 4), and let the model learn which appearance cues
in the input frames to associate with each motion group.

3.2. Global Sprite Images

The central component of Deformable Sprites is a global
sprite image that represents each layer’s appearance across
the entire video as a fixed RGB texture. In the case of
a dynamic foreground object, the canonical representation
helps group together parts of the object moving in complex
ways. For example, consider the walking bear in Fig. 1. As
it walks, different parts of the body undergo distinct motions.
These parts are difficult to group together if one looks at
motion alone. However, a global sprite image can group
these distinct trajectories together because the collective
body has a consistent appearance over time.

For each layer `, we represent its appearance across the
entire video as a fixed texture image A(`) ∈ RH′×W ′

. We
leverage the natural image prior of CNNs [33] and optimize

each sprite image A(`) through a shared CNN, GA, with a
fixed code z ∈ RH′×W ′×d uniformly sampled from [0, 1].

While the global sprites provide cues to group parts that
move differently in a single frame, a single, fixed sprite is
not sufficient if the camera or the object moves in the scene.
Therefore we estimate a set of transformations that can non-
rigidly deform the sprites to match the appearance of the
motion groups in each frame.

3.3. Spatio-Temporal Deformation with Splines

In general, objects move about the world in a smooth
fashion. However, as noted by Wang & Adelson [34], model-
ing the 2D motion field as a smooth function fails to capture
sharp edges resulting from occlusion boundaries. The benefit
of a layered representation like ours, then, is that the masks
capture the visibility and occlusion boundaries, allowing the
transformations to be modeled as smooth functions.

Specifically, we model the motion of each sprite with a
transformation that maps the pixel coordinates of frame t to
the texture coordinates of layer `. We represent this trans-
formation as a continuous function T (`)(t) that is smooth
over space and time via two splines, one for space and one
for time. This approach has the benefit of modeling non-
rigid deformation with relatively few motion parameters. For
simplicity, we omit layer superscripts in the notation below.

Splines in space. The spatial transformation evaluated at
time t is modeled as a combination of rigid and non-rigid
2D transformations Θ(t) = [η(t),V(t)] . The rigid compo-
nent is modeled as a homography H(t), parameterized by 8
parameters η(t) ∈ R8. This component captures scaling ef-
fects and simple object and camera motions. We assume that
the background layer, assigned to layer index L, is largely
static (and hence only moving due to camera motion), and
so we only model its motion with a homography, without a
non-rigid component.

The non-rigid component of the motion is modeled by a
2D B-spline, which defines a smoothly varying deformation
field D. The B-spline is parameterized by a grid of fixed
control points X ∈ [−1, 1]Ni×Nj×2, with uniform spacing
∆x in the input (view) frame coordinates. We then define
a grid of parameters, V(t) ∈ RNi×Nj×2, at these control
points. These parameters describe the position of the frame
control point when it is transformed into texture (canoni-
cal) coordinates. Then at a point x in the input frame, the
deformation vector v = D(x; V) can be interpolated as

D(x; V) =
∑
i,j

Vi,j ·B2d
d

(
x−Xi,j

∆x

)
, (2)

where B2d
d is a degree d piecewise polynomial defined over

the unit square [0, 1]2; we use degree 2. More details about
B-spline interpolation are provided in the supplemental.

2660



Keyframes over time. We expect corresponding points
within each layer to deform smoothly over time. To enforce
this smoothness, we represent our transformations over time
as a 1D function parameterized by temporal control points
or keyframes. This allows us to represent temporally vary-
ing transformations with a smaller number of parameters
compared to estimating a dense transformation separately
for every time t while ensuring smoothness. We store a set
of NT keyframes of transformation parameters {Θi}NT

i=1 at
times {ti}NT

i=1, for every layer. The keyframes are spaced
uniformly at time intervals ∆T := N

NT
. At time t, we inter-

polate between these keyframes with a 1D B-spline [1]:

Θ(t) =
∑
i

Θi ·B1d
d

(
t− ti
∆T

)
, (3)

where B1d is a degree d piecewise polynomial defined over
the unit interval [0, 1]; we use degree 2.

The final transformation from an image coordinate x to
texture coordinate p of layer l at time t is then

p = T
(`)
t (x) = H(x; η(`)(t)) +D(x; V(`)(t)), (4)

where η(`)(t) and V(`)(t) are interpolated values at time
t. The parameters to be estimated are the spatio-temporal
control points {Θi}NT

i=1, where Θi := [ηi,Vi].

Compositing. Given a set of Deformable Sprites represent-
ing a video, we can reconstruct a frame Ît at time t as follows.
For each layer `, we resample the canonical textureA(`) with
the transformation T (`)

t into texture coordinates to get frame
appearance C(`)

t . Then, each appearance can be composited
with the masks {M (`)

t }Nt=1 to get our final reconstruction.

4. Training Deformable Sprites
We fit our Deformable Sprites model using gradient de-

scent to optimize model parameters, namely the per-frame,
per-layer masks M `

t , per-layer spatio-temporal transforma-
tion keyframes {Θi}NT

i=1, and per-layer global appearance
sprites A`. Our primary loss for optimizing the representa-
tion is a video reconstruction loss. However, because our
recovery problem is under-determined, we add regularizing
losses to encourage our model toward solutions with sprites
that (1) move coherently, and (2) are consistent over time.

Motion grouping loss. We determine how to group together
pixels using losses on the optical flow vectors between con-
secutive frames. In particular, we use the optical flow field
to estimate the static background content, as well as to group
together dynamic pixels that move similarly to each other:

Lgroup = Lstatic + Ldynamic. (5)

We denote the optical flow between frames t and t + 1 as
Ft→t+1; we refer to flow correspondences as (x, x′), where
x′ = Ft→t+1(x).

Lstatic uses a robust estimate of the two-view geometry
to separate static from dynamic points. We estimate the
fundamental matrix between frames t and t+ 1, F̂t→t+1 ∈
R3×3, with least median of squares (LMedS) regression [29]
on the dense correspondences from flow. Note that we fit
F̂t→t+1 to all pixels in the frame, and must detect when the
LMeDS estimate fails capture the static geometry, when non-
static pixels outnumber static pixels (see the supplement).

We then compute the Sampson distance εt(x, x′) using
the estimated fundamental matrix [7]. The Sampson distance
approximately captures how well the correspondence (x, x′)
adheres to the epipolar geometry of F̂t→t+1; points with
high Sampson distance are likely moving, and therefore do
not obey the geometric constraints. We thus penalize the
background layer with

Lstatic =
∑

x εt(x)·M (L)
t (x)+β·

(
1−εt(x)

)
·
(
1−M (L)

t (x)
)
,

(6)
where M (L)

t is the background mask, and β = 0.002.
We further wish to group dynamic points that move simi-

larly to each other. We encourage this with Ldynamic, which
minimizes the distortion of the optical flow in each moving
group, much like in k-means clustering. For each group `,
we determine a group exemplar flow vector µt(`) ∈ R2. We
then penalize the group assignments with

Ldynamic =
∑

`,xM
(`)
t (x) · ‖Ft→t+1(x)− µ(`)

t ‖2. (7)

We let the exemplar for each layer ` be the weighted mean
of the flow vectors assigned to that layer:

µ`
t ←

(∑
xM

`
t (x) · Ft→t+1(x)

)/(∑
xM

`
t (x)

)
. (8)

Optical flow consistency losses. Ideally, even as points in
the scene move with respect to the camera, they should map
to the same coordinates in the texture map. To encourage this
behavior, we penalize inconsistencies between the mappings,
masks, and optical flow for each layer:

Lwarp = Ltransform + Lmask. (9)

We encourage the transformations to be consistent with the
flow between consecutive frames t and t+ 1. We also make
the loss scale-invariant to stabilize training and prevent de-
generate transforms. Hence we formulate our loss as

Ltransform =
∑
`,x

M `
t (x) · ‖T

`
t (x)− T `

t+1(x′)‖
s
(`)
t + s

(`)
t+1

(10)

where x′ = Ft→t+1(x), and s(`)t is the scale of T (`)
t (see the

supplement for details).
Likewise Lmask encourages masks to be consistent with

flow:
Lmask =

∑
`,x ‖M `

t (x)−M `
t+1(x′)‖. (11)

2661



Input frame Masks and Transformations Reconstructions Global Appearance Sprites
1 2

1 2

1 2

1 2

1 2

1 2

1
2

3
1 2 3

Figure 3. Qualitative results on diverse videos. We show examples with two and three (second row) motion groups and examples with
non-traditional foreground objects (bottom two rows). We show two input frames for each example. For each frame, we show the masks and
transformations for each motion group (where the number in the corner of the image indicates the group index), as well as the composited
reconstruction. Finally, we show the global sprites for each motion group, shared between all frames (with index similarly indicated). We
overlay a rainbow checkerboard on the masks to visualize the corresponding sprite texture coordinates. Note for instance the decomposition
into bee, flower, and background in the second video, the layer that captures non-object-like cloud regions in the third video, and the
aggregation of the globe texture across the full video in the last video. We show full video results and more examples in the supplemental.

Reconstruction loss. We use a combination of L1 distance
and Laplacian pyramid similarity as our reconstruction loss:

Lrecon = ‖Ît − It‖1 + Ledges, (12)

with Ledges =
∑

m 4m‖Lapm(Ît) − Lapm(It)‖1,where
Lapm is the m-th level of the Laplacian pyramid.

The final loss function is then:

L = λreconLrecon + λgroupLgroup + λwarpLwarp. (13)

Implementation details. We compute optical flow with
RAFT [32]. We use UNets [27] for the mask prediction
and texture generation models. We use ∆T = 4 and Ni =
16, Nj = b 16∗WH c for the spline knots. We introduce losses
to the optimization problem in a schedule: we first warmstart
the grouping network with Lgroup. We use these initial rough

masks to initialize the scales and translations of the frame-to-
texture transforms for each layer, then add Lwarp and Lrecon.
Please refer to the supplemental for additional details. Code
can be found at the project website.

5. Results
5.1. Qualitative results on real videos

In Figure 3, we show our estimated Deformable Sprites
for a variety of real videos. The top row is from the DAVIS
dataset [25]; the bottom three are Internet videos. We show
results for a video with three sprites (second row), in which
both the flower and bee are moving foreground objects, as
well as for videos with non-traditional foreground objects,
such as clouds (third row) and Earth (bottom row). We show
result videos and additional examples in the supplemental.

For each example, we show two frames from the input

2662

https://people.eecs.berkeley.edu/~vye/deformable-sprites


Mask RCNN MG CIS Ours

Figure 4. Segmentation models on non-traditional objects. We
show predicted segmentations on frames of the bottom three video
sequences in Figure 3. We show the masks from MaskRCNN [8],
trained on COCO categories, and two recent motion segmentation
methods, MG [37] and CIS [39], trained on DAVIS [25]. These
methods are unable to handle the out-of-distribution images.

Ground truth Ours MG CISDyStaB

Figure 5. Qualitative mask comparison with top baselines on
DAVIS. We compare the masks from Deformable Sprites with
baselines on DAVIS [25]. We compare with DyStaB [38], MG [37],
and CIS [39]. Please see video results in the supplemental.

DAVIS FBMS SegTV2

ARP [14] 76.2 59.8 57.2
ELM [16] 61.8 61.6 -
MG [37] 68.3 53.1 58.2
CIS [39] 71.5 63.5 62.0
DyStaB∗ [38] 80.0 73.2 74.2
Ours 79.1 71.8 72.1

Table 1. Quantitative mask evaluation on VOS benchmarks.
We compare masks from Deformable Sprites with top-performing
baselines on the DAVIS [25] and SegTrackV2 [17] benchmarks. We
achieve IOU (J ) scores competitive with current SOTA. ∗(Note
that DyStaB [38] is trained on a video dataset; all other methods
use only the information present in the input video.)

video and our Deformable Sprites representation. Each
frame has masks and transforms corresponding to each sprite;
we visualize the masks and transforms for each layer together.
We overlay a rainbow checkerboard on top of the masks to
show corresponding sprite texture coordinates; we see that

k-means rigid only + splines (full)

DAVIS 64.6 71.5 79.1

Table 2. Ablations We compare our full model with the variants k-
means and rigid only on the DAVIS dataset. k-means comprises of
only a mask prediction network trained with Lgroup and Lmask. rigid
only adds back the sprites, using only homographies as transforms.

the same texture coordinates follow the same points of the
object throughout the video. The sprite images are also
completed as regions in each layer become visible over the
course of the video. The globe example in Figure 3 demon-
strates this effect: as the globe rotates, the foreground sprite
is completed into an unwrapped world map.

We recover our Deformable Sprites based solely on the
motion and appearance cues present in the input, and do
not rely on training data. As such, we can easily recover
Deformable Sprites for objects that do not fall into com-
mon categories. This is in contrast to layer decomposition
methods such as [21], [26] or [11], which rely on input
masks, either from off-the-shelf pre-trained segmentation
models or from user interaction. In Figure 4, we show the
masks we obtain from our representation compared to off-
the-shelf Mask RCNN, and two recent motion segmentation
methods [39], [37], trained on DAVIS. Layer decomposition
methods [11], [21] that require input masks would require
further user interaction, e.g., using methods such as Grab-
Cut [28] to decompose these scenes.

5.2. Motion segmentation results on benchmarks

A key advantage of Deformable Sprites is the ability
to discover reasonable motion groups during optimization.
In many cases, moving objects in a video are commonly
segmented objects, such as animals, peoples, or cars. We
compare the quality of our motion groups to other unsuper-
vised motion segmentation baselines on two standard video-
object segmentation benchmarks, DAVIS2016 [25] and Seg-
TrackV2 [17]. We report quantitative performance in Table 1,
in which our method is the second best in both benchmarks.
We show qualitative comparisons with recent motion group-
ing methods DyStaB [38], CIS [39] and MG [37] in Figure 5.
Our representation can better capture the limbs of articulated
animals and people, thanks to our spline representation. Fi-
nally, we note that while motion group boundaries generally
correspond with the semantic object masks, they also often
include effects such as reflections and shadows. Sometimes
this behavior is desired [21], although these effects are not
included in the segmentation task we evaluate on.

5.3. Ablations

We ablate the effect of the global appearance model and
the deformable transforms on the quality of the output masks
on the DAVIS dataset; we report the quantitative differences

2663



(ablation figure)

Input
Rigid only

Mask & Transform Sprite 1 Sprite 2
Spatio-temporal splines

Mask & Transform Sprite 1 Sprite 2k-means

Frame
Rigid Only

Mask & Transform Sprite 1 Sprite 2
w/Spatio Temporal Splines

Mask & Transform Sprite 1 Sprite 2
K-means

Figure 6. Ablation. We ablate our model without global sprites or transformations and trained only with the motion grouping loss
(K-means), without only a rigid transformation model (Rigid Only), and compare with the full model (w/Spatio Temporal Splines).
Modeling non-rigid motion enables us to capture the twisting dog and the camel’s legs.

in Table 2. We remove sprite textures and transformations
and train the mask prediction network with the motion group-
ing loss Lgroup and mask consistency loss Lmask (K-means);
the coherence of the masks for this variant drops dramatically.
We then add back the sprite textures, but only use homogra-
phies as transformations (rigid only). We see in Figure 6
that the persistent sprites help in recognizing and segmenting
objects when they are stationary. However, homographies
cannot model long-term correspondences of deforming ob-
jects. We see in Figure 6 that the stationary camel’s legs and
dog’s body are still grouped with the foreground, and the
corresponding texture is more complete.

5.4. Consistent video editing

Our method enables downstream applications such as
creating video effects. In particular, we demonstrate consis-
tent video editing by directly editing our learned foreground
and background texture atlases. As shown in Figure 7, we
can apply style transfer or add new elements to the back-
ground or foreground textures, and propagate edited textures
to original frames with our learned transformations to pro-
duce consistent video edits. Our method can also be used to
create 2D motion sculpture effects, as shown in Figure 8, by
transforming foreground texture and learned alpha masks for
several frames onto the background texture and overlaying
them together. We refer readers to our supplementary video
for full video results.

6. Discussion and Conclusion
Our approach has a few limitations. One is that our fixed

appearance model does not explicitly handle changes in
appearance over time, for instance due to lighting (e.g., if a
person walks through a region in shadow). Such appearance
changes can be modeled in unintended ways, e.g., through
clever uses of unused part of the texture or use of blending
via the soft masks; adding explicit modeling of appearance
changes would be an interesting extension of our method.
Because the layer ordering is weakly constrained for non-
background elements, when multiple foreground layers are
present they may not end up in a natural order. Finally, our
method is limited to modeling elements with 2D textures

Input frame Edited frame 1 Edited frame 2

Figure 7. Consistent video editing. We can directly edit the
recovered textures; the edits are then automatically propagated
to the full output video. In the first row, the background is stylized;
in the second two rows, decals are added to objects. The last row
has two moving foreground groups.

Sample input frame Motion sculpture

Figure 8. Motion sculpture. Our method can produce motion
sculptures by compositing the foreground texture at several differ-
ent times onto the background via the recovered transformations.

and transformations; it would be interesting to extend our
approach to true 3D decompositions of scenes.

In summary, we presented a new method for decompos-
ing videos into layers that combines neural representations
with classic ideas in video representation, and show the effec-
tiveness of our method across a range of challenging videos,
and for applications in video editing.

2664



References
[1] Richard H Bartels, John C Beatty, and Brian A Barsky. An

introduction to splines for use in computer graphics and geo-
metric modeling. Morgan Kaufmann, 1995. 5

[2] Michael J. Black and P. Anandan. Robust dynamic motion
estimation over time. In CVPR, 1991. 2

[3] Gabriel J. Brostow and Irfan A. Essa. Motion based decom-
positing of video. In ICCV, 1999. 2

[4] Thomas Brox and Jitendra Malik. Object segmentation by
long term analysis of point trajectories. In ECCV, 2010. 2

[5] Trevor Darrell and Alex Pentland. Robust estimation of a
multi-layered motion representation. In Proceedings of the
IEEE Workshop on Visual Motion, 1991. 2

[6] Achal Dave, Pavel Tokmakov, and Deva Ramanan. Towards
segmenting anything that moves. In ICCV Workshops, 2019.
2

[7] Richard Hartley and Andrew Zisserman. Multiple view geom-
etry in computer vision. Cambridge university press, 2003.
5

[8] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn, 2018. 7

[9] Yuan-Ting Hu, Jia-Bin Huang, and Alexander G. Schwing.
Unsupervised video object segmentation using motion
saliency-guided spatio-temporal propagation. In ECCV, 2018.
2

[10] Nebojsa Jojic and Brendan J. Frey. Learning flexible sprites
in video layers. In CVPR, 2001. 1, 2

[11] Yoni Kasten, Dolev Ofri, Oliver Wang, and Tali Dekel. Lay-
ered neural atlases for consistent video editing. In SIGGRAPH
Asia, 2021. 2, 7

[12] Margret Keuper. Higher-order minimum cost lifted multicuts
for motion segmentation. In ICCV, 2017. 2, 4

[13] Margret Keuper, Bjoern Andres, and Thomas Brox. Motion
trajectory segmentation via minimum cost multicuts. In ICCV,
2015. 2

[14] Yeong Jun Koh and Chang-Su Kim. Primary object segmen-
tation in videos based on region augmentation and reduction.
In CVPR, 2017. 2, 7

[15] M. Pawan Kumar, Philip H. S. Torr, and Andrew Zisserman.
Learning layered motion segmentations of video. IJCV, 76(3),
2008. 2

[16] Dong Lao and Ganesh Sundaramoorthi. Extending layered
models to 3d motion. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 435–451, 2018. 2,
7

[17] Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and
James M Rehg. Video segmentation by tracking many figure-
ground segments. In ICCV, 2013. 7

[18] Ce Liu, Antonio Torralba, William T Freeman, Frédo Du-
rand, and Edward H Adelson. Motion magnification. ACM
transactions on graphics (TOG), 24(3):519–526, 2005. 4

[19] Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner,
Aravindh Mahendran, Georg Heigold, Jakob Uszkoreit,
Alexey Dosovitskiy, and Thomas Kipf. Object-centric learn-
ing with slot attention. In NeurIPS, 2020. 3

[20] Erika Lu, Forrester Cole, Tali Dekel, Weidi Xie, Andrew
Zisserman, David Salesin, William T. Freeman, and Michael
Rubinstein. Layered neural rendering for retiming people in
video. In SIGGRAPH Asia, 2020. 2

[21] Erika Lu, Forrester Cole, Tali Dekel, Andrew Zisserman,
William T. Freeman, and Michael Rubinstein. Omnimatte:
Associating objects and their effects in video. In CVPR, 2021.
2, 7

[22] Peter Ochs and Thomas Brox. Object segmentation in video:
A hierarchical variational approach for turning point trajecto-
ries into dense regions. In ICCV, 2011. 2, 4

[23] Peter Ochs and Thomas Brox. Higher order motion models
and spectral clustering. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 614–621. IEEE,
2012. 4

[24] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation
of moving objects by long term video analysis. TPAMI, 36(6),
2014. 2, 4

[25] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.
Gross, and A. Sorkine-Hornung. A benchmark dataset and
evaluation methodology for video object segmentation. In
CVPR, 2016. 2, 6, 7

[26] Alex Rav-Acha, Pushmeet Kohli, Carsten Rother, and Andrew
Fitzgibbon. Unwrap Mosaics: A new representation for video
editing . In SIGGRAPH, 2008. 1, 2, 7

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015. 6

[28] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
GrabCut: Interactive foreground extraction using iterated
graph cuts. In SIGGRAPH, 2004. 7

[29] Peter J Rousseeuw. Least median of squares regression. Jour-
nal of the American statistical association, 79(388):871–880,
1984. 5

[30] Jianbo Shi and J. Malik. Motion segmentation and tracking
using normalized cuts. In ICCV, 1998. 2

[31] Dmitriy Smirnov, Michael Gharbi, Matthew Fisher, Vitor
Guizilini, Alexei A. Efros, and Justin Solomon. MarioNette:
Self-supervised sprite learning. In NeurIPS, 2021. 2

[32] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow, 2020. 6

[33] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.
Deep image prior. IJCV, 128(7), 2020. 4

[34] John Y.A. Wang and Edward H. Adelson. Representing mov-
ing images with layers. IEEE Transactions on Image Process-
ing, 3(5), 1994. 1, 2, 4

[35] Josh Wills, Sameer Agarwal, and Serge Belongie. What went
where. In CVPR, 2003. 2, 4

[36] Christopher Xie, Yu Xiang, Zaid Harchaoui, and Dieter Fox.
Object discovery in videos as foreground motion clustering.
In CVPR, 2019. 2

[37] Charig Yang, Hala Lamdouar, Erika Lu, Andrew Zisserman,
and Weidi Xie. Self-supervised video object segmentation by
motion grouping. In ICCV, 2021. 3, 7

[38] Yanchao Yang, Brian Lai, and Stefano Soatto. DyStaB: Un-
supervised object segmentation via dynamic-static bootstrap-
ping. In CVPR, 2021. 2, 3, 7

2665



[39] Yanchao Yang, Antonio Loquercio, Davide Scaramuzza, and
Stefano Soatto. Unsupervised moving object detection via
contextual information separation. In CVPR, 2019. 2, 7

2666


	. Introduction
	. Related work
	. Deformable Sprites
	. Grouping
	. Global Sprite Images
	. Spatio-Temporal Deformation with Splines

	. Training Deformable Sprites
	. Results
	. Qualitative results on real videos
	. Motion segmentation results on benchmarks
	. Ablations
	. Consistent video editing

	. Discussion and Conclusion

