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Abstract

Rich semantics inside an image result in its ambiguous
relationship with others, i.e., two images could be similar
in one condition but dissimilar in another. Given triplets
like “aircraft” is similar to “bird” than “train”, Weakly Su-
pervised Conditional Similarity Learning (WS-CSL) learns
multiple embeddings to match semantic conditions without
explicit condition labels such as “can fly”. However, sim-
ilarity relationships in a triplet are uncertain except pro-
viding a condition. For example, the previous compari-
son becomes invalid once the conditional label changes to
“is vehicle”. To this end, we introduce a novel evaluation
criterion by predicting the comparison’s correctness after
assigning the learned embeddings to their optimal condi-
tions, which measures how much WS-CSL could cover la-
tent semantics as the supervised model. Furthermore, we
propose the Distance Induced Semantic COndition VER-
ification Network (DISCOVERNET), which characterizes
the instance-instance and triplets-condition relations in a
“decompose-and-fuse” manner. To make the learned em-
beddings cover all semantics, DISCOVERNET utilizes a set
module or an additional regularizer over the correspon-
dence between a triplet and a condition. DISCOVERNET
achieves state-of-the-art performance on benchmarks like
UT-Zappos-50k and Celeb-A w.r.t. different criteria.

1. Introduction

Learning embeddings (a.k.a. representations) from
data benefits machine learning and visual recognition sys-
tems [1,6,11,25,27,39,42,43,49]. Side information such as
triplets [9, 10, 22, 29, 31] indicates the comparison relation-
ship of objects, from which the embedding pulls visually
similar objects close while pushing dissimilar ones away.

The linkage between objects conveys rich information
about the object itself as well as its relationship with others,
which becomes ambiguous when the similarity is measured
from different perspectives. As illustrated in Fig. 1 (upper),
(a) female with glasses, (b) female without glasses, and (c)

(           ,         ,             )

Similar

Dissimilar

(           ,         ,             )

Similar

Dissimilar

Condition = “gender” Condition = “wear glasses”

Supervised

Supervised

Figure 1. Upper: Two triplets with the same set of instances could
be both meaningful when we measure similarity from different
conditions. Lower Left: Given original (correct) triplets and their
reversed variants (invalid w.r.t. the same similarity condition) on
UT-Zappos-50k, we compute the proportion a model predicts them
as valid ones. Last three are WS-CSL methods. Lower right: Our
proposed criterion avoids the issue of reversed triplets naturally,
and our DISCOVERNET outperforms other WS-CSL methods.

male with glasses are organized in triplets.1 We think (a)
and (b) are more similar when we measure based on “gen-
der”. In contrast, we also treat (a) and (c) as neighbors since
they “wear glasses”. Since one embedding space outputs
fixed relationships between instances, learning multiple em-
beddings facilitates discovering rich semantics.

Given triplets associated with their condition labels, in-
dicating under what kind of similarity the comparisons are
made, Conditional Similarity Learning (CSL) learns mul-
tiple embeddings to cover latent semantic [36, 38]. Dur-
ing the evaluation, CSL predicts whether a triplet is mean-
ingful or not under a specified condition. Although super-
vised CSL has been successfully applied in various appli-
cations [18, 19, 26, 34], labeling conditions introduces ad-
ditional costs. As in a recommendation system, users may
click relevant items (label item-wise similarities) based on
particular preferences, and we only collect diverse compar-
ison relationships without explicit condition labels. [24, 32]
propose Weakly Supervised-CSL (WS-CSL), where multi-
ple embeddings are learned with triplets and the model is
unaware of their corresponding conditions.

1In a valid triplet (a, b, c), (a, b) is more similar than (a, c).
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Current WS-CSL borrows the evaluation protocol from
supervised CSL [36], which checks the validness of a triplet
but neglects the specified condition. For example, we pre-
dict whether “aircraft” is similar to “bird” than “train” con-
ditioned on “can fly” in the supervised scenario, but ask
the model to predict the correctness of the triplet free from
the condition in WS-CSL. Since a triplet could be ambigu-
ous, WS-CSL may focus on weighting those embeddings to
explain the triplet instead of learning semantically condi-
tional embeddings corresponding to the ground-truth.

We demonstrate the challenge with the following ex-
periment. After removing all condition labels of correct
triplets, we compute the proportion a WS-CSL model pre-
dicts those triplets as valid ones via its learned embed-
dings, which equals the “accuracy” used in WS-CSL evalu-
ation. Then we reverse those triplets — changing the order
of the second and the third items, which makes them in-
valid under previous conditions. We further compute the
valid ratio over reversed triplets. Results in Fig. 1 (lower
left) show an optimal supervised model has 100% and
0% proportion/accuracy in two cases. A WS-CSL method
SCE-Net [32] has a higher proportion than the supervised
CSN [36] on original triplets as well as a high proportion
on reversed ones, which means it treats both original and
reversed triplets as valid. The diverse results between WS-
CSL and its supervised counterparts indicate the “accuracy”
is biased towards predicting all triplets as valid, and the cor-
rectness of a triplet without a specified condition is mean-
ingless. To check the coverage of all semantics, we propose
to measure the comparison ability of multiple learned em-
beddings after assigning them to target conditions.

We also propose Distance Induced Semantic COndi-
tion VERification Network (DISCOVERNET) to balance the
ability of comparison prediction and semantic coverage.
DISCOVERNET works in a “decompose-and-fuse” manner,
which identifies similarity conditions and captures the am-
biguous relationship with discriminative embeddings.

We aim to ensure the learned multiple embeddings in
WS-CSL are able to reveal the similarities in the target con-
ditions as much as the supervised methods. In DISCOVER-
NET, we achieve the goal from two aspects. First, we use
a set module to map various triplets with the same set of
instances to one condition, avoiding messy training update
signals. On the other hand, we add a regularizer to force se-
lecting different conditional embeddings when a model pre-
dicts both a triplet and its reversed one as valid. DISCOV-
ERNET demonstrates higher performance on benchmarks
like UT-Zappos-50k in our newly proposed criterion, which
is shown in Fig. 1 (lower right). The code is available at
https://github.com/shiy19/DiscoverNet.

Our contributions could be summarized as:

• We point out the challenges in WS-CSL evaluation and
design a novel criterion.

• Based on the proposed DISCOVERNET, we improve
the quality of learned embeddings and match the
ground-truth semantics from two aspects.

• DISCOVERNET can identify latent rich conditions and
works better than others in our criterion.

2. Related Work
Metric Learning. Learning embeddings from data attracts
lots of attention in machine learning and computer vision.
The learned embeddings encode the relationship between
objects well and facilitate downstream tasks [4, 16, 27, 31].
With the guidance of the comparison relationship between
object pairs [6], triplets [39, 43], and higher-order statis-
tics [17], visually similar instances are pulled together, and
visually dissimilar ones are pushed away. Types of loss
functions are proposed [2,9,10,22,25,30,31] to take full ad-
vantage of the similarity comparisons between instances in
a mini-batch, e.g., the triplet loss [27] and N-Pair loss [29].
Conditional Similarity Learning (CSL). Different from
measuring all linkages with a single metric, the relationship
between objects could be measured from diverse aspects
(under different conditions) [3, 23, 33]. In [36, 46], CSL is
investigated by associating conditions with image attributes,
and multiple diverse embeddings could be derived from fea-
ture masks to capture the semantic of various conditions.
CSL has been applied in applications like image-text classi-
fication [20,24], fashion retrieval [8,15,32], zero-shot learn-
ing [48] and video grounding [28]. Condition labels dur-
ing training link a particular embedding with a condition,
and the learned embeddings are evaluated by predicting the
validness of a triplet under a certain condition.
Weakly supervised CSL. Explicit condition labels are un-
available in some cases, e.g., we get a comparison tuple
once a user selects an item than others without any knowl-
edge of his/her preference (condition). The weakly super-
vised CSL, i.e., learning conditional embeddings without
condition annotations is investigated in [1], where a model
infers conditions given a triplet and then decides the right
embedding to use for training and deployment. [32] empha-
sizes the comparison ability of the fused embedding, while
[24, 42] select one metric from multiple candidates to ex-
plain a triplet. Using the same evaluation protocols as CSL,
weakly supervised CSL can get higher performance than su-
pervised CSL without involving the ground-truth condition
labels. We analyze the protocol and point out its drawbacks
of semantic coverage. We propose a new criterion to reveal
the difference between the quality of the learned embedding
and its supervised counterpart. We also propose DISCOV-
ERNET to trade-off the diversified embedding and semantic
fusion in a “decompose and fuse” manner. A set module
and a semantic regularizer are discussed to make DISCOV-
ERNET cover all target conditions.
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3. Notations and Background
We organize comparisons into triplets, i.e., T = {τ =

(x,y, z)}. For three items in τ : the anchor x ∈ RD has a
similar target neighbor y ∈ RD, and an impostor z ∈ RD
is dissimilar with x. Similarity in τ could be determined
by categories of instances. The embedding, a.k.a., feature
extractor, ϕ : RD → Rd projects an instance x into a latent
space, whose distance with y is

Dis2L(ϕ(x), ϕ(y)) = ∥L⊤(ϕ(x)− ϕ(y))∥22 . (1)

L ∈ Rd×d′ is a projection. We implement ϕ with deep neu-
ral network, and learn embedding by minimizing the viola-
tion of comparisons over |T | triplets. Define the validness
of a triplet τ by comparing the distances between “anchor-
impostor” and “anchor-target neighbor”, i.e.,

Diffτ = Dis2L(ϕ(x), ϕ(z))−Dis2L(ϕ(x), ϕ(y)) . (2)

If the anchor has a larger distance with the impostor
than with the target neighbor, the embedding is con-
sistent with the relationship in τ . Given a loss ℓ(·),
e.g., the margin loss or the logistic loss, we optimize
minϕ,L

∑
τ∈T ℓ (Diffτ − γ). Then Diffτ would be

larger than the margin γ, so that anchor and the target neigh-
bor are pulled while the impostor would be pushed away.

Conditional similarity learning (CSL). Comparisons in
triplet τ may vary across environments. For example, when
we ask which image in a candidate set is close to a given an-
chor, different workers may measure the similarities from
their own aspects. In CSL, we associate a condition la-
bel k ∈ {1, . . . ,K} with each triplet, i.e., T = {τ =
(x,y, z, k)}, indicating based on the k-th condition the
comparison in τ is made. One embedding ϕ fails to capture
the diverse relationship when comparisons with the same
set of instances are opposite, e.g., τ1 = (x,y, z, k) vs.
τ2 = (x, z,y, k′). CSL extends ϕ, L, and Diffτ to ϕk,
Lk, and Diffkτ , respectively. K embeddings ΨK covering
K conditions are optimized:

min
ΨK={ψk=Lk◦ϕk}K

k=1

∑
τ∈T

ℓ

(
K∑
k′=1

I[k′ = k]
[
Diffk

′

τ

]
− γ

)
.

(3)
I[·] outputs 1 when the input is true and 0 otherwise. In
Eq. 3, only the distance corresponding to condition k of the
triplet τ is activated. In evaluation, ψk is used to check
whether a triplet from the k-th condition is valid or not.

Weakly supervised CSL (WS-CSL). Due to additional
annotation costs and ambiguity of condition labels, the
triplet-wise condition labels {k} are unknown in WS-CSL.
The model needs to infer condition labels and activates the
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Figure 2. Comparison between previous (upper) and our proposed
(lower) WS-CSL criterion. Instead of predicting the validness of
triplets indistinguishably, We align the learned embeddings with
target conditions and compute condition-specific accuracy.

corresponding embeddings to capture triplet’s characteris-
tic. The target of WS-CSL is to learn a set of embeddings
ΨK , which is able to capture those semantics of target con-
ditions as much as the supervised CSL.

4. Evaluation of Weakly Supervised CSL
Current WS-CSL follows CSL to measure ψk by pre-

dicting whether three instances could form a triplet without
a condition label. We analyze the issues of the current cri-
terion and propose our new evaluation protocol.

4.1. Analysis of Supervised CSL Evaluation

In supervised CSL evaluation, a model is asked to deter-
mine whether a triplet τ1 = (x,y, z, k) is valid or not given
the condition k. In detail, we get Diffkτ with the corre-
sponding conditional embedding ψk and predict τ1 as valid
if Diffkτ > 0. Since τ1 = (x,y, z, k) and τ2 = (x, z,y, k)
could not co-exist, we sample the same number of valid
triplets from each condition in evaluation. The average
accuracy (proportion of triplets predicted as correct) over
them reveals the quality of a CSL model.

Since the ability of comparison prediction is important,
previous WS-CSL methods follow this protocol without us-
ing the test-time condition labels. In other words, we predict
whether a triplet τ3 = (x,y, z) is correct without its con-
dition label. So in this case, a WS-CSL model predicts the
validness of a triplet with all learned embeddings.

There are two issues when evaluating with the supervised
protocol directly. First, a model tends to find a condition
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to explain the triplet, which predicts all triplets as true in
most cases, e.g., even for reversed triplets (demonstrated in
Fig. 1). Specifically, given a valid τ1 = (x,y, z, k), we con-
struct τ2 = (x, z,y, k), and ask a WS-CSL model whether
τ4 = (x, z,y) is valid or not. Since τ2 is invalid under the
same condition k, an optimal supervised model will predict
τ1 as true and τ2 as false. However, a WS-CSL method
SCE-Net [32] predicts most original (τ3) and reversed (τ4)
triplets as valid, which makes the evaluation biased.

Moreover, the current evaluation predicts the validness
of the triplet while neglecting from which condition the
WS-CSL model determines the relationship. We’d like a
WS-CSL model works similarly to a supervised one, so not
only the fusion of conditional embeddings ΨK should cover
all target semantics, but also the behavior of each ψk reveals
the relationship w.r.t. a specific condition. Therefore, we
propose a new criterion to meet the previous requirements.

4.2. Condition Alignment for WS-CSL Evaluation

We claim that predicting the validness of a triplet is only
meaningful given a specific condition. Based on the ground-
truth conditions and the validness of triplets during the eval-
uation, we propose a two-step new criterion. First, we map
target conditions to WS-CSL embeddings ΨK . Then, we
evaluate triplets accuracy with corresponding ψk as in the
supervised scenario, which reveals how much a WS-CSL
model covers the target conditions as the supervised model.

We assume there is the same number of embeddings
and conditions.2 Given triplets from the k-th condition for
evaluation, we compute the triplet prediction accuracy with
{ψk′}Kk′=1. We collect accuracy for all conditions and form
a cost matrix C ∈ RK×K , whose element Ck′k is the error
(100 minus the accuracy) using k′-th embedding to predict
the triplets from the k-th condition. The alignment could be
obtained from C with the following two strategies.
Greedy Alignment. We use a greedy strategy to find the
most suitable embedding, i.e., argmink′ Ck′k, for a condi-
tion k. So one embedding may handle multiple conditions.
OT Alignment. We optimize the following Optimal Trans-
port (OT) objective [37] to obtain a mapping T ∈ RK×K

from the embedding set to the condition set

min
T≥0

⟨T,C⟩ s.t. T1 =
1

K
1, T⊤1 =

1

K
1 . (4)

Eq. 4 minimizes the total cost when we use an embedding to
predict triplets from another condition. We set the marginal
distribution of the transportation T as uniform. By mini-
mizing Eq. 4 we obtain T as a map. Element Tk′k reveals
how much the k′-th embedding is related to the k-th con-
dition. We can further obtain a one-to-one mapping based
on T under assumptions [5]. Fig. 2 shows a comparison
between our proposed and previous criteria.

2Our analysis could be extended when their numbers do not match.
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Figure 3. Illustration of DISCOVERNET with two types of space.
The embedding space could be decomposed based on two differ-
ent projections (L1, L2) and each of them has their own “instance-
instance” linkage preference. For example, the first similarity con-
dition is about “Color” and the second one focuses on “Type”.
Besides, we identify the latent similarity condition through the
“triplets-condition” space, where a triplet is summarized as a vec-
tor by g(·) and we match this triplet with all condition anchors
(a1, a2). The ability of DISCOVERNET to learn decomposed em-
beddings are demonstrated in Section 6.3.

Discussions. Based on our criterion, a WS-CSL model gets
high accuracy only when all conditions can be explained
with certain learned embeddings, and the model predicts
triplets from diverse aspects well with different embed-
dings. Thus our criterion depicts the “semantic coverage”
of ΨK , which also reveals the gap between ΨK in WS-CSL
and its supervised counterpart. We may compute the cost
C over the validation data with a small amount of ground-
truth condition labels, and use the obtained alignment to
compute the final accuracy on the test set. Benefiting from
this condition-embedding alignment, our criterion naturally
avoids the issue from the reversed triplets shown in Fig. 1.

5. DISCOVERNET for Weakly-Supervised CSL

We’d like to learn the embedding set ΨK to cover all
rich semantics, and the comparison relationship under each
target condition could be revealed by a certain conditional
embedding ψk. We propose Distance Induced Seman-
tic Condition VERification Network (DISCOVERNET) for
WS-CSL (illustrated in Fig. 3). DISCOVERNET introduces
a “triplets-condition” space to match condition scores of a
triplet, which automatically selects or fuses multiple pair-
wise distances measured by “instance-instance” spaces. As
we discussed before, a WS-CSL model could violate the se-
mantic constraints over artificially reversed triplets, which
influences the coverage of semantics. We consider a set
module to avoid those cases during training, which maps
various triplets with the same set of instances to one condi-
tion. Furthermore, we add a regularizer to force the model
to select diverse conditions if both original and reversed
triplets are predicted as valid ones.
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5.1. Decompose and Fuse Hierarchical Spaces

We assume condition-specific embeddings Ψ have dif-
ferent projections LK but share the same ϕ.3 Then we have{
Diffkτ = Dis2Lk

(ϕ(x), ϕ(z))−Dis2Lk
(ϕ(x), ϕ(y))

}K
k=1

.

(5)
The space measured by projection Lk biases towards a “lo-
cal” view of the embedding ϕ, and allows inconsistent com-
parisons across different “instance-instance” spaces.

The overall linkages between objects are measured based
on a fused distance over condition-specific comparisons.
Different from the indicator in Eq. 3 selecting the distance,
we use a multinomial distributed variable cτ ∈ {0, 1}K to
denote the latent condition label of a triplet τ . There are K
binary elements in cτ . We optimize ϕ and LK jointly:

min
ϕ,LK

∑
τ∈T

ℓ
(
Ecτ

[
Diffkτ

]
− γ
)
. (6)

The condition of the triplet is revealed by the expected dis-
tance w.r.t. the distribution of cτ [44], which selects or
fuses the related conditions of the triplet. If a triplet could
only be valid under the k-th condition, we expect cτ has
the k-th element ckτ = 1 and other elements equal 0. Then
the expected distance activates the k-th metric, and the tar-
get neighbor (resp. impostor) is pulled close (resp. pushed
away) with Lk. The k-th embedding becomes more specific
for the condition. If the triplet is related to more conditions,
we expect τ to fuse the semantics from multiple distances
together. Therefore, values in τ determine whether to se-
lect or fuse conditional embeddings, which emphasizes the
semantic coverage or comparison prediction, respectively.

Given Ecτ [Diffkτ ] =
∑K
k=1 Pr(c

k
τ = 1)Diffkτ , the vari-

able cτ indicates the influence of the posterior probability
Pr(ckτ = 1) that a triplet belongs to the k-th condition.
We introduce a “triplets-condition” space, where a triplet
is embedded to a point with mapping g(·). g summarizes
the triplet τ and maps the set of embeddings in τ into a
d-dimensional vector. We expect triplets with similar con-
ditions will be close. Furthermore, K learnable anchors
{ak ∈ Rd}Kk=1 captures those similarity conditions, and we
match a triplet to its closest anchor:

Pr(ckτ = 1) ∼ Sim(g(τ), ak)

=
exp (cos(g(τ), ak)/ς)∑K
k′ exp (cos (g(τ), ak′) /ς)

. (7)

We implement the similarity with cosine. ς > 0 is the tem-
perature. The larger the ς , the more uniform Pr(ckτ = 1)
is. If a triplet is related to the k-th condition, then its trans-
formed vector g(τ) is close to the anchor ak. Then a larger

3Since conditions are not independent, it is not necessary to match each
condition with an embedding ψk . More discussions are in experiments.
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Figure 4. Illustration of the set module (left) and semantic regu-
larization (right) to deal with artificially reversed triplets.

Sim(g(τ), ak) emphasizes the k-th condition when com-
puting the expected distance. Benefited from the “decom-
pose and fuse” manner in Eq. 7, a triplet that has a clear con-
dition tendency will be close to a particular anchor, which
makes cτ becomes one-hot, and the embedding is highly
correlated with the corresponding condition. Then embed-
dings will cover more semantics. Those ambiguous triplets
will have a nearly uniform cτ . Although hard to differenti-
ate semantics in this case, their fused distances take advan-
tage of all embeddings to predict the validness of triplets
and improve the comparison prediction ability.
Instance Space for Semantic Discovery. Given Lk ∈
Rd×d, we define the k-th conditional embedding ψk(x) as

ψk(x) = ϕ(x)(I + Lk) = ϕ(x) + ϕ(x)Lk . (8)

We obtain the local embedding ψk in a residual form, where
Lk encodes the similarity bias of the k-th condition based
on the general embedding ϕ. If ϕ is discriminative enough
for a particular similarity condition, we do not need to over-
allocate the local metric. In other words, strong ϕ makes
Lk degenerate to zero. In summary, distances for different
similarity conditions in Eq. 5 are calculated based on ψk.

5.2. Condition Space for Semantic Fusion

Based on our analyses in Section 4, a WS-CSL model
could violate the semantic constraints in vanilla training.
A too flexible mapping g will make the model treat both
a triplet and its reversed version as correct ones while acti-
vating almost the same conditional embedding ψk. In other
words, the model may focus on fusing those conditions with
g and collapse all semantics into one conditional space.

Since semantic constraints on a WS-CSL model are lim-
ited, we address the issue with the help of artificially re-
versed triplets. For a pair of original triplet and its reversed
version, we restrict the model’s flexibility by either weak-
ening the representation ability of g with a set module or
adding another semantic regularizer (illustrated in Fig. 4).
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Set Module. A natural way to implement g is to cap-
ture the order of instances in a triplet with a sequential
model [14, 32]. As we mentioned, a triplet τ1 = (x,y, z)
and its reversed version τ2 = (x, z,y) should belong to
different conditions. However, without any constraints, we
find a sequential module has the ability to weight conditions
in different manners for τ1 and τ2, but it is likely to work in
a “lazy” way. In detail, a model may learn a strong condi-
tional embedding ψk and map both τ1 and τ2 to similar dis-
tributions that have larger weights on ψk and small weights
on others. Then, rather than making learned embeddings
associated with corresponding conditional semantic mean-
ings, a model tends to improve the fusion module and use
partial embeddings to cover all semantics.

Therefore, we consider a set module to make g agnos-
tic with the order in the triplet. In particular, we use the
pairwise concatenation of instance embeddings as the in-
put of g, i.e., for a triplet τ1, we obtain its embeddings,
ϕ(τ) = (ϕ(x), ϕ(y), ϕ(z)) and get the augmented set:

P = {[ϕ(x), ϕ(y)], [ϕ(x), ϕ(z)]} ,

which encodes the pairs in τ1. Since [ϕ(y), ϕ(z)] is not
included in P , we get the same representation for τ1 and
the reversed τ2. Moreover, to take a holistic view of τ , we
transform with element-wise maximization [47]:

g(τ) = FC max
p∈P

FC(p) . (9)

FC is a fully connected network with one hidden layer and
ReLU activation, which projects the given input to a same-
dimensional output. With Eq. 9, the pairwise relationship
in the triplet is evaluated first, and the most evident one is
activated to represent the whole triplet. In summary, the
set module restricts the ability of g and makes one triplet
and its reversed version have the same representation. Al-
though it is a bit counter-intuitive, the special configuration
of g avoids the ambiguous update directions of the model
so that the conditional embeddings should be more discrim-
inative to cover the target semantics. We also investigate the
Transformer [35] implementation of g in the supplementary.
Semantic Regularizer. We can also think from another as-
pect by regularizing a representative g. We set Eq. 9 to

P = {[ϕ(x), ϕ(y)], [ϕ(x), ϕ(z)], [ϕ(y), ϕ(z)]} ,

covering the sequential information of instances. Due to an
additional pair in P , different orders of instances in τ1 and
τ2 do not share the same output. In this case, it is abnormal
when the model predicts τ1 and τ2 based on the same con-
dition k. We construct a semantic regularization to avoid
this case. If Diffkτ1 > 0 and Diffkτ2 > 0 (the model treats
two triplets as valid ones),4 we add the following semantic

4We check this condition with the current model during training. Pa-
rameters in Diffk

τ here are detached without gradient back propagation.

regularizer to make the activated conditions diverse:

Reg(g) = λ

K∑
k=1

min (Sim(g(τ1), ak), Sim(g(τ2), ak)) .

(10)
In other words, if τ1 and τ2 are predicted as valid ones,
we minimize the similarity between their condition distribu-
tions cτ1 and cτ2 . The similarity between these two multino-
mial distributions are measured with Histogram Intersection
Kernel (HIK) [12,40,41], which is the sum of element-wise
minimum of two distributions. Therefore, with the help of
Eq. 10, we explicitly enforce the WS-CSL model considers
different conditional embeddings to explain triplets, which
further improve the semantic coverage of ΨK .
Discussions. There are two implementations of DISCOV-
ERNET, using the set module or the semantic regularizer.
The two strategies are designed from different aspects to
make the WS-CSL model contain rich semantics as much
as the supervised model. Since the set module avoids the di-
verse selection for reversed triplet naturally, it satisfies the
regularizer directly. Thus, it does not help if we combine
two strategies together.

6. Experiments
We verify the effectiveness of DISCOVERNET over

benchmarks based on our new criterion. Ablation stud-
ies and visualization results demonstrate DISCOVERNET
learns conditions successfully as the supervised methods.
Detailed setups and more results are in the supplementary.

6.1. Experimental Setups

Datasets. UT-Zappos-50k Shoes contains 50,025 im-
ages of shoes with four similarity conditions collected on-
line [45, 46]. Following [24, 32, 36], we discretize the
“height” condition and resize all images to 112 by 112.
There are 200,000, 20,000, and 40,000 triplets following
splits in [36] for training, validation and test, respectively.
Celeb-A Faces has 202,599 face images of different iden-
tities [21]. 8 of the 40 attributes (conditions) are selected
for analysis [24]. We resize all images to 112 by 112.
400,000/80,000/160,000 triplets are used for model train-
ing/validation/test. We construct a more difficult Celeb-A†

by combining related binary attributes in Celeb-A together,
where each multi-choice condition has 5-7 discrete values,
We apply the same configuration for Celeb-A variants.
Splits. All models are trained and evaluated over triplets
in [36]. Since there are no published triplets over Celeb-A,
we randomly sample triplets by ourselves. Equal number
of triplets for each attribute are sampled from the standard
training, validation, and test split of Celeb-A [21]. For each
triplet, we organize instances with the same attribute label
into a similar pair. Otherwise, we think they are dissimilar.
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Table 1. GR accuracy and OT accuracy on UT-Zappos-50k. We
investigate two cases that training the model from scratch and fine-
tune the model with pre-trained weights. CSN is the fully super-
vised CSL method which utilizes condition labels during training.
We make the best WS-CSL results in each case in bold.

Setups → w/ pretrain w/o pretrain

Criteria → GR Acc. OT Acc. GR Acc. OT Acc.

CSN [36] 87.86 87.86 82.14 82.14
LSN [24] 76.26 75.90 71.49 68.49

SCE-Net [32] 72.21 71.15 64.08 61.03

DISCOVERNETSet 76.98 75.68 74.67 74.13
DISCOVERNETReg 77.84 77.68 72.99 71.46

Criterion. We utilize our proposed new criterion to evalu-
ate WS-CSL methods. After constructing a mapping from
condition to learned embeddings with greedy or OT strate-
gies, we compute the average triplet prediction accuracy
as in the supervised case. We denote the results with two
strategies as GR Accuracy and OT Accuracy, respectively.
Comparison Methods. We compare DISCOVERNET
with both supervised method Conditional Similarity Net-
works (CSN) [36] and two WS-CSL methods, i.e., Latent
Similarity Networks (LSN) [24] and Similarity Condition
Embedding Network (SCE-Net) [32].
Implementation Details. Following [24, 32, 36], we use
ResNet-18 [13] to implement ϕ. Different from previous lit-
erature fine-tuning the backbone based on the weights pre-
trained on ImageNet [7], we also consider the case that we
train the full model from scratch. The model with the best
accuracy over the validation set is selected for the final test.

6.2. Benchmark Evaluations

UT-Zappos-50k. The results of DISCOVERNET and com-
parison methods over UT-Zappos-50k are listed in Ta-
ble 1, which contains the greedy accuracy and OT accuracy
over both pre-trained and non-pre-trained weights. We re-
implement all comparison methods. DISCOVERNETSet and
DISCOVERNETReg denote the variant using set module and
semantic regularization, respectively.

By observing both setups and criteria, CSN becomes the
“upper-bound” for WS-CSL methods. The main reason is
that ground-truth condition labels in CSN associate an em-
bedding with a particular condition during training. The su-
pervised CSN gets the same greedy and OT accuracy. The
explicit supervision in CSN makes those embeddings biased
towards different semantics, which gets the same one-to-
one OT mapping with the greedy strategy. WS-CSL meth-
ods get lower OT accuracy than the corresponding greedy
accuracy. The main reason is that OT accuracy requires a
one-to-one mapping between embeddings and conditions,
where those conditions would be related. While greedy ac-

Table 2. Greedy accuracy and OT accuracy on 8-condition Celeb-
A (binary conditions) and its attribute merged variant Celeb-A†

with five multi-choice conditions, respectively. All methods are
trained from scratch. More results are in the supplementary.

Celeb-A Celeb-A†

Criteria → GR Acc. OT Acc. GR Acc. OT Acc.

CSN [36] 83.41 83.41 67.72 67.72
LSN [24] 70.29 69.89 57.02 56.33

SCE-Net [32] 69.47 51.81 51.49 50.64

DISCOVERNETSet 78.45 77.98 64.57 63.98
DISCOVERNETReg 78.04 76.96 57.43 56.94

Table 3. Influence of the embedding number (the number of pro-
jections in LK ) for DISCOVERNETSet and DISCOVERNETReg on
Celeb-A. Models are fine-tuned with pre-trained weights.

DISCOVERNETSet DISCOVERNETReg

# Projections GR Acc. OT Acc. GR Acc. OT Acc.

2 78.28 77.74 71.92 71.82
4 79.58 77.60 73.19 71.32
6 80.41 77.69 75.53 73.87
8 80.65 78.81 75.19 74.07

10 81.35 78.68 76.09 73.77

curacy allows one embedding to handle multiple conditions.
As we discussed before, SCE-Net tends to fuse the se-

mantic meaning of embeddings with its self-attention mod-
ule, so each of its learned embeddings is hard to cover a
specific condition. By contrast, LSN performs better in our
criteria, benefiting from its multi-choice learning paradigm.
Our DISCOVERNET can get the best performance among
WS-CSL methods. In detail, DISCOVERNETSet works bet-
ter when training from scratch and DISCOVERNETReg per-
forms well with the pre-trained weights. One possible rea-
son is that the pre-trained weights are strong and make the
model (especially the mapping function g) too flexible, so
an explicit regularization helps more. In summary, our cri-
terion reveals how much similar a WS-CSL model performs
to a supervised one.
Celeb-A. In Table 2, we investigate (the 8 attribute) Celeb-
A and its variant Celeb-A† with model trained from scratch.
DISCOVERNETSet and DISCOVERNETReg still get better
performance than other WS-CSL counterparts, while CSN
is still the ‘upper bound’ due to the help of condition labels.

6.3. Ablation Studies and Visualizations

We analyze the properties of DISCOVERNET and show
the visualization results. More analysis such as the help of
the WS-CSL embeddings given limited conditional super-
visions are in the supplementary.
Influence of condition number configuration. We set
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(a) Functional Types (b) Closing Mechanism (c) Suggested Gender (d) Height of Heels

Figure 5. TSNE of the learned embeddings for each of the four conditions (i.e., functional types, closing mechanism, suggested gender
and height of heels) on UT-Zappos-50k dataset based on DISCOVERNETReg.

(a) 5 o Clock Shadow

(b) Eyeglasses

(c) Male

(d) Wearing Lipstick

Figure 6. Visualization of the image retrieval results for each of the
four conditions on Celeb-A dataset with the learned embedding of
DISCOVERNETReg. The first image in each row is the anchor, and
faces are ranked by distances to the anchor in an ascending order.

the number of embeddings in benchmarks the same as the
number of ground-truth conditions, which is 8 in Celeb-
A. We show the change of the two criteria along with
the increase of the embedding number in Table 3. Both
DISCOVERNETSet and DISCOVERNETReg get higher OT
accuracy when the number of embeddings increases from
two to eight, and decreases from eight to ten. We conjecture
that allocating too many local metrics interfere with each
other and their related semantics partially overlap. Besides,
greedy accuracy shows a generally incremental trend since
it allows one embedding to handle multiple conditions.
Visualization of semantic embeddings. To better illustrate
how our DISCOVERNET learns for different semantics, we
provide TSNE visualizations for each of the learned seman-
tic spaces {ψk}Kk=1 on UT-Zappos-50k in Fig. 5. DISCOV-
ERNET captures the variety of conditions and learns dif-
ferent embeddings for the dataset with good interpretabil-
ity. Typically, on the condition “height of heels”, the heel
height of the shoes is decreasing from the left-top of the
embedding space to the bottom, then to the right-top.
Visualization of conditional image retrieval. We provide

image-retrieval visualizations for four conditions on Celeb-
A in Fig. 6. We keep the anchor image, and retrieve its
neighbor from a set of randomly collected candidates with
different local embeddings. Benefiting from the correspon-
dence obtained when computing the OT accuracy, we can
qualitatively measure whether a local embedding could re-
veal the corresponding semantic via its ranking of images.
For example, on the “Male” condition, since the anchor
image has the label “Female”, DISCOVERNET makes all
images labeled “Female” close while pushing images re-
lated to “Male” away. The results indicate our DISCOV-
ERNET can cover latent semantics of data and each of its
learned conditional embedding ψk corresponds to a partic-
ular meaningful semantic.

7. Conclusion
We revisit WS-CSL and observe that evaluating the qual-

ity of the model without specifying concrete conditions pro-
duces biased accuracy. Thus, we match multiple learned
embeddings with ground-truth conditions in advance before
predicting the correctness of given triplets, which simulta-
neously considers the ability of triplet prediction and se-
mantic coverage. We also utilize a set module or a semantic
regularizer in our proposed DISCOVERNET to emphasize
the correspondence between a conditional embedding and
a semantic condition. DISCOVERNET outperforms other
WS-CSL methods on benchmarks with different criteria.
Limitations. Our new criterion evaluates WS-CSL in a
“supervised” manner by assigning multiple learned embed-
dings to target conditions. The criterion does not fit the case
when the goal is not to learn a model similar to its super-
vised counterpart, e.g., to distinguish whether triplets are
correct and explain their validness as much as possible.
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deep metric learning. In ECCV, pages 277–294, 2020. 1, 2

[11] Boyuan Feng, Yuke Wang, Zheng Wang, and Yufei Ding.
Uncertainty-aware attention graph neural network for de-
fending adversarial attacks. CoRR, abs/2009.10235, 2020.
1

[12] Kristen Grauman and Trevor Darrell. The pyramid match
kernel: Discriminative classification with sets of image fea-
tures. In ICCV, pages 1458–1465, 2005. 6

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 7

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780, 1997. 6

[15] Yuxin Hou, Eleonora Vig, Michael Donoser, and Loris Baz-
zani. Learning attribute-driven disentangled representations
for interactive fashion retrieval. In ICCV, pages 12147–
12157, 2021. 2

[16] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin,
Serge J. Belongie, and Deborah Estrin. Collaborative metric
learning. In WWW, pages 193–201, 2017. 2

[17] Marc T Law, Nicolas Thome, and Matthieu Cord. Learning a
distance metric from relative comparisons between quadru-
plets of images. IJCV, pages 1–30, 2016. 2

[18] Kuang-Huei Lee, Xi Chen, Gang Hua, Houdong Hu, and Xi-
aodong He. Stacked cross attention for image-text matching.
In ECCV, pages 212–228, 2018. 1

[19] Yen-Liang Lin, Son Tran, and Larry S. Davis. Fashion outfit
complementary item retrieval. In CVPR, pages 3308–3316,
2020. 1

[20] Weiyang Liu, Zhen Liu, James M. Rehg, and Le Song. Neu-
ral similarity learning. In NeurIPS, pages 5026–5037, 2019.
2

[21] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In ICCV, pages
3730–3738, 2015. 6

[22] R. Manmatha, Chao-Yuan Wu, Alexander J. Smola, and
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