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Abstract

Concurrent perception datasets for autonomous driving
are mainly limited to frontal view with sensors mounted
on the vehicle. None of them is designed for the over-
looked roadside perception tasks. On the other hand, the
data captured from roadside cameras have strengths over
frontal-view data, which is believed to facilitate a safer
and more intelligent autonomous driving system. To ac-
celerate the progress of roadside perception, we present
the first high-diversity challenging Roadside Perception 3D
dataset- Rope3D from a novel view. The dataset consists
of 50k images and over 1.5M 3D objects in various scenes,
which are captured under different settings including var-
ious cameras with ambiguous mounting positions, cam-
era specifications, viewpoints, and different environmental
conditions. We conduct strict 2D-3D joint annotation and
comprehensive data analysis, as well as set up a new 3D
roadside perception benchmark with metrics and evalua-
tion devkit. Furthermore, we tailor the existing frontal-view
monocular 3D object detection approaches and propose to
leverage the geometry constraint to solve the inherent ambi-
guities caused by various sensors, viewpoints. Our dataset
is available on https://thudair.baai.ac.cn/rope.

1. Introduction
Autonomous driving plays a crucial role in helping re-

duce traffic accidents and improve transportation efficiency.
Current perceptual systems mainly equip the moving vehi-
cle with LiDAR or camera sensors. Owing to the move-
ment, the vehicle perceptual system can not observe sur-
roundings for a long period. In addition, since the mounted
sensor is relatively low (usually on the top of a vehicle), the
perceptual range is comparatively limited and is vulnerable
to occlusion. On the contrary, the data captured from road-
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Figure 1. The comparison of (a) frontal view and (b) roadside
camera view with a pitch angle. The car view focuses more on
the frontal area whereas the roadside camera observes the scene
in a long-term and large-range manner. Vehicles can be easily
occluded by closer objects in frontal view but the roadside view
alleviates the risk. For example, for car-view (a), the white van is
occluded by the black jeep whereas in roadside view (b) they are
both visible, corresponding to the white and pink 3D boxes in (c).
The triangle mark denotes the same LiDAR-mounted vehicle.

side cameras has its inherent strengths in terms of robust-
ness to occlusion and long-time event prediction, since they
are collected from cameras mounted on poles a few meters
above the ground. The comparisons between two different
views of data are depicted in Fig. 1.

The importance of roadside perception is listed as fol-
lows: (1) Cooperative to Autonomous driving (AD). AD
still faces safety challenges and uncontrolled threats due to
blind spots. Instead, the roadside view can cover the blind
spots for two extra advantages over car views: a long-range
global perspective to extend vehicles’ perception field spa-
tially and temporally and global trajectory prediction for
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safety. For example, a pedestrian walking behind a parked
vehicle might suddenly crash into a moving vehicle since
vehicle sensors fail to detect abrupt changes in the environ-
ment owing to the limited perceptual range or heavy occlu-
sion. On the contrary, the roadside view is capable of behav-
ior prediction timely. (2) Global perception. Further objects
are occluded (even with 360◦ sensors) by closer objects in
existing car-view datasets, causing blind spots. Thanks to
roadside cameras mounted overhead, the invisible region is
now visible. Besides, Autonomous vehicles (AV) can be in-
formed to choose a faster lane when having a dead car in the
queue since the roadside view perceives globally. (3) Cost-
efficient. In terms of cost, it is worthy for ensuring safety
by cooperative perception and cost-efficient since informa-
tion from roadside cameras can broadcast to all surrounding
AVs. (4) Intelligent traffic control. The roadside perception
also facilitates smart traffic control and flow management.
The critical contribution of roadside perceptual systems in
facilitating a safer and more intelligent autonomous driving
system has been acknowledged in many works [8, 34, 41].

However, existing researches on the roadside percep-
tual ability focus only on 2D tasks such as 2D detection
and tracking, the ability of 3D localization is still under-
explored [29, 30, 39]. In this work, we focus on monocular
3D detection that localizes objects in 3D space from a single
image. Although abundant perception datasets have been
published to fuel the development in autonomous driving
from vehicle view, such as KITTI [12], nuScenes [5], A*3D
[32] and Waymo [38], none of them is designed particu-
larly for the overlooked roadside 3D perception task. We
hence release the first large-scale high-diversity Roadside
Perception Dataset (Rope3D), with the hope of bridging
this gap. Compared with the existing vehicle view datasets,
the roadside perceptual data can be different in three ways.
First, the ambiguity lies everywhere due to various cameras
specifications such as distinct pitch angles of the viewpoint,
mounting heights as well as various roadside environments,
which increases the difficulty of monocular 3D detection
tasks to a great extent. Second, since the roadside cameras
are mounted on the poles instead of on top of the vehicle
in frontal view, thus the assumption of the camera’s optical
axis being parallel to the ground is no more valid, leading to
the incompatibility of directly applying the existing monoc-
ular 3D detection approaches using this prior. Third, due
to a much larger sensible range of the roadside perceptual
system, a larger number of objects are expected to observe
in roadside view, increasing the density and difficulty of a
perceptual system. All these differences prevent directly ap-
plying most existing 3D detection methods. We hence tai-
lor existing monocular 3D object detection methods to the
roadside application.

To summarize, our contributions are as follows:

• We present the first challenging high-diversity road-

side dataset termed “Rope3D”, consisting of 50k im-
ages and over 1.5M 3D objects collected across a va-
riety of lighting conditions (daytime / night / dusk),
different weather conditions (rainy / sunny / cloudy),
and distinct road scenes with different camera specifi-
cations like focal length and viewpoints.

• We specially tailor current frontal-view monocular 3D
detection methods to deal with the roadside view data
and conduct a comprehensive study with the new 3D
detection metrics particularly designed for roadside 3D
detection tasks, hoping to facilitate the development of
monocular 3D perception tasks in roadside scenarios.

2. Related work
2.1. Frontal-view Autonomous Driving Datasets

Recent years have witnessed great progress in au-
tonomous driving, thanks to a great number of large-scale
traffic scene datasets. [2, 10, 11, 17, 26, 32, 44] As a pio-
neer work, KITTI [12] provides multimodal data and opens
a leader board for a variety of tasks. Although the raw
point clouds from LiDAR is 360◦ around the collecting ve-
hicle, the annotation is only conducted within the overlap-
ping frontal view of the camera. To tackle the limitation, the
Honda Research Institute 3D Dataset (H3D) [31] supplies a
total of 1.1M 3D boxes in full 360 view, which accelerates
full-surround multi-object detection and tracking. Another
360◦ view multimodal 3D detection dataset is introduced in
nuScenes [5], providing over 1.4M annotated 3D boxes in
1000 scenes, including nighttime and rainy conditions. The
ApolloScape and ApolloCar3D [16, 37] focus on the pixel-
wise semantic segmentation task, including scene parsing,
3D car instance, lane segmentation tasks. The Argoverse
dataset [7] designs for vehicle perception tasks such as 3D
tracking and motion forecasting. The Waymo Open Dataset
[38] consists of over 1000 scenes and 12M 3D boxes in
urban and suburban scenarios, under various weather and
lighting conditions. Although the above-mentioned datasets
have fueled the innovation on autonomous driving, they are
all designed for vehicle view perception. However, there
is a lack of a dataset helping us to effectively carry out re-
search on 3D localization under roadside surveillance cam-
eras. A related work is from BoxCars [36], which performs
fine-grained vehicle recognition by estimating the projected
vertices of 3D bounding box on the image rather than real-
world location, size, and orientation. Another contempo-
rary work [49] focuses on the LiDAR-based 3D detection
task. The comparisons between our roadside 3D dataset and
the previous AD datasets are listed in Table 1.

2.2. Monocular 3D Object Detection

Though challenging, monocular-based 3D detection is
still an attractive solution especially in autonomous driving
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Figure 2. The examples of collected samples under different weather and conditions. From left to right, each column corresponds to
clear/sunny, rainy, night and dawn/dusk. More samples can be found in supplementary material.

View Dataset
RGB
frames

Scenes
LiDAR
channel

3D
Boxes

2D
Boxes

RGB
resolution

Cls Year
Diversity Range

(m)Rain Night Dawn
KITTI [12] 15k 22 64 80k 80k 1392×512 8 2013 70
Apollo Scape [16] 144k / 64 70k 0 3384×2710 8-35 2019 ✓ 420
AS lidar [26] 90k / 64 475k 0 1920×1080 8 2019 70
Lyft Level 5 [17] 46k 366 40 1.3M 0 1920×1080 9 2019 /
A2D2 [13] 12k / 16 9k 0 1928×1208 38 2019 100
Argoverse [7] 22k 113 32 993k 0 1920×1200 15 2019 ✓ ✓ 200
H3D [31] 27.7k 160 64 1M 0 1920×1200 8 2019 100
A*3D [32] 39k / 64 230k 0 2048×1536 7 2020 ✓ ✓ 100
CityScapes 3D [11] 5k 1150 no† 27k 0 2048×1024 8 2020 150
nuScenes [5] 1.4M 1000 32 1.4M 0 1600×900 23 2020 ✓ ✓ 75
Waymo Open [38] 230k 1150 64 12M 9.9M 1920×1080 4 2020 ✓ ✓ ✓ 75

Frontal

ONCE [27] 7M 1M 40 417k 0 1920×1020 5 2021 ✓ ✓ 200
BoxCars116k [36] 116k 137 no 116k‡ 0 ∼128×128 6 2018 /

Roadside
Ours 50k 26 40/300 1.5M 670k 1920×1080 12 / ✓ ✓ ✓ 200

Table 1. The comparison of 3D AD datasets. The top and bottom parts indicate the front view and roadside view datasets, respectively.
LiDAR channel means the beam number of the LiDAR laser. The 2D boxes number denotes those who only have 2D box annotations.‘/’
denotes unknown information. (†): No lidar sensors to obtain ground truth, use stereo instead. (‡): For BoxCars116k dataset, only the
projected eight corner points instead of the 3D bounding boxes are provided. In other words, the location, dimension, and orientation of
3D bounding boxes are unknown. Besides, only cropped images around 128×128 rather than the full images are provided.

systems, where the method predicts the 3D bounding boxes
from a single image [1, 9, 18–20, 22, 24, 28, 45]. Monocular
3D detection methods can be divided into three categories.
(1) Anchor-based. Methods in this category exploit a series
of predefined 3D bounding box with a location called “an-
chor” and estimate the offset w.r.t the anchor. M3D-RPN [3]
leverages a 3D region proposal network and the geomet-
ric constrains of 2D and 3D perspectives to directly regress
the 3D location and size. Kinematic3D [4] further extends
M3D-RPN by leveraging 3D kinematics from monocular
videos to improve the overall localization. (2) Keypoint-
based. Many attempts [23,25,33,40,50] have been made to
directly regress the keypoints, and then estimate 3D bound-
ing box size and location from the image position of key-
points by optimization e.g., RTM-3D [21] and MonoGR-
Net [33] . (3) Pseudo-Lidar / depth based. Extra depth es-
timation modules and/or point cloud guidance are employed
to alleviate the lack of accurate depth information. The
pioneering work pseudo-LiDAR [42, 43, 47] imitates the

LiDAR-based methods by utilizing off-the-shelf depth es-
timators to convert image pixels into pseudo-LiDAR point
clouds, and employs LiDAR-based approaches for further
detection. DA-3Ddet [46] adapts the features from unsound
image-based pseudo-LiDAR domain to reliable LiDAR do-
main for guidance to boost the monocular performance. Ur-
banNet [6] utilizes the urban 3D map, including driving
lanes, elevation, and slope as prior for assisting the 3D de-
tection task. The existing monocular 3D detection methods
are mainly designed for processing vehicle view data. Due
to the domain gap and the distribution shift, a question raise
naturally is whether these methods still applicable for road-
side applications and if not how can we tailor these methods
to the new scenario.

3. The Roadside Perception Dataset
3.1. Specifications

Sensors Setup. The roadside data collection is conducted
by two sets of sensors, one is the roadside cameras mounted
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on the pole or beside the traffic light; the other is the LiDAR
equipped on a parked/driving vehicle to obtain the 3D point
clouds of the same scene. For sensor synchronization, we
adopt the nearest time matching strategy to find the pairs of
image and point clouds within 5 milliseconds error.

• Roadside cameras: RGB with 1920× 1080 resolution,
30-60Hz capture frequency and 1/1.8” CMOS sensor.

• LiDAR: (1) HESAI Pandar 40P, 40 laser beams,
10/20Hz capture frequency, ±2cm accuracy, 360◦ hor-
izontal FOV, -25◦∼+15◦ vertical FOV, ≤ 200m range.
(2) Jaguar Prime from Innovusion: 300 beams, 6-20
FPS with ±3cm accuracy, 100◦ horizontal FOV, 40◦

vertical FOV, ≤ 280m range.
Coordinate Systems and Calibration. There are three co-
ordinate systems used in the dataset: the World Coordinate
(i.e., the Universal Transverse Mercator coordinate system
(UTM Coord.)), the Camera Coordinate, as well as the Li-
DAR Coordinate.

To obtain the reliable ground truth 2D-3D joint annota-
tion, the calibration between different sensors is required.
First, the camera is calibrated to obtain the intrinsics by de-
tecting the chessboard patterns. Then the Lidar-to-World
calibration is conducted by the vehicle localization mod-
ule to obtain the high definition (HD) map in UTM Coord.
For World-to-Camera calibration, we first project the HD
map which contains lane and crosswalk endpoints onto the
2D image to obtain the raw transformation. A bundle ad-
justment refinement is followed to derive the final transfor-
mation. Then Lidar-to-Camera transformation can be ob-
tained by simply multiplying Lidar-to-World and World-to-
Camera transformations.

After obtaining the transformation between the three co-
ordinate systems, we can easily compute the ground equa-
tion G(α, β, γ, d) by fitting the ground points [x,y,z] to the
ground plane in the camera coordinate, with αx+βy+γz+
d=0.

3.2. Data Collection and Annotation

After obtaining the intrinsics as well as the LiDAR-to-
Camera transformation, we can collect the 2D-3D data. We
choose various roadside cameras and let a LiDAR-equipped
vehicle park or drive around. To keep the high diversity
and complexity of the real environment, we collect more
than 50k image frames at different times (daytime, night,
dawn/dusk), different weather conditions (sunny, cloudy,
rainy), different densities (crowded, normal, less traffic),
different distributions of traffic elements and so on. There
are totally 13 object classes with their corresponding cat-
egory, 2D properties (occlusion, truncation) and the 7-
DOF 3D bounding box: Location (x, y, z), Size (width-
W , length-L, height-H), Orientation (the heading angle-θ).
The full pipeline is illustrated in Fig. 3. (1)First after obtain-
ing the 3D point clouds and the 2D image (they are within

the same space but differ in the viewpoint), we first anno-
tate the 3D bounding boxes directly on the 3D point clouds.
(2) Simultaneously, the annotated 3D bounding boxes will
be projected on the 2D image plane, see the top part of
Fig. 3(c). We adjust the 3D parameters so that the pro-
jected points align with the 2D instance and mainly cover
it. (3) For 2D box annotations, if the objects are scanned by
the laser, their 2D box labels in the image are the minimum
bounding box of the amodal projections of the eight 3D cor-
ners. For objects that are heavily occluded or too far to be
detected by laser, 2D complementary labeling is conducted
to label 2D bounding boxes directly in the image and leave
its 3D annotations empty, see the bottom part of Fig. 3 (c).

3.3. Statistics and Analysis

The collected images have high diversity and inherent
ambiguity due to different settings of pitch angles, height,
and camera types as well as the manifold scenes. Two levels
of categories are adopted in the dataset. The coarse-grained
level mainly focuses on the most common traffic elements:
Car, Big Vehicle, Pedestrian, and Cyclist. To be more fine-
grained, Car includes car and van, Big Vehicle can be fur-
ther divided into truck and bus, and meanwhile, Cyclist can
be subdivided into cyclist, motorcyclist, barrow, and tricy-
clist, since they are driving non-motor vehicles. We have
annotated 13 classes, in addition to the above-mentioned
categories, there are four extra classes: ‘traffic cones’, ‘tri-
angle plate’, ‘unknown-unmovable’, ‘unknown-movable’.
The following statistics are mainly on the coarse and fine-
grained classes.
Quantity distribution. We first give an overview analy-
sis of the dataset on the number of 2D and 3D objects in
Fig. 4. As is stated, 2D objects are more than 3D objects
since some objects are not scanned by the LiDAR laser, so
they only have 2D annotations. We give the detailed num-
ber of coarse level and fine-grained levels of the categories,
corresponding to (a) and (b) in Fig. 4.
Depth distribution. Besides, we analyze the depth distri-
bution of coarse-categories in Fig. 5. The depth of the cap-
tured 3D objects can range from within 10m to over 140m.
Most objects lie between 60 and 80 meters.
Density. The density can be a key factor that affects the
capability of 3D perception.Thus, we analyze the density
of the dataset from two aspects in Fig. 6. From the global
level, we show the 2D and 3D annotated number of each im-
age in (a). The samples can be up to more than one hundred.
Compared to other datasets whose densities are KITTI [12]:
5.3, nuScenes [5]: 9.7 and A*3D [32]: 5.9, our dataset has
a much higher density (34 and 24 for 2D/3D per image).
From the view of coarse categories, the numbers of 3D sam-
ples per frame are shown in Fig. 6 (b). The ‘Car’ category
is relatively evenly distributed in densities whereas there are
less than 10 big vehicles in each image.
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Figure 3. The data acquisition and labeling pipeline. Our platform takes the captured roadside images and the point clouds scanned by
the LiDAR mounted on a parked/driving vehicle as input. After calibration and alignment between various sensors, the transformations
between LiDAR, the world, and the camera are obtained, as well as the ground plane equation and intrinsics. The 2D-3D joint annotation
is carried out by projecting the point clouds onto the images and adjusting the 3D bounding boxes manually to fit the 2D instance. For
objects that are not scanned by the laser, the 2D complementary labeling is performed on the images only. For example in (d), some objects
only have white 2D bounding boxes and no 3D colored annotations due to a lack of 3D points.
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Figure 5. The depth distribution of coarse categories.

Occlusion and truncation Analysis. Next, we annotate
three levels for occlusion and truncation attributes. For oc-
clusion, Level 0 denotes no occlusion, 1 and 2 means less /
more than 50% occlusion. For truncation attribute, Level 0
means no truncation, 1 and 2 denote the horizontal and ver-
tical truncation in the image border. The statistics are shown
in Fig. 7. More than half of the objects are partially or heav-
ily occluded while the occlusion percentage of KITTI is be-
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Figure 6. Top: The number of total annotated objects per image.
Bottom: The number of coarse-category 3D objects per image.
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Figure 7. The occlusion and truncation distribution of coarse cat-
egories. Over half of the objects are partially or heavily occluded.

tween 5% to 30%, which reflects the difficulty of our 3D
perception dataset and task.
The ambiguity analysis. The roadside dataset has inherent
ambiguity due to the adopted various cameras with differ-
ent settings of camera specifications, mounting heights, the
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Figure 8. The diversity of roadside cameras. From top to bottom
are the distribution of mounting heights, pitch angles of the cam-
eras and the focal lengths over the dataset, respectively.

pitch angles of viewpoint, so on. Thus we analyze the di-
versity distribution of settings in Fig. 8.

4. Task and Metrics

4.1. The task overview and metrics.

Task Overview. The monocular 3D perception task is to
localize the objects given ambiguous images captured un-
der various settings and scenes, including different camera
specifications, viewpoints, and mounting positions.
Evaluation Metrics. There are multiple evaluation metrics
for AD datasets. In KITTI [12], the 11-point Interpolated
Average Precision metric (AP|R11 ) and the average orienta-
tion similarity (AOS) are proposed to assess the localiza-
tion and orientation performance. [35] suggests 40 recall
positions instead of 11 positions for a more fair compari-
son. The nuScenes [5] consolidates the mean AP and five
True Positive (TP) error types into the nuScenes detection
score (NDS), including translation, scale, orientation, ve-
locity and attribute error types. Inspired by the AP metric,
we adopt AP|R40

[35], i.e.,

AP |R =
1

|R|
∑
r∈R

max
r̃:r̃≥r

ρ (r̃) (1)

where ρ (r̃) is the precision at a certain recall theshold
r ∈ {1/40, 2/40, ..., 1}. To facilitate a comprehensive eval-
uation w.r.t. a certain factor such as orientation, we decou-
ple the consolidated metric into several sub-metrics.
Average Ground Center Similarity. The distance between
objects on the ground plane indicates the risk of collision,
we hence compute the ground Euclidean distance by pro-

jecting the object center points onto the ground plane:

ACS =
1

|D|
∑
s∈D

(
1−min

(
1,

∆c
s

Cs

))
(2)

where D is set of true positive samples, Cs is the norm of
the GT ground center, ∆c

s is the Euclidean distance between
predicted ground center and GT ground center of sample s.
|D| is the total number of true positive objects.
Average Orientation Similarity. The Average Orientation
Similarity (AOS) is introduced to measure how well the ori-
entation is estimated, which is defined similarly as [38] by,

AOS =
1

|D|
∑
s∈D

1 + cos
(
2 ∗∆θ

s

)
2

(3)

where ∆θ
s is the angle difference of sample s, and cos(2 ∗

∆θ
s) means that during evaluation, we don’t distinguish

whether the head or tail of the object is facing the camera.
Average Area Similarity. We measure the ground occu-
pancy of the prediction w.r.t the GT in term of area, where
∆A

s is the absolute area difference and As is the ground
truth area.

AAS =
1

|D|
∑
s∈D

(
1−min

(
1,

∆A
s

As

))
(4)

Average Four Ground Points Distance and Similarity.
We also compute the average distance of four ground ver-
tices of the 3D bounding box (AGD), since it consolidates
the location, orientation, and width/length together.

AGD =
1

|D|
∑
s∈D

(
1

K

K−1∑
g=0

|sg − ŝg|

)
(5)

where ŝg and sg are the gth predicted and GT ground points
of smaple s, respectively. K = 4 is the total number of
ground points. To be consistent with other similarity met-
rics, we define the AGS (ground points similarity) as:

AGS=
1

|D|
∑
s∈D

(
1−min

(
1,

1

K

K−1∑
g=0

|sg − ŝg|
|ĉ|

))
(6)

Assume S = (ACS + AOS + AAS + AGS)/4, we
consolidate into Ropescore by reweighting the 3D AP and
the proposed similarities metrics with ω1 =8 and ω2 =2.

Ropescore= (ω1 ∗AP + ω2 ∗ S)/(ω1 + ω2) (7)

4.2. 3D Roadside Perception Task

As is illustrated in Sec. 1, due to the inherent ambigu-
ity of roadside data caused by diverse camera specifications
(various intrinsics and mounting positions, et.al.), the exist-
ing frontal-view monocular 3D object detection approaches
can not be directly applied to the Rope3D Dataset.Hence
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we make simple-and-effective attempts to alleviate the am-
biguity problem by utilizing camera specifications and en-
coding the ground knowledge. Two modifications (early-
fusion and deep-fusion) to incorporate the depth map of the
ground plane with RGB image and two kinds (integrate and
multi-gridded) of ground planes are made to alleviate the
multi-focal ambiguity.
Adaptations by leveraging ground planes. We adopt the
ground plane equation G(α, β, γ, d) and camera intrinsic
K3×3 to generate the depth map DG of the ground plane
with the same size as the image.{

Z
[
x, y, 1

]T
= K3×3

[
X,Y, Z

]T
G1×4

[
X,Y, Z, 1

]T
= 0

(8)

where [x, y] is the pixel in the image coordinates, [X,Y, Z]
is the corresponding 3d point in camera coordinate that
lies on the ground plane. Thus the depth Z can be de-
rived with the known 2d image points and the ground plane
equation G. We incorporate the ground depth map with
the RGB appearance feature by early fusion and deep fu-
sion. The first one is directly concatenating the depth map
with the original RGB channels as input, and the second is
adopting another siamese network for depth feature extrac-
tion and further weighted fusion of the two depth predic-
tions. The performances of these two methods are similar
and we hence only report the results by concatenation on
the anchor-based M3D-RPN and the keypoint-based Mon-
oDLE and MonoFlex approaches. We believe more sophis-
ticate approaches might further improve the performance,
which is out of the scope of this paper. In addition, two
different formats of ground planes are attempted. One is to
fit the entire ground within the visual field to a single plane,
which is represented by the ground plane equation. Another
is to divide the entire ground into multiple small grids, and
each grid is represented by a ground equation.

5. Experiments
5.1. Experimental Setup

Our roadside 3D perception dataset contains 50k images,
with the training and validation ratio set to 8:2. We offer two
kinds of splitting the training and validation set, I: Homol-
ogous, for each scene we select 70% images and combine
them for training, and leave all the rest images for valida-
tion. II: Heterologous, we select 80% of the cameras with
the collected images for training and leave the remaining
unseen 20% (different camera specifications) for validation,
which can be used for validating the generalization ability
of the monocular 3D object detection approaches.
Implementation Detail. (1) For M3D-RPN [3], we exper-
iment on vanilla and improved approaches with ResNet34
[14] backbone, (2) Kinematic3D [4] is a monocular video-
based 3D object detector with DenseNet121 [15] backbone,

we only implement the first phase without video knowledge.
(3) MonoDLE [25] is based on the anchor-free one stage
detector CenterNet [51] with backbone DLA34 [48]. (4)
MonoFlex [50] is a keypoint based method with modified
DLA34 [48] backbone.The training image resolutions are
adjusted to fit our dataset.

For objects that contain only 2D annotations without 3D
annotations, we compute only losses on 2D attributes. For
those objects having 3D labeling, the training loss weights
of the 2D and 3D are both set to 1.

5.2. Main Results and Analysis

Performance of vanilla and improved approaches. The
performances of monocular 3D detection approaches on the
Rope3D Dataset are depicted in Table 2. Approaches with
suffix (G) denote that we customize the corresponding ap-
proach with ground plane function to reconnect the 3D lo-
cations and 2D projected points even when the optical axis
of cameras is not parallel to the ground plane because of
the pitch angle. The improved approach is noted with suffix
(D). We adopt the 3D AP |R40 as well as the proposed met-
rics for evaluation. We find that most approaches have an
obvious performance decline from homologous to the het-
erologous validation set. However, the performance drop
is insignificant when applying a 3D detection model trained
on the vehicle-view ONCE dataset to nuScenes dataset [27].
This phenomenon indicates the domain gap caused by var-
ious camera specifications and setting positions can not
be ignored, which might be a distinguishable difference
between vehicle-view and roadside view applications and
should be taken carefully. By leveraging the depth map of
ground planes, we observe an obvious improvement in most
methods, even on the heterologous set where training and
validating sets have different camera specifications.
Performance of different ground plane formats. We fur-
ther analyze the performance by adopting two different for-
mats of ground planes, i.e., by fitting the entire ground
within the visual field to a single plane or by dividing the
entire ground into multiple 5m×5m grids piecewisely. We
carry out the experiment on KM3D [20], a method that
predicts 2D keypoints and solves 3D position by minimiz-
ing the re-projection error. In other words, it relies on
the differentiable geometric constraint to recover 3D loca-
tion rather than direct prediction, which heavily depends
on the accuracy of ground plane. As is shown in Table 3,
KM3D-(GG), which takes advantage of gridded ground
planes, shows better performance on most fine-grained cat-
egories. The main reason might be that the piecewisely-
gridded planes better fit the actual the ground plane.
Performance of different ranges. We further analyze the
performance of the models within different ranges from 0
to 120m. As is shown in Table 4, with the depth range in-
creases, most of the performances decrease, especially for
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Setting Method Backbone Branch
IoU = 0.5 IoU = 0.7

Car Big Vehicle Car Big Vehicle
AP3D|R40 Ropescore AP3D|R40 Ropescore AP3D|R40 Ropescore AP3D|R40 Ropescore

I

M3D-RPN-(G) [3] ResNet34 A 54.19 62.65 33.05 44.94 16.75 32.90 6.86 24.19
M3D-RPN-(D) [3] ResNet34 A 67.17 73.14 39.06 49.95 33.94 46.45 11.28 28.12

Kinematic3D-(G) [4] DenseNet121 A 50.57 58.86 37.60 48.08 17.74 32.99 6.10 22.88
MonoDLE-(G) [25] DLA-34 K 51.70 60.36 40.34 50.07 13.58 29.46 9.63 25.80
MonoDLE-(D) [25] DLA-34 K 77.50 80.84 49.07 57.22 54.53 62.48 17.25 32.00
MonoFlex-(G) [50] DLA-34 K 60.33 66.86 37.33 47.96 33.78 46.12 10.08 26.16
MonoFlex-(D) [50] DLA-34 K 59.78 66.66 59.81 66.07 35.64 47.43 24.61 38.01

II

M3D-RPN-(G) [3] ResNet34 A 21.75 36.40 21.49 35.49 6.05 23.84 2.78 20.82
M3D-RPN-(D) [3] ResNet34 A 36.33 48.16 24.39 37.81 11.09 28.17 3.39 21.01

Kinematic3D-(G) [4] DenseNet121 A 23.56 37.05 13.85 28.58 5.82 23.06 1.27 18.92
MonoDLE-(G) [25] DLA-34 K 19.08 33.72 19.76 33.07 3.77 21.42 2.31 19.55
MonoDLE-(D) [25] DLA-34 K 31.33 43.68 23.81 36.21 12.16 28.39 3.02 19.96
MonoFlex-(G) [50] DLA-34 K 32.01 44.37 13.86 28.47 10.86 27.39 0.97 18.18
MonoFlex-(D) [50] DLA-34 K 37.27 48.58 47.52 55.86 11.24 27.79 13.10 28.22

Table 2. Overall performance of the monocular 3D object detection approaches on the Rope3D Dataset with IoU = 0.5 and 0.7 under two
train-val splitting settings: the homologous (I) and the heterologous (II). -(G) denotes adapting the ground plane, -(D) means using the
depth map of ground. The abbr. in the branch column denotes: A: anchor-based, K: keypoint-based.

Setting Method Backbone AP3D|R40[Mod] / Ropescore
car van bus truck cyclist motorcyclist tricyclist pedestrian

I
KM3D [20] ResNet34 8.97 / 25.09 7.77 / 23.79 8.07 / 23.89 4.94 / 20.59 1.81 / 17.34 3.61 / 19.34 14.39 / 27.85 0.37 / 17.93

KM3D-(G) [20] ResNet34 9.83 / 26.60 13.16 / 29.26 4.19 / 22.05 18.42 / 32.40 11.35 / 27.24 11.45 / 27.24 19.13 / 33.50 9.90 / 26.28
KM3D-(GG) [20] ResNet34 9.86 /26.64 15.71 / 31.30 7.66 / 24.48 12.67 / 27.71 13.23 / 28.94 15.08 / 30.14 19.97 / 34.13 11.92 / 27.90

II
KM3D [20] ResNet34 5.89 / 22.91 2.91 / 20.26 21.20 / 34.30 25.86 / 37.46 1.36 / 17.14 4.67 / 20.03 2.40 / 19.48 0.29 / 17.93

KM3D-(G) [20] ResNet34 17.39 / 32.71 30.48 / 43.22 21.25 / 35.20 34.93 / 45.84 24.98 / 38.30 14.49 / 29.47 47.47 / 56.79 12.61 / 28.44
KM3D-(GG) [20] ResNet34 23.70 / 37.90 31.37 / 44.04 19.99 / 34.61 37.65 / 48.34 26.38 / 39.58 16.58 / 30.82 54.03 / 62.46 12.81 / 28.46

Table 3. Performance of KM3D with different ground plane formats on the Rope3D Dataset under two train-val splitting settings: the
homologous (I) and the heterologous (II). -(G) denotes adapting the ground plane equation, -(GG) means using the gridded ground
planes. IoU = 0.25 for non-motor vehicles and pedestrian, IoU = 0.5 for motor vehicles.

Method Range AP3D|R40 / Ropescore
(m) Car Big Vehicle Cyclist Pedestrian

MonoDLE-(G)

all 19.08 / 33.72 19.76 / 33.07 10.93 / 26.44 3.72 / 21.42
0-30 31.43 / 43.12 37.36 / 46.69 19.83 / 33.28 10.26 / 26.61

30-60 10.42 / 26.68 8.68 / 24.02 8.11 / 24.23 3.90 / 21.66
60-90 18.60 / 33.42 32.46 / 44.15 9.29 / 25.23 2.37 / 20.28

90-120 11.84 / 28.05 10.29 / 26.09 9.84 / 25.11 2.88 / 20.58

MonoFlex-(G)

all 32.01 / 44.37 13.86 / 28.47 44.27 / 53.58 25.48 / 39.04
0-30 15.49 / 30.49 27.68 / 39.16 61.94 / 67.37 37.25 / 48.50

30-60 45.69 / 55.33 12.18 / 27.48 50.70 / 58.78 35.74 / 47.37
60-90 46.72 / 56.41 19.34 / 33.45 30.65 / 42.82 8.94 / 25.65

90-120 14.19 / 30.15 1.30 / 18.82 9.43 / 25.20 4.79 / 22.35

M3D-RPN-(D)

all 36.33 / 48.16 24.39 / 37.81 11.22 / 27.54 3.93 / 21.54
0-30 52.07 / 60.60 24.07 / 37.18 16.77 / 31.80 5.19 / 22.53

30-60 33.57 / 46.30 25.22 / 38.84 14.38 / 30.36 8.09 / 24.99
60-90 24.07 / 38.60 39.17 / 50.42 5.80 / 23.02 1.10 / 19.16

90-120 11.19 / 28.23 6.55 / 24.06 4.23 / 21.48 0.13 / 18.02

Table 4. The performance within different ranges on the heterol-
ogous (II) set. We set IoU = 0.5 for Car / Big Vehicle and IoU =
0.25 for Cyclist and Pedestrian, following KITTI’s hard-modality.

90-120 meters. The reason is owing to two aspects: too
small area in the image to extract strong features for learn-
ing and much less 3D annotations in far-away regions due
to occlusion. MonoFlex-(G) shows better performance on
cyclists and pedestrians whereas inferior in motor vehicles.

6. Conclusion

We propose the first high-diversity challenging roadside
monocular 3D perception dataset - Rope3D. Rope3D is col-
lected from the roadside view with joint 2D-3D annotations,
making it unique from any previously released datasets
and is particularly designed for the roadside 3D percep-
tion.Furthermore, we specially tailor the existing monoc-
ular 3D object detection approaches to the novel dataset,
due to its unique viewpoint and inherent ambiguity lying in
the various camera specifications and diverse road scenes.
We hope to raise the attention to the special view - road-
side view, so as to facilitate a safer and more intelligent au-
tonomous driving system.

Ethical concerns and Limitation. To prevent from be-
ing utilized for illegal surveillance, all the images in the
dataset are time-discrete and not allowed for tracking tasks.
Note that all the sensitive information including license
plates, human faces, names of bus stops, roads, and build-
ings are totally masked. The attempts for adapting the con-
current vehicle-view 3D detection approaches need further
study.
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