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Abstract

Visual grounding focuses on establishing fine-grained
alignment between vision and natural language, which has
essential applications in multimodal reasoning systems. Ex-
isting methods use pre-trained query-agnostic visual back-
bones to extract visual feature maps independently without
considering the query information. We argue that the visual
features extracted from the visual backbones and the fea-
tures really needed for multimodal reasoning are inconsis-
tent. One reason is that there are differences between pre-
training tasks and visual grounding. Moreover, since the
backbones are query-agnostic, it is difficult to completely
avoid the inconsistency issue by training the visual back-
bone end-to-end in the visual grounding framework. In this
paper, we propose a Query-modulated Refinement Network
(QRNet) to address the inconsistent issue by adjusting inter-
mediate features in the visual backbone with a novel Query-
aware Dynamic Attention (QD-ATT) mechanism and query-
aware multiscale fusion. The QD-ATT can dynamically
compute query-dependent visual attention at the spatial and
channel levels of the feature maps produced by the visual
backbone. We apply the QRNet to an end-to-end visual
grounding framework. Extensive experiments show that the
proposed method outperforms state-of-the-art methods on
five widely used datasets. Our code is available at https:
//github.com/LukeForeverYoung/QRNet.

1. Introduction
Visual grounding [25, 32, 36, 59], i.e., localizing the

referent object in an image according to the given natu-
ral language query, is a fundamental component of multi-
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Figure 1. (a) A typical end-to-end visual grounding framework
that uses two individual encoders to extract visual and textual fea-
tures for cross-modal interaction. (b) Our visual grounding frame-
work based on a Query-modulated Refinement Network (QRNet).

modal reasoning system. Compared with conventional ob-
ject detection methods [38, 39] which can only recognize
the restricted categories contained in the training data, vi-
sual grounding has the advantage of detecting novel combi-
nations of categories and attributes expressed in free-form
text. In recent years, it has attracted much attention in the
field of computer vision and machine learning due to its
potential applications in many downstream tasks, such as
visual question answering [15, 50, 63], visually-grounded
language navigation [2, 47] and image captioning [1, 8, 57].
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The early methods of visual grounding focus on extend-
ing the popularly used one-stage and two-stage object de-
tection architectures. One-stage methods [11, 23, 54, 56]
use a pre-trained fully convolutional network (e.g. Dark-
net53 [38], ResNet [20]) to directly extract pixel-level fea-
ture maps and leverage manually-defined dense anchors to
return the most likely candidate for the query text. These
methods are easy and efficient for learning or inference, but
they cannot perform well on complex queries that have var-
ious objects and relations. Two-stage methods [52, 53, 58]
use an off-the-shelf detector (e.g. Faster R-CNN [39]) to
extract the region proposals and return the one that best
matches the query text using the modality-shared represen-
tations. These methods always have better performance
than the one-stage ones by introducing more complicated
multimodal fusion and reasoning mechanisms [33, 52, 53].
However, the complicated fusion modules cannot be jointly
learned with the detectors, which may limit their ability in
multimodal reasoning. More recently, Transformer [46] has
been applied in visual grounding [11, 24] to conduct the
multimodal reasoning more succinctly based on pixel-level
feature maps without region proposals or dense anchors.

Although existing visual grounding methods, especially
the Transformer-based methods [11, 24], have achieved
promising results, we argue that they do not pay enough at-
tention to the visual backbone which plays a crucial role in
effective multimodal reasoning. Since the visual backbone
determines whether all integral visual content in the image
is successfully extracted for matching the query text. Cur-
rently, the most widely used backbones are the CNN model
(e.g., ResNet [20]) pre-trained for image classification on
ImageNet and the detector (e.g., Faster R-CNN [39] and
Mask R-CNN [19]) pre-trained for general object detection
of close-set categories. Therefore, the difference between
the visual grounding task and the pre-training task of the
backbones may lead to an inconsistency between the vi-
sual features produced by the backbones and the ones re-
ally needed for the multimodal reasoning. As shown in
Figure 1(a), the pre-trained visual backbone extracts gen-
eral purposed visual features sensitive to regions that may
contain the objects of pre-defined categories. Whereas, the
visual grounding requires the backbone to localize a differ-
ent object referred to by the query. A straightforward way
to alleviate the inconsistency is learning the visual ground-
ing model in an end-to-end form as in [11]. However, it
still cannot completely avoid the inconsistency because the
backbone is query-agnostic. In other words, given the same
image, the query-agnostic backbone will always output the
same feature map no matter what the query sentences are.

In this paper, we propose a Query-modulated Refine-
ment Network (QRNet) to address the inconsistency is-
sue. As shown in Figure 1(b), the proposed QRNet can
produce query-consistent features by adjusting the feature

maps of the visual backbone with the guidance of the query
text, which benefits the cross-modal alignment between the
query and the relevant region to make a correct prediction.
The QRNet is designed based on Swin-Transformer [31]
and a novel Query-aware Dynamic Attention (QD-ATT),
which can help the QRNet extract query-refined visual fea-
ture maps from the visual backbone and fuse the multi-
scale features with the query guidance. The QD-ATT dy-
namically computes textual-dependent visual attentions at
the spatial and channel level of the feature maps produced
by the visual backbone. The spatial and channel atten-
tions are further multiplied with the original feature maps
to obtain query-refined hierarchical visual feature maps. To
comprehensively consider the fine-grained visual features
of the candidate regions at different scales, we aggregate
the query-refined visual feature maps obtained at different
stages of the QRNet by a query-aware multiscale fusion
scheme.

We instantiate the proposed QRNet by building a flexi-
ble visual grounding framework based on the recently pro-
posed TransVG [11]. We adopt the same multi-layer visual-
linguistic transformer as in [11] to perform intra- and inter-
modal reasoning based on the output token sequence of the
QRNet. The complete pipeline significantly outperforms
existing methods, e.g., TransVG [11] (3.75% on Refer-
ItGame and 2.85% on Flickr30K Entities). Note that the
proposed QD-ATT can be easily applied to other pre-trained
visual backbones, e.g., ResNet [20].

The main contributions of this paper are three-fold:

• We propose a query-modulated refinement network
to address the inconsistency issue caused by the pre-
trained visual backbone through adjusting the visual
feature maps with the guidance of query text.

• We propose a novel query-aware dynamic attention
mechanism, which can dynamically compute query-
dependent spatial and channel attentions for refining
visual features.

• We build a flexible visual grounding framework
based on the query-modulated refinement network and
demonstrate that it achieves significantly better perfor-
mance than existing methods on five widely used pub-
lic datasets.

2. Related Work
2.1. Visual Grounding

The visual grounding methods can be categorized into
two-stage methods and one-stage methods.

Two-stage methods divide the visual grounding pro-
cess into two steps: generation and ranking. Specifically,
a module such as selective search [44], region proposal net-
work [39], or pre-trained detector [16, 17, 39] is firstly used
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to generate proposals that contain objects. Then a multi-
modal ranking network will measure the similarity between
the query sentence and proposals and select the best match-
ing result. Early works [22, 32, 41] only consider sentence-
region level similarity. Yu et al. [58] decompose the query
sentence and image into three modular components related
to the subject, location, and relationship to model fine-
grained similarity. Several studies [4, 33, 52, 53] incorpo-
rate graph learning to better model cross-modal alignment.
The more related work to ours is Ref-NMS [7], which uses
the query feature to guide the Non-Maximum Suppression
on region proposals to increase the recall of critical ob-
jects. However, Ref-NMS [7] can only be integrated into
two-stage methods. Moreover, it cannot affect the visual
backbone in feature extraction and proposal generation.

One-stage methods extract visual feature maps that
maintain the spatial structure and perform cross-modal in-
teraction at pixel level. The fused feature maps are fur-
ther used to predict bounding boxes. Yang et al. [55] use
a Darknet [38] to extract feature maps and broadcast the
query embedding to each spatial location. Several recent
works [26, 54, 56] regard multimodal interaction as a multi-
step reasoning process to better understand the input query.
Huang et al. [23] extract landmark features with the guid-
ance of a linguistic description. The more recent work
TransVG [11] incorporates DETR encoder to extract visual
features and proposes a transformer-based visual grounding
framework. Kamath et al. [24] model the visual grounding
as a modulated detection task and propose a novel frame-
work MDETR derived from the DETR detector.

2.2. Transformer-based Visual Backbones

Dosovitskiy et al. [13] propose to extract image fea-
tures by applying a pure Transformer architecture on image
patches. This method is called Vision Transformer (ViT)
and achieves excellent results compared to state-of-the-art
convolutional networks. Touvron et al. [43] introduce im-
proved training strategies to train a data-efficient ViT. Yuan
et al. [60] propose a Tokens-to-Token transformation to ob-
tain a global representation and a deep-narrow structure to
improve the efficiency. Some recent works [9, 18] mod-
ify the ViT architecture for better performance. Liu et al.
[31] present a novel hierarchical ViT called Swin Trans-
former. It computes the representation with shifted win-
dowing scheme to allow for cross-window connection. Due
to the fixed window size, the architecture has linear compu-
tational complexity with respect to image size.

2.3. Multimodal Interaction

In early studies, multimodal systems use simple interac-
tion methods such as concatenation, element-wise product,
summation, and multilayer perception to learn the interac-
tion [5, 61]. Fukui et al. [14] introduce a compact bilin-

ear pooling to learn a more complex interaction. Arevalo
et al. [3] present a gated unit that can learn to decide how
modalities influence the activation. [34, 35] use the cross-
attention mechanism to enable dense, bi-directional interac-
tions between the visual and textual modalities. De Vries
et al. [10] introduce Conditional Batch Normalization at
channel-level to modulate visual feature maps by a lin-
guistic embedding. Vaezi Joze et al. [45] use squeeze
and excitation operations to fuse the multimodal features
and recalibrate the channel-wise visual features. There are
also methods [3, 5, 10, 45, 61] that only perform interac-
tion at channel-level. However, spatial-level information
is also important to some downstream tasks, e.g., visual
grounding and visual commonsense reasoning. Other meth-
ods [14, 34, 35] maintain the spatial structure to perform
interaction but have a high computational cost.

3. Approach
3.1. Architecture

In this section, we first formulate the visual grounding
task and then present the architecture of the adopted frame-
work.

Visual grounding task aims at grounding a query onto a
region of an image. The query refers to an object in the
image and can be a sentence or a phrase. It can be formu-
lated as: given an image I and a query q, the model needs
to predict a bounding box b = {x, y, w, h} which exactly
contains the target object expressed by the query.

As shown in Figure 2 (a), our framework is designed
based on a typical end-to-end visual grounding architec-
ture TransVG [11]1. Given an image and a query sentence,
there is a linguistic backbone, typically a pre-trained BERT
model, extracting a sequence of 1D feature T ∈ RDl×Nl .
For the visual backbone, we adopt a new Query-modulated
Refinement Network (described in Section 3.2) to extract a
flattened sequence of visual feature V ∈ RDv×Nv . The
major difference between the proposed Query-modulated
Refinement Network and existing visual backbones is that
we take the contextual textual feature from the linguistic
backbone to guide the feature extraction and multiscale fu-
sion with the help of Query-aware Dynamic Attention (de-
scribed in Section 3.2.1). Two projection layers map the vi-
sual and linguistic features into the same feature space RD.
The projected visual and linguistic features are denoted by
pv ∈ RD×Nv and pl ∈ RD×Nl . Then pv and pl are con-
catenated by inserting a learnable embedding (i.e., a [REG]
token) at the beginning of the concatenated sequence. The
joint sequence is formulated as:

X = [pr,p
1
v,p

2
v, · · · ,pNv

v︸ ︷︷ ︸
visual tokens pv

,pc
l ,p

1
l , · · · ,p

Nl

l︸ ︷︷ ︸
linguistic tokens pl

],
(1)

1https://github.com/djiajunustc/TransVG
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Figure 2. (a) The QRNet-based visual grounding framework used in this paper. (b) An overview of our Query-modulated Refinement
Network. (c) Illustration of Query-aware Dynamic Attention.

where pr is the learnable embedding of [REG] token. pc
l

is the [CLS] token’s representation which is regarded as the
contextual textual feature.

Next, a multi-layer visual-linguistic transformer is ap-
plied to perform intra- and inter-modal reasoning on the
joint sequence. Finally, a prediction head takes the out-
put representation of the [REG] token to predict the bound-
ing box coordinates b. The smooth L1 loss [16] and giou
loss [40] are used to train the framework. The training ob-
jective can be formulated as:

L = Lsmooth−l1(b, b̂) + Lgiou(b, b̂), (2)

where b̂ is the ground-truth box.

3.2. Query-modulated Refinement Network

In this section, we introduce the proposed visual back-
bone of Query-modulated Refinement Network (QRNet).
An overview of the network is shown in Figure 2 (b). The
network consists of two phases: (1) Query-refined Fea-
ture Extraction for extracting query-refined visual feature
maps with a hierarchical structure, (2) Query-aware Mul-
tiscale Fusion for fusing the extracted feature maps at dif-
ferent scales with the guidance of the query feature. The
two phases both rely on a novel Query-aware Dynamic At-
tention (QD-ATT), which dynamically computes textual-
dependent visual attentions at spatial and channel levels,
to enable to compute features with query guidance. In the
following, we will first introduce the implementation of
the Query-aware Dynamic Attention. Then we detail the
Query-refined Feature Extraction and Multiscale Fusion.

3.2.1 Query-aware Dynamic Attention

Now, we will describe the details of our Query-aware Dy-
namic Attention (shown in Fig. 2(c)). We first introduce

the dynamic linear layer, which learns a linear transforma-
tion that can be applied to the visual features to compute
the query-aware attentions. Different from the conventional
trainable linear layer, the parameters of the dynamic linear
layer are generated dynamically based on textual features.
Next, we will illustrate how to use the dynamic linear layer
to compute query-aware channel and spatial attentions and
obtain the query-consistent visual features. A pseudo-code
is presented in the Appendix for better comprehension.

Dynamic Linear Layer. Existing visual backbones use
modules with static parameters to compute the visual fea-
ture maps, where feeding in the same image will output the
same feature maps. However, in visual grounding, different
queries for a single image may reveal different semantic in-
formation and intentions, which require different visual fea-
tures. We present a dynamic linear layer which can leverage
the contextual textual feature pc

l ∈ RDl to guide the map-
ping from an given input vector zin ∈ RDin

to the output
zout ∈ RDout

. The dynamic linear layer is formalized as
follow:

zout = DyLinearMl
(zin) = W⊺

l zin + bl (3)

where Ml = {Wl,bl}, Wl ∈ RDin×Dout

, bl ∈ RDout

.
Din and Dout are the dimensions of input and output, re-
spectively.

We use a plain linear layer to generate the Ml. The
generator is denoted by M′

l = Ψ(pc
l ), where M′

l ∈
R(Din+1)∗Dout

. In detail, we predict a (Din + 1) ∗ Dout

vector which can be reshaped to Ml. However, it is easy
to find that the number of parameters in the generator, i.e.,
Dl ∗ ((Din + 1) ∗ Dout), is too large. Such large-scale
parameters will slow down the speed of the network and
make it easier to be overfitting. Inspired by matrix factor-
ization, we consider decomposing the Ml into two factors
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U ∈ R(Din+1)×K and S ∈ RK×Dout

, where U is a ma-
trix generated from pc

l , S is a static learnable matrix, K is a
hyper-parameter denoting the factor dimension. The factor
generator {Wl,bl} = Ψ∗(pc

l ) can be formulated as follow:

U = Reshape(Wg
⊺pc

l + bg),

Ml = US,

{Wl,bl} = Split(Ml),

(4)

where Wg ∈ RDl×(Din+1)∗K and bg ∈ R(Din+1)∗K are
trainable parameters of the factor generator. The parameter
matrix Ml of the dynamic linear layer can be reconstructed
by multiplying U and S. The Wl and bl can be split from
the matrix Ml along the first dimension. Finally, we refor-
mulate the dynamic linear layer as follows:

zout = DyLinearMl
(zin) = DyLinearΨ∗(pc

l )
(zin).

(5)
Unless otherwise specified, we use DyLinear(zin) to

represent a dynamic linear layer with pc
l for simplify. And

the different dynamic linear layers do not share parameters.
When the input is a multidimensional tensor, the dynamic
linear layer transforms the input at the last dimension.

Channel and Spatial Attention. As explained above, the
pre-trained visual backbone is sensitive to all the objects it
learned in the pre-training task. However, only the object
which is referred to by the query text is useful. Besides, the
features useful for the bounding box prediction highly de-
pend on the semantics contained in the query sentence (e.g.
entities, descriptions of attributes, and relationships). In
other words, the importance of each channel or each region
of the feature map should change dynamically according to
the query sentence. Inspired by Convolutional Block Atten-
tion Module [51], we consider inferring channel and spatial
attentions, i.e., Acl and Asl, along the separate dimensions
of the feature map to obtain adaptively refined features for
a better cross-modal alignment.

Specifically, for a given visual feature map F ∈
RH×W×Dv , we first aggregate its spatial information by av-
erage and maximum pooling and produce Fc

max, F
c
mean ∈

R1×1×Dv . Then, a dynamic multilayer perception consist-
ing of two dynamic linear layers with a ReLU activation in
the middle is built to process the pooled features. The out-
put dimension is the same as the input dimension. To reduce
the number of parameters, we set the dimension of multi-
layer perception’s hidden states as Dv/r, where r = 16 is a
reduction ratio. By feeding the Fc

max and Fc
mean to the dy-

namic multilayer perception, a Sigmoid function is applied
to the summation of the two output features. The channel

attention map Acl can be captured as follow:

Fcl
mean = DyLinear1(ReLU(DyLinear2(F

c
mean))

Fcl
max = DyLinear1(ReLU(DyLinear2(F

c
max))

Acl = Sigmoid(Fcl
mean + Fcl

max).

(6)

We perform element-wise multiplication between F and
Acl to form the channel-wise refined visual feature, where
the Acl is broadcast along the spatial dimension:

F
′
= Acl ⊗ F. (7)

To generate a spatial attention map, instead of squeezing
the channel dimension, we leverage another dynamic linear
layer to reduce the channel dimension to learn areas of inter-
est to the query and apply an activation function Sigmoid to
generate the attention map. In short, the computing process
is formulated as follows:

Asl = Sigmoid(DyLinear3(F
′
))

F
′′
= Asl ⊗ F

′ (8)

where Asl ∈ RH×W×1 is the spatial attention map and F
′′

is the spatially refined visual feature and also the output of
our Query-aware Dynamic Attention.

3.2.2 Query-refined Feature Extraction

To extract refined feature maps with the guidance of the
query feature, we extend the Swin-Transformer2 to a modu-
lated visual feature extractor. As shown in Figure 2 (b), for
a given image I ∈ RH×W×3, a patch partition operation
is firstly adopted to embed I to F0 ∈ RH

4 ×W
4 ×C , where

C is the embed dimension. Then F0 is fed into four cas-
caded stages, where each stage consists of multiple Swin-
Transformer blocks and a QD-ATT module. In this work,
we take the [CLS] representation of the input query sen-
tence from BERT [12] as the contextual query represen-
tation pc

l to compute the query-aware dynamic attention.
The k-th stage receives the visual feature map F∗

k−1 (or F0

if k = 1) obtained in the previous stage and generates a
transformed feature map Fk through the Swin-Transformer
blocks. Then, the QD-ATT module takes the transformed
feature Fk and produces a query-aware feature F∗

k that will
be further used in the next stage. The output of the query-
refined feature extractor is a list of hierarchical features
[F∗

1,F
∗
2,F

∗
3,F

∗
4].

3.2.3 Query-aware Multiscale Fusion

Multiscale features are beneficial to detecting objects at dif-
ferent scales [6]. However, because visual grounding re-
quires fine-grained interaction after visual backbone (e.g.

2https://github.com/SwinTransformer/Swin-Transformer-Object-
Detection
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Cross Attention), high-resolution features will dramatically
increase the computation. Therefore, previous works al-
ways use the low-resolution features or fuse the multiscale
features in a query-agnostic manner, which will lose scale
information or incorporate noise. Thanks to the hierarchi-
cal structure of the modulated Swin-Transformer, we can
obtain multiscale features. We fuse the features obtained
from different stages with the help of Query-aware Dy-
namic Attention mechanism and pooling operation. We
flatten and concatenate the low-resolution features as the
output token sequence of the backbone. Specifically, ex-
cept for the first stage, each stage reduces the resolution
of the feature map by a patch merging operator. In other
words, the resolutions of the output feature maps at four
stages are H

4 × W
4 , H

8 × W
8 , H

16 ×
W
16 and H

32 × W
32 , respec-

tively. Besides, the patch merging operator fuses the patch
features into the channel which doubles the channel dimen-
sion. Thus the channel dimensions of the output at the four
stages are C, 2C, 4C and 8C, respectively. Next, we will
introduce how to efficiently fuse these multiscale features
with the guidance of the query text.

As shown in Figure 2 (b), we propose to fuse the output
features at different stages with the help of QD-ATT. Specif-
ically, we first use four 1 × 1 convolutional layers to unify
the channel dimensions to D. To filter out noisy signals in
the feature maps, we build QD-ATT modules for the feature
maps {F∗

k| k = 1, 2, 3} of the first three stages. From F∗
k,

the QD-ATT module produces a weighted feature map with
the same size as the input. We apply a 2 × 2 mean pooling
with stride=2 to reduce the resolution to be the same as the
next feature map F∗

k+1 and compute the average of them to
obtain F̄∗

k+1. Finally, the last feature map F̄∗
4 contains fea-

tures of interest to the query from all scales. To detect very
large objects, we also apply a 2× 2 max pooling to obtain a
H
64 ×

W
64 feature map F̄∗

5. We flatten and concatenate the F̄∗
4

and F̄∗
5 as the output token sequence V.

4. Experiments

4.1. Datasets and Evaluation

We evaluate our method on phrase grounding dataset
Flickr30K Entities[36] and referring expression grounding
datasets RefCOCO[59], RefCOCO+[59], RefCOCOg[32]
and ReferItGame[25]. The details and statistics are sum-
marized in Appendix. In phrase grounding the queries are
phrases and in referring expression grounding, they are re-
ferring expressions corresponding to the referred objects.
We follow the same metric used in [11]. Specifically, a pre-
diction is right if the IoU between the grounding-truth box
and the predicted bounding box is larger than 0.5.

4.2. Implementation Details

The QRNet is built based on Swin-Transformer, i.e.,
Swin-S pre-trained with Mask-RCNN on MSCOCO [27]3.
We use BERTbase(uncased) for linguistic feature extrac-
tion. We set the intermediate dimension D = 256 and the
factor dimension K = 30. We follow the TransVG [11]
to process the input images and sentences. We also follow
the training setting used in TransVG, which uses a AdamW
optimizer with weight decay 10−4, sets the batch size to 64
and the dropout ratio to 0.1 for FFN in Transformer. The
learning rate is set to 10−5 for pre-trained parameters and
10−4 for other parameters. The parameters without pre-
training are randomly initialized with Xavier. We train our
model for 160 epochs. The learning rate is multiplied by
a factor of 0.1 at epoch 40 for Flickr30K Entities and at
epoch 60 for other datasets. We also follow the commonly
used data augmentation strategies in [26, 54, 55].

4.3. Quantitative Results

We show the comparison results on ReferItGame and
Flickr30k Entities in Table 1. The ReferItGame collects
queries by a cooperative game, requiring one player to write
a referring expression for a specified object. The other one
needs to click on the correct object. Queries in Flickr30k
Entities are phrases in the caption. We observe that the
proposed QRNet outperforms previous works. We re-
place the visual branch of TransVG with Swin-Transformer
and denote it by TransVG(Swin) to explore the impact
of backbone. The performance is similar to the original
TransVG, indicating that the accuracy gains are not from
Swin-Transformer.

We also present the accuracy comparison with state-of-
the-art methods on ReferCOCO, ReferCOCO+, and Refer-
COCOg in Table 2. In ReferCOCO and ReferCOCO+
datasets, referred objects are people in “testA” and could
be common objects in “testB”. The expressions in Refer-
COCOg are much longer than the ones in other datasets.
Note that TransVG uses a ResNet-101 and a DETR encoder
split from a pre-trained DETR framework. Its backbone is
more powerful than a single ResNet-101.

We observe that our QRNet greatly outperforms all two-
stage and one-stage state-of-the-art methods. On RefCOCO
and RefCOCO+ datasets, our method gains 1.84%∼2.52%
absolute improvement in “testA” and 2.51%∼4.32% in
“testB”. When the referred objects are arbitrary, the in-
consistent issue will be more serious, and our modulated
backbone can better filter irrelevant objects and correct the
representation with textual guidance. In the RefCOCOg
test split, we notice that ISRL [42] performs better than
TransVG [11]. It models the visual grounding as a Markov

3We excluded images in the validation and test set of the RefCOCO
series from MSCOCO training set and retrained Swin-Transformer for fair
comparison.
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Module Backbone
ReferItGame Flickr30K

test test

Two-stage

VC [62] VGG16 31.13 -
MAttNet [58] ResNet-101 29.04 -

Similarity net [48] ResNet-101 34.54 50.89
LCMCG [30] ResNet-101 - 76.74

DIGN [33] VGG-16 65.15 78.73

One-stage

FAOA [55] DarkNet-53 60.67 68.71
RCCF [26] DLA-34 63.79 -

ReSC-Large [54] DarkNet-53 64.60 69.28
SAFF [56] DarkNet-53 66.01 70.71

TransVG [11] ResNet-101 70.73 79.10
TransVG (Swin) Swin-S 70.86 78.18

QRNet (ours) Swin-S 74.61 81.95

Table 1. The performance comparisons (Acc@0.5) on Refer-
ItGame and Flickr30K Entities.

decision process that handles long expressions iterative by
filtering out irrelevant areas. However, the limited action
space makes it easy to converge to a local optimum. Our
model does not modify the Visual-Linguistic Transformer
in the TransVG and only provides query-consistent visual
features. The performance is greatly improved, which
demonstrates that our query-aware refinement is more ef-
fective to model the representation for visual grounding.

4.4. Ablation Study

We conduct ablation studies on ReferItGame and
Flickr30k to reveal the effectiveness of the proposed QR-
Net.

We first study the effectiveness of QD-ATT in query-
refined feature extraction and query-aware multiscale fu-
sion. As shown in Table 3, we use a checkmark to de-
note enabling QD-ATT in the corresponding module, and
a cross mark to denote disabling QD-ATT and passing the
feature without modification. When disabling QD-ATT in
multiscale fusion, the performance is dropped by 2.52% in
ReferItGame-test and 0.79% in Flickr30k-test, respectively.
When disabling QD-ATT in query-refined feature extrac-
tion, the performance is dropped by 3.22% and 1.51%.
When completely disabling QD-ATT, the performance is
dropped by 3.75% and 3.77%. We find that QD-ATT is
more important in query-refined feature extraction than in
multiscale fusion. We also notice that, when compared
with completely disabling QD-ATT, only enabling QD-ATT
in multiscale fusion gains little improvement because the
features from the transformer are still noise and query-
inconsistent.

We further study the effectiveness of spatial attention and
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Figure 3. Visualization of activation maps from the backbone of
our QRNet and other popular models. Red: the predicted box.
White: the ground-truth box.

channel attention in the QD-ATT. Spatial attention can fil-
ter out irrelevant areas. And channel attention can redis-
tribute the importance of the features to fit different query
sentences. The results shown in the Table 4 demonstrate
that spatial and channel attention are both effective.

4.5. Qualitative Results

We show the qualitative comparison between our QRNet
and three popular methods in Figure 3. The feature maps
are extract from the backbone of each model. We can see
that previous methods are sensitive to many query-unrelated
areas, which may lead to wrong predictions, e.g., the results
of TransVG and ReSC for the queries of “glass upper righ”
and “light blue tall board”, and the result of Swin-S for the
query of “upper left cake”. In contrast, our QRNet generates
query-consistent features and makes more accurate predic-
tions. More results can be found in the supplementary.

5. Online Deployment

Previous experimental results have proven the advan-
tages of our proposed QRNet, so we deploy it in a real-
world online environment to test its practical performance.
Specifically, we apply QRNet to enhance the search engine
in Pailitao at Alibaba and perform A/B testing to evaluate
the impact of our model. Details can be found in supple-
mentary materials. We observe that QRNet decreases the
no click rate by 1.47% and improves the number of trans-
actions by 2.20% over the baseline. More specifically, the
decrease of no click rate implies that QRNet can generate
more accurate target boxes so that users are more likely
to click. The improvement of the number of transactions
means that the clicked item is exactly the users want to pur-
chase, which also reveals the great performance of QRNet.
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Models Backbone RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val-g val-u test-u

Two-stage

VC [62] VGG16 - 73.33 67.44 - 58.40 53.18 62.30 - -
MAttNet [58] ResNet-101 76.65 81.14 69.99 65.33 71.62 56.02 - 66.58 67.27
Ref-NMS [7] ResNet-101 78.82 82.71 73.94 66.95 71.29 58.40 - 68.89 68.67
LGRANs [49] VGG16 - 76.60 66.40 - 64.00 53.40 61.78 - -
RvG-Tree [21] ResNet-101 75.06 78.61 69.85 63.51 67.45 56.66 - 66.95 66.51

CM-Att-Erase [29] ResNet-101 78.35 83.14 71.32 68.09 73.65 58.03 68.67 - -
NMTree [28] ResNet-101 76.41 81.21 70.09 66.46 72.02 57.52 64.62 65.87 66.44

One-stage

FAOA [55] DarkNet-53 72.54 74.35 68.50 56.81 60.23 49.60 56.12 61.33 60.36
RCCF [26] DLA-34 - 81.06 71.85 - 70.35 56.32 - - 65.73

ReSC-Large [54] DarkNet-53 77.63 80.45 72.30 63.59 68.36 56.81 63.12 67.30 67.20
SAFF [56] DarkNet-53 79.26 81.09 76.55 64.43 68.46 58.43 - 68.94 68.91
HFRN [37] ResNet-101 79.76 83.12 75.51 66.80 72.53 59.09 - 69.71 69.08
ISRL [42] ResNet-101 - 74.27 68.10 - 71.05 58.25 - - 70.05

LBYL-Net [23] DarkNet-53 79.67 82.91 74.15 68.64 73.38 59.49 62.70 - -
TransVG [11] ResNet-101 81.02 82.72 78.35 64.82 70.70 56.94 67.02 68.67 67.73

TransVG (Swin) Swin-S 82.33 84.01 79.83 64.94 70.19 56.47 67.81 69.34 68.99

QRNet (ours) Swin-S 84.01 85.85 82.34 72.94 76.17 63.81 71.89 73.03 72.52

Table 2. The performance comparisons (Acc@0.5) on ReferCOCO, ReferCOCO+, and ReferCOCOg. The results of previous best two-
stage and one-stage methods are highlighted with underlines. We highlight our results in bold. The results demonstrate that our method
outperforms all state-of-the-art one-stage and two-stage methods.

Models
Feature

Extraction

Multiscale

Fusion

ReferItGame Flickr30k
val test val test

QRNet " " 76.84 74.61 80.83 81.95

(a) " % 74.31 72.09 80.09 81.16
(b) % " 73.63 71.39 79.35 80.44
(c) % % 73.25 70.86 77.17 78.18

Table 3. Ablation studies of QD-ATT in two phases of QRNet.

Models
Channel

Attention

Spatial

Attention

ReferItGame Flickr30k
val test val test

QRNet " " 76.84 74.61 80.83 81.95

(d) " % 74.35 72.02 80.22 81.35
(e) % " 74.41 71.80 80.67 81.55

Table 4. Ablation studies of different attentions in QD-ATT.

6. Conclusion

In this paper, we argue that pre-trained visual backbones
cannot produce visual features that are consistent with the
requirement of visual grounding. To overcome the weak-

nesses, we propose a Query-modulated Refinement Net-
work (QRNet) to adjust the visual feature maps with the
guidance of query text. The QRNet is designed based
on a novel Query-aware Dynamic Attention mechanism,
which can dynamically compute query-dependent spatial
and channel attentions for refining visual features. Exten-
sive experiments indicate that the improved framework sig-
nificantly outperforms the state-of-the-art methods. The
proposed QRNet exhibits vast potential to improve multi-
modal reasoning. In future work, we plan to improve the
fine-grained interaction ability of QRNet and discard the
post-interaction modules to simplify the existing end-to-end
visual grounding frameworks.
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