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Abstract

Optimization within a layer of a deep-net has emerged as
a new direction for deep-net layer design. However, there
are two main challenges when applying these layers to com-
puter vision tasks: (a) which optimization problem within a
layer is useful?; (b) how to ensure that computation within a
layer remains efficient? To study question (a), in this work,
we propose total variation (TV) minimization as a layer for
computer vision. Motivated by the success of total variation
in image processing, we hypothesize that TV as a layer pro-
vides useful inductive bias for deep-nets too. We study this
hypothesis on five computer vision tasks: image classifica-
tion, weakly supervised object localization, edge-preserving
smoothing, edge detection, and image denoising, improving
over existing baselines. To achieve these results we had to
address question (b): we developed a GPU-based projected-
Newton method which is 37× faster than existing solutions.

1. Introduction

Optimization within a deep-net layer has emerged as a
promising direction to designing building blocks of deep-
nets [2, 4, 29]. For this, optimization problems are viewed
as a differentiable function, mapping its input to its exact
solution. The derivative of this mapping can be computed
via implicit differentiation. Combined, this provides all the
ingredients for a deep-net “layer.”

Designing effective layers for deep-nets is crucial for the
success of deep learning. For example, convolution [28, 43],
recurrence [35, 63], normalization [37, 77], attention [75]
layers and other specialized layers [41, 46, 64, 80] are the
fundamental building-blocks of modern computer vision
models. Recently, optimization layers, e.g., OptNet [4], have
also found applications in reinforcement learning [3], logical
reasoning [76], hyperparamter tuning [10, 58], scene-flow
estimation [72], and graph-matching [61], providing useful
inductive biases for these tasks. Despite these successes,
optimization as a layer has not been as widely adopted in
computer vision because of two unanswered questions: (a)
which optimization problem is useful?; (b) how to efficiently

solve for the exact solution of the optimization problem if
the input is reasonably high-dimensional?

In this work, we propose and study Total Variation
(TV) [62] minimization as a layer within a deep-net for
computer vision, specifically, the TV proximity operator.
We are motivated by the fact that TV has had numerous
successes in computer vision, incorporating the prior knowl-
edge that images are piece-wise constant. Notably, TV has
been used as a regularizer in applications such as image
denoising [16], super-resolution [48], stylization [40], and
blind deconvolution [17] to name a few. Because of these
successes, we hypothesize that TV as a layer would be an
effective building-block in deep-nets, enforcing piece-wise
properties in an end-to-end manner.

However, existing solutions [2, 9] which can support TV
as a deep-net layer are limited. For example, CVXPYLay-
ers [2] supports back-propagation through disciplined convex
programs. However, CVXPYLayers uses a generic solver
and lacks GPU support. While specialized solvers [9, 38] for
TV minimization exists, they also lack GPU and batching
support. Hence, to meaningfully study TV as a layer at the
scale of a computer vision task, we need a fast GPU imple-
mentation. To achieve this goal, we developed a fast GPU
TV solver with custom CUDA kernels. For the first time,
this enables use of TV as a layer across computer vision
tasks. Our implementation is 1770× faster than a generic
solver and 37× faster than a specialized TV solver.

With this fast implementation, we study the hypothesis
of TV as a layer on five tasks, spanning from high-level to
low-level computer vision: classification, object localization,
edge detection, edge-aware smoothing, and image denois-
ing. We incorporate TV layers into existing deep-nets, e.g.,
ResNet and VGGNet, and found them to improve results.
Our Contributions:

• We propose total variation as a layer for use as a building
block in deep-nets for computer vision tasks.

• We develop a fast GPU-based TV solver. It significantly
reduces training and inference time, allowing a TV layer
to be incorporated into classic deep-nets. The implemen-
tation is publicly available.1

1github.com/raymondyeh07/tv_layers_for_cv
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• We demonstrate efficacy and practicality of TV layers
by evaluating on five different computer vision tasks.

2. Related Work
In the following we briefly discuss optimization within

deep-net layers, the use of total variation (TV) in computer
vision and existing TV solvers.
Optimization as a Layer. Optimization is a crucial com-
ponent in classical statistical inference, i.e., within the “for-
ward pass” of deep-nets, of machine learning models [24].
Earlier works in structure prediction and graphical mod-
els [39, 71, 73, 81] rely on the output of an optimization
program to make a prediction. End-to-end approaches have
also been developed [12, 30, 31].

More recently, optimization has been viewed as a layer
in deep-nets. Amos and Kolter [4] propose to integrate
quadratic programming into deep-nets. Other optimization
programs have also been considered, e.g., cone programs [2]
and integer programs [55]. This perspective of optimization
as a layer has also led to new optimization-based deep-net ar-
chitectures. Bai et al. [7, 8] propose deep equilibrium models
which encapsulate all the layers into a root-finding problem.
Optimization as a layer has also been explored in optimizing
rank metrics [60] and graph matching [61]. Different from
these works, we propose and explore optimization of TV as
a layer on computer vision tasks.
Total Variation in Computer Vision. Total variation, pro-
posed by Rudin et al. [62], has been applied in various
computer vision applications, including, denoising [11,
16, 52] deconvolution [17, 54], deblurring [11], inpaint-
ing [1, 66, 79], superresolution [48], structure-texture de-
composition [6], and segmentation [25]. Total variation has
also been applied in deep-learning as a loss function for visu-
alizing deep-net features [47], for style transfer [40], and for
image synthesis [84]. These prior works explored TV regu-
larized problems. Differently, we study how to incorporate
TV as a layer into end-to-end trained deep-nets.
Solvers for TV Regularized Problems. A common ap-
proach to solving TV Regularized problems is Proximal Gra-
dient Descent (PGD) [59], which requires computation of the
TV proximity operator. Methods for solving the TV proxim-
ity operator include the taut string algorithm [22], Newton-
type methods [38], the Iterative-Shrinkage-Thresholding Al-
gorithm (ISTA) [21], and its fast counterpart FISTA [11],
etc. Besides these optimization algorithms, deep-nets have
also been used to “approximate” solutions (via unrolling) of
TV-regularized problems, e.g., Learned ISTA (LISTA) [32]
and variants [68], Learned AMP [15], and Learned PGD
(LPGD) [18]. These works are interested in using deep-nets
to solve an optimization problem, i.e., learning to predict the
solution. Different from these works, we are interested in
how to use an optimization problem (as a layer) to incorpo-
rate inductive biases into deep-nets.

Input Conv. (Low-Pass) Total Variation

Figure 1. Illustration of convolution and TV proximity operator
for image smoothing. In contrast to a convolution, i.e., a low-pass
filter, TV is capable of preserving the edges during smoothing.

3. Approach
Our goal is to incorporate total variation (TV) minimiza-

tion as a layer into deep-nets. Motivated by the success of
TV in classical image restoration, we hypothesize that TV as
a layer incorporated into deep-nets is a useful building-block
for computer visions tasks. It provides an additional selec-
tion of inductive bias over existing layers. Concretely, the
input/output dependencies of a TV operation are not achiev-
able by a single convolution layer, as the TV operation is not
a linear system. Consider as an example image smoothing:
TV can preserve the edges, while a convolution (low-pass
filter) blurs the edges as illustrated in Fig. 1. To incorporate
this form of inductive bias into deep-nets we develop the
differentiable TV layer.

3.1. Differentiable Total Variation Layer

The main component of our TV layer is the proximity
operator. For 1D input x ∈ RN , TV is defined as

Prox1D
TV (x, λ) = arg min

y

1

2
‖y − x‖22 + λ ‖DNy‖1 , (1)

where ‖DNy‖1 =
∑
n |xn+1 − xn| and λ ≥ 0. The differ-

encing matrixDN contains minus ones on its diagonal and
an off-diagonal of ones, capturing the gradients of y.

Similarly, the 2D TV (anisotropic) proximity operation
for a 2D inputX and output Y ∈ RM×N is defined as:

Prox2D
TV (X, λ) = arg minY

1
2 ‖Y −X‖

2
F (2)

+λ
(∑

m

∥∥DMYrow(m)

∥∥
1

+
∑
n

∥∥DNYcol(n)

∥∥
1

)
,

whereDM andDN denote the corresponding row and col-
umn differencing matrix. We incorporate this TV proximity
operator as a layer into deep-nets and refer to it as the differ-
entiable total variation layer.
Differentiable TV Layer. Given an input feature map
X ∈ RC×H×W the TV layer outputs a tensor Y of the same
size. This layer computes the TV-proximity operator inde-
pendently on each of the channels. The trainable parameters
of this layer are λ̃ ∈ RC which are used in a SoftPlus [26]
non-linearity to guarantee that λ contains positive numbers
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class TVLayer(Module):
def __init__(self, num_chan, is_sharp):
# num_chan: Number of channels
# is_sharp: Sharpen or not.
self.is_sharp = is_sharp
self._lmbd = Parameters(zeros(num_chan))

def forward(self, x):
# x: Tensor (num_chan, height, width)
lmbd = softplus(self._lmbd)
# Apply batched per channel prox. tv
y = tv_prox_2d(x, lmbd)
if self.is_sharp:

y = 2*x-y
return y

Figure 2. Pseudo code of the proposed TV Layer.

which are passed to the proximity operator. The forward
operation is hence summarized as: ∀c ∈ {1, . . . , C}

Yc = Prox2D
TV (Xc,λc) where λc = SoftPlus(λ̃c). (3)

This layer performs smoothing while preserving edges. Note,
depending on the desired spatial mode, the layer can also
process the rows/columns independently, i.e., a 1D TV-
proximity operator per row or column.

In addition, we further extend the capability of this layer,
by designing a “sharpening” mode. Inspired by image sharp-
ening techniques, we compute the difference between the
input and the smoothed TV output. This difference is added
back to the original image to perform “sharpening,” i.e., ∀c

Yc = 2Xc − Prox2D
TV (Xc,λc). (4)

The overall pseudo-code of this layer is shown in Fig. 2.
Trainable λ in TV Layer. Note, a TV Layer with trainable
λ increases a model’s capacity. When λ = 0, this layer is
an identity function for both smoothing and sharpening as

x = arg min
y

1

2
‖y − x‖22 + 0, (5)

and as 2x − x = x in the sharpening mode. Hence, a
network with TV layers and λ = 0 is equivalent to a model
without this layer. The network can hence learn to “turn-
off” this layer if this improves results, avoiding the need to
hand-tune λ when adding the TV layer to a new deep-net
architecture. We will now discuss details on how to develop
a fast implementation of this TV layer.

3.2. Efficient Implementation

Existing packages that support the TV proximity operator
are either generic or lack GPU support. For example, CVX-
PYLayers uses a generic solver, which is relatively slow
compared to specialized TV solvers. In contrast, efficient
solvers are fast on the CPU, e.g., the ProxTV toolbox [9, 38],

however CPU implementations are not suitable for integra-
tion with deep-nets when all other operations occur on the
GPU, as memory transfer between GPU and CPU is needed
at each layer, making training and inference slow.

To address these short-comings, we develop a GPU-based
Projected-Newton [13] method for solving TV by writing
custom CUDA kernels. We carefully consider the struc-
ture of the TV problem. These custom CUDA kernels are
wrapped into PyTorch [53] and can be conveniently called
through Python. We will discuss the forward and backward
operation for 1D input next.
Forward Operation. Projected-Newton solves the TV-
proximity problem (Eq. (1)) via its dual:

max
u
−1

2
‖Dᵀ

Nu‖
2

2 + uᵀDNx︸ ︷︷ ︸
φ(u)

s.t. ‖u‖∞ < λ. (6)

Specifically, projected-Newton iteratively solves a local
quadratic approximation of the objective before perform-
ing an update step with a suitable step-size, e.g., following
the Armijo rule. Given Eq. (6), the quadratic approximation
boils down to solving the linear system

HSdS = ∇φ(u)S , (7)

for dS which denotes the dual variable update direction.
Here, H = ∇2φ(u) refers to the Hessian matrix, S refers
to the set of indices of active variables and the subscript
denotes selecting the rows/columns to form a system based
on a subset of the variables.

At a glance, solving Eq. (7) seems expensive. However,
note thatH = DND

ᵀ
N is a tridiagonal and symmetric ma-

trix. Tridiagonal systems can be solved efficiently by first
computing a Cholesky factorization and then solving with
backward substitution. Both operations can be performed in
linear time, i.e., O(N) [74]. Without exploiting this struc-
ture, general Gaussian elimination has O(N3) complexity.

Unfortunately, specialized routines for sub-indexing
and solving tridiagonal systems are neither supported by
cuBLAS nor by ATen. To enable efficient computation with
batching support on the GPU, we implemented 21 custom
CUDA kernels. These CUDA operations are integrated with
PyTorch for ease of use. We note that these implementations
are necessary due to the special structures of the matrices.
To give an example, a N ×N tridiagonal matrix can be effi-
ciently stored in a 3×N matrix, storing the diagonal and two
off-diagonals. However, this indexing scheme needs to be
supported and is not readily available in existing packages.

Next, to select a suitable step-size for direction dS , we
use the quadratic interpolation backtracking strategy [51].
We have also implemented a parallelized search strategy,
which considers multiple step-sizes of halving intervals in
parallel. In practice, we found backtracking to be more
efficient as it only iterates a few times.
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Algorithm 1 Prox2D
TV (X, λ) with Proximal Dykstra Method

Inputs: X and λ
Initialize: Y (k) = X , P0 = 0,Q0 = 0
for k ∈ {1, . . . ,K} do

for m ∈ {1, . . . ,M} do # Parallelized with CUDA
Z

(k)
row(m) = Prox1D

TV (Y
(k)
row(m) + P

(k)
row(m), λ)

end for
P (k+1) = P (k) + Y (k) −Z(k)

for n ∈ {1, . . . , N} do # Parallelized with CUDA
Y

(k+1)
col(n) = Prox1D

TV (Z
(k)
col(m) +Q

(k)
col(n), λ)

end for
Q(k+1) = Q(k) +Z(k) − Y (k+1)

end for
return Y K+1

Backward Operation. To use Prox1D
TV (x, λ) as a layer, we

need to compute the Jacobian with respect to (w.r.t.) x and
λ: For readability, we let y = Prox1D

TV , which yields

∂y

∂x
= MLᵀ

:,S̄ and
∂y

∂λ
= −MSign(DNy)S̄ , (8)

where
M = L:,S̄(Lᵀ

:,S̄L:,S̄)−1. (9)

Here, S̄ denotes the set of indices of non-zero values in
DNy, L denotes a N × N lower triangular matrix, and
the subscript denotes the sub-selection of the column. We
refer readers to Cherkaoui et al. [18]’s appendix G.1 for the
derivation.

To efficiently compute these Jacobian matrices, observe
that Lᵀ

:,S̄L:,S̄ in Eq. (9) is a positive (semi-definite) ma-
trix. Therefore, we use Cholesky factorization and Cholesky
solve to compute the inverse instead of a standard matrix
inversion. Again, we implemented custom CUDA kernels to
allow for efficient indexing and batching. We integrate this
into the backward function of PyTorch to support automatic
differentiation.
2D TV Proximity. The 2D TV proximity implementation
is based on the Proximal Dykstra method [20]. It alternates
between solving 1D TV proximity problems for all the rows
and columns, i.e.,

min
Y

1

2
‖Y −X‖2F + λ

∑
m

∥∥DMYrow(m)

∥∥
1

(10)

min
Y

1

2
‖Y −X‖2F + λ

∑
n

∥∥DNYcol(n)

∥∥
1
. (11)

Both Eq. (10) and Eq. (11) can be decomposed into 1D TV
proximity problems per row or per column. As our 1D TV
proximity operator implementation supports batching, we
can solve all the rows or all the columns in parallel very

Package Hardware Forward Backward Total
CVXPYLayers CPU 20704± 32 9932± 41 1770×

ProxTV-TS CPU 207.8± 7.5 430.7± 7.9 37×
ProxTV-PN CPU 257.3± 5.8 447.0± 9.6 41×

Ours-PN Titan X 9.0± 0.7 17.7± 2.4 1.5×
Ours-PN A6000 10.0± 1.5 7.3± 6.0 1×

Table 1. Running time (ms) comparison of TV 1D Proximity
Operator. We report the total running time relative to Ours-PN on
an A6000 GPU.

efficiently on the GPU. The overall procedure is summa-
rized in Alg. 1. We found three or four iterations of the
Proximal Dykstra method to work well in practice. For the
backward pass, our TV 1D proximity operator supports au-
tomatic differentiation, so back-propagation through Alg. 1
is automatically computed with PyTorch.

4. Experiments
First, we compare the running time of TV layers imple-

mented with different approaches. Next, we evaluate the
proposed TV layer on a variety of computer vision tasks
including: image classification, weakly supervised object
localization, edge detection, edge-aware filtering, and im-
age denoising. These tasks cover a wide spectrum of vision
applications from high-level semantics understanding to low-
level pixel manipulation, demonstrating the practicality of
the proposed TV layer. As we are reporting over multiple
tasks and metrics, we use ↑/↓ to indicate whether a metric is
better when it is higher/lower.

4.1. Timing Analysis

We compare with a generic TV solver using CVXPY-
Layers [2, 23] which supports back-propagation. We also
compare with specialized TV solvers using the ProxTV tool-
box2 [9, 38] with a PyTorch implementation of the backward
pass. Both, CVXPYLayers and ProxTV only support CPU
computations.

We time each of these methods on a batch of signals
with dimension 256× 32× 32. This is a typical dimension
for small scale computer vision tasks. The data contains a
unit step signal with additive Gaussian noise and λ is set to
one. Timing evaluation is done on an NVIDIA TITAN X or
A6000 GPU and an Intel Core i7-6700K CPU. We report the
mean and standard deviation over 25 runs.
Results. In Tab. 1 we report the forward and backward
computation time, in milliseconds, for each of the methods.
We observe that ProxTV with specialized solver is faster than
CVXPYLayers using a generic solver. We report ProxTV
with two different specialized TV solvers, namely, Taut-
String (TS) and Projected Newton (PN). However, these
CPU based methods remain too slow for practical vision

2Available at https://github.com/albarji/proxTV.
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Noise Type Blur Type Corruption Type
Arch. Gaussian Shot Impulse Glass Defocus Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixelate JPEG All

AllConv 36.2±1.4 48.9±1.5 46.6±3.1 77.9±0.7 46.7±2.3 72.8±0.5 71.9±1.1 77.8±0.1 71.9±0.8 82.5±0.4 91.6±0.2 67.1±0.9 82.2±0.7 72.2±0.5 79.0±0.3 68.4±0.5

TV-Smooth 42.7±2.4 55.0±1.4 44.8±3.2 79.4±0.7 49.2±2.5 74.5±0.8 74.3±1.2 79.4±0.8 75.3±1.1 85.0±0.3 92.1±0.1 69.4±1.1 81.8±0.3 73.0±0.6 78.4±0.2 70.3±0.6

TV-Sharp 40.6±1.4 53.1±1.5 46.5±1.0 79.8±0.3 50.3±0.6 75.7±0.7 73.9±0.4 80.3±0.5 75.2±0.9 86.2±0.4 92.2±0.1 74.4±0.2 81.8±0.3 72.6±0.5 76.5±0.16 70.6±0.2

Table 2. Classification accuracy (↑) on CIFAR10-C over different types of corruptions.
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Figure 3. Visualization of λ vs. number of training epochs for
TV-Sharp at the first and second Conv. block. We observe that λ
learns to be greater than zero.

applications, e.g., an entire inference on ResNet101 takes
∼ 150 ms. With GPU support, our approach achieves a
1770× speedup over CVXPYLayers, and is 37× to 41×
faster than ProxTV. This significant speedup enables the
scaling of TV layers to real computer vision tasks.

4.2. Image Classification

We conduct experiments on CIFAR10 data [42] evaluat-
ing two aspects: (a) standard classification and (b) out of
domain generalization. We study the effect of the proposed
total variation layer on a baseline architecture of an All Con-
volutional Network [69]. We study both the smoothing and
the sharpening TV layer, with λ shared across channels,
being added in the first three convolution blocks. Specifi-
cally, we insert the TV layers before batch-normalization
of each block. We refer to these modified architectures as
TV-Smooth and TV-Sharp. We initialize λ = 0.05 and train
them jointly with the model parameters.
Standard Classification. On CIFAR10, the baseline model
AllConvNet achieved an accuracy of 93.51%± 0.18% (stan-
dard deviation reported over five runs). With the smoothing
and sharpening TV layer added, TV-Smooth and TV-Sharp
achieve an accuracy of 93.61±0.17% and 93.43±0.24% re-
spectively. As can be seen, adding these TV layers performs
on par with the baseline model.

To ensure that the models actually use the TV modules,
we visualize λ in Eq. (1), at each layer, throughout training
iterations in Fig. 3. Note, λ learns to be non-zero, indicating
that the TV layers are impacting the model architecture.
Out of Domain Generalization. To further assess how TV
modules affect the model, we evaluate out-of-distribution
(o.o.d.) generalization using CIFAR10-C data [34]. Mod-
els are trained on clean data and evaluated on corrupted
data, e.g., noise is added to the images. Classification ac-
curacy on CIFAR10-C are reported in Tab. 2. On average,

Method VGG-16 Inception-V3 ResNet-50
CAM-paper 60.02 63.40 63.65
CAM-repro. 60.13 63.51 64.09

CAM-repro.+TV (Ours) 60.35 63.80 65.36

Table 3. WSOL localization accuracy, MaxBoxAccV2 (↑), on the
test set from Choe et al. [19] for ImageNet pre-trained models.

Figure 4. Visualization of WSOL results. We show the input images
(left), the heat-maps from CAM (center) and ours (right).

both the TV-Smooth and TV-Sharp model improve the o.o.d.
generalization over the baseline model. We observe: the
TV-Smooth model generalizes better to additive noise cor-
ruption, whereas TV-Sharp improves the accuracy on blur
corruption. These results match our expected behavior of
sharpening and smoothing and illustrate that optimization as
a layer is a useful way to encode a models’ inductive bias.

4.3. Weakly Supervised Object Localization

Weakly Supervised Object Localization (WSOL) is a
popular interpretability tool in various computer vision tasks.
It learns to localize objects with only image-level labels. The
seminal work Class Activation Mapping (CAM) [85] first
studies WSOL for image classification. Follow-up work [57,
65] further generalizes to broader domains such as vision
and language. We believe TV layer is beneficial to WSOL
as it aids the localization results, i.e., class-wise heat-maps,
to be smoother and better aligned with boundaries.

For evaluation, the most popular method is to infer sur-
rounding bounding boxes of the computed class heat-maps
and compare to ground-truth ones. However, recent WSOL
analysis work [19] points out that CAM is still the state-of-
the-art WSOL method under a fairer evaluation setting. The
performance boost achieved in follow-ups are illusory caused
by wrong experimental settings and inconsistent bounding
box generation methods. We thus adopt both CAM and the
fair evaluation protocol in this work and test TV layer on it.
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BIPED [56] MDBD [50]
Method ODS (↑) OIS (↑) AP (↑) ODS (↑) OIS (↑) AP(↑)

HED [78] .829 .847 .869 .851 .864 .890
RCF [45] .843 .859 .882 .857 .862 -

DexiNed [56] .859 .867 .905 .859 .864 .917
DexiNed+TV .874 .879 .914 .863 .875 .920

Table 4. Quantitative comparison for edge detection on BIPED and
MDBD data. Baselines are obtained from corresponding papers.

Experimental Setup. We test three different models: VGG-
16 [67], ResNet-50 [33], and Inception-V3 [70]. We use a
fixed TV2D-Smooth layer shared across all channels with
λ = 1. We insert this TV layer right before the CAM layer
of each network. We use the code base from Choe et al. [19]
who discuss a more fair experimental setting: all WSOL
methods are fine-tuned on a fixed validation set to search for
the best hyper-parameters and then test on newly collected
test images. Since the fine-tuned models are not released,
we reproduce using the released code and report both results
(CAM-repro. and CAM-paper) for completeness.
Results. We report quantitative metrics in Tab. 3 where we
observe that a TV layer consistently improves WSOL results
of various models (0.22/0.29/1.27 for VGG-16/Inception-
V2/ResNet-50). We further show qualitative comparisons
between the vanilla version and ours in Fig. 4 where we
observe that the TV layer helps WSOL models to generate
smoother and aligned results.

4.4. Edge Detection

Edge detection is the task of identifying all the edges for
a given input image. For learning based methods, this is
formulated as a binary classification problem for each pixel
location, i.e., classifying whether a given pixel in the image
is an edge. The task is illustrated in Fig. 5. We evaluate
on the recent BIPED [56] and the Multicue (MBDB) [50]
dataset for edge detection.
Experimental Setup. We compare to the Dense extreme
inception Network for edge detection (DexiNed) baseline
proposed by Poma et al. [56]. DexiNed consists of convolu-
tional blocks and follows a multi-scale and multi-head archi-
tecture. Before each stage of max-pooling, DexiNed outputs
an edge-map at the scale of 2×, 4×, 8× and 16×. The final
edge-map prediction is obtained by averaging the edge-map
at each scale. For our model, we added TV2D-Sharp layers,
with trainable λ, at the 2×, 4× and 8× edge-maps. At the
final edge-map, we added a TV2D-Smooth layer.

Evaluation metrics for edge detection [5] are based on the

F-measure = 2 · precision · recall
precision + recall

, (12)

with different thresholds, including: (a) optimal dataset scale
(ODS) which corresponds to using the best threshold over
a dataset; (b) optimal image scale (OIS) which corresponds

Input Ground-Truth

DexiNed [56] DexiNed+TV (Ours)

Figure 5. Qualitative comparison on edge detection.

to using the best threshold per image and average precision
(AP) which is the area under the precision-recall curve.
Results. Following Poma et al. [56], we compared our Dex-
iNed + TV to the standard DexiNed [56], RCF [45] and
HED [78] in Tab. 4 using the BIPED and MDBD dataset.
All the models are trained only on the BIPED dataset. As
can be seen, our approach achieves improvements across
ODS, OIS, and AP for both BIPED and MDBD data. A
qualitative comparison of the final detected edges is shown
in Fig. 5. We observe that DexiNed+TV predicts sharper
edges and suppresses textures better than DexiNed.

4.5. Edge Preserving Smoothing

Edge preserving smoothing is the task of smoothing im-
ages while maintaining sharp edges. To fairly compare
across algorithms, Zhu et al. [86] propose a dataset (Bench-
markEPS) consisting of 500 training and testing images with
corresponding “ground-truth” smoothed images.

Zhu et al. [86] also propose to use two evaluation met-
rics, Weighted Root Mean Squared Error (WRMSE) and
Weighted Mean Absolute Error (WMAE) defined as follows:

WRMSE(I, Î) =

√√√√∑N
n=1

∑K
k=1 w

(n,k)
∥∥∥Î(n) − I(n,k)

∥∥∥2

2

N ·K ·H ·W

and

WMAE(I, Î) =

∑N
n=1

∑K
k=1 w

(n,k)
∥∥∥Î(n) − I(n,k)

∥∥∥
1

N ·K ·H ·W
,

where I(n,k) corresponds to the k-th ground-truth of the n-
th image (with height H and width W ), Î(n) denotes the
prediction of the n-th image, w(n,k) denotes the normalized
weight of the ground-truth. Note, there are multiple ground-
truths for each image, hence annotators vote for each ground-
truth and their votes are normalized into weight w(n,k).

For evaluation, we compared with two deep-net baselines,
VDCNN and ResNet, proposed by Zhu et al. [86], as well as
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Input Final Conv. Layer After TV-Smooth

Figure 6. Visualization of the effects of the final TV-smooth layer for edge preserving smoothing.

Method WRMSE (↓) WMAE (↓)
L1 smooth [14] 9.89 5.76
VDCNN [86] 9.78 6.15
ResNet [86] 9.03 5.55

ResNetTV (Ours) 8.87 5.47

Table 5. Quantitative results on the edge-preserving image smooth-
ing benchmark [86].

an optimization based approach of L1 smoothing [14]. The
ResNet architecture consists of 16 Residual Blocks followed
by three convolutional layers with a skip connection from
the input. For our model (ResNetTV), we insert four TV1D-
Sharp layers with alternating row/column directions into
the Residual Blocks and lastly a TV2D-Smooth layer (with
shared λ across channels) after the last skip connection. This
design is due to the observations that residual blocks learn
high-frequency content and the final output is smooth.
Results. In Tab. 5, we report the quantitative results. We
observe improvements in both WRMSE and WMAE over
the baselines, both the pure optimization based method and
deep learning methods. This demonstrates the benefits of
incorporating optimization as a layer into deep-nets. Beyond
the quantitative improvements, we analyze the effect of the
final TV-Smooth layer, which can be easily visualized as
it is operating in the image space. First, we observe that
the learned λ = 15.1, which means that the layer is indeed
performing smoothing. To illustrate its effect, in Fig. 6 we
visualize the image at the final convolutional layer and after
the TV-Smooth layer. As can be seen, the image at the final
convolutional layer (column 2 of Fig. 6) is already smoothed
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Figure 7. Visualization of feature maps before and after TV-Sharp
layer at a residual block on ResNetTV. The red box indicates the
region of visualized (zoomed-in) feature maps.

by a decent amount. The final TV-Smooth layer further
filters the image while preserving the edges which improves
the result. We suspect that addition of the TV-Smooth layer
aids the overall performance as the deep-net does not need
to use its capacity for part of the smoothing procedure.

We also analyze the effect of the TV layer on the feature
maps. In Fig. 7 we show an intermediate feature map before
and after a TV-Sharp layer. As expected, feature maps are
sharpened, leading to more prominent edges in feature space.
While it is difficult to directly interpret these features maps,
intuitively, a deep-net that performs well on edge preserving
smoothing should easily capture edges of an image.
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Ground-Truth Noisy Input After Input TV Final Residual Block After Output TV

Figure 8. Visualizing the effects of the input and output TV layers (see Eq. (14)) on image denoising.

4.6. Image Denoising

Image denoising is the task of recovering a clean image
given a noisy input image. Deep-net-based approaches typ-
ically formulate image denoising as a regression task, i.e.,
regress to the clean RGB values given a noisy input. We
consider color images corrupted by additive white Gaus-
sian noise and report the average peak signal-to-noise ratio
(PSNR) [36]; the higher the better. We evaluate on the com-
mon CBSD68 [49], Kodak24 [27] and McMaster [83] data.

We use DnCNN [82] as our base model. It consists of
residual blocks with a full skip connect from the input, i.e.,

DnCNN(I) , R(I) + I, (13)

whereR denotes the residual blocks and I is the noisy input
image. We added TV2D-Smooth layers at the input and
output of the network, i.e.,

DnCNNTV(I) , Prox2D
TV

([
R(Ĩ) + Ĩ

]
,λout

)
, (14)

where Ĩ , Prox2D
TV (I,λin). We use the KAIR toolbox3 to

train these denoising models.
Results. In Tab. 6, we report the average PSNR over differ-
ent noise-levels. We observe a larger gain on the σ = 50
setting and on the McMaster dataset. We further analyze the
behavior of the two added TV layers. As the TV layers are
added on the image space, we can directly visualize them.
In Fig. 8 we visualize the noisy input image, the image im-
mediately after the input TV layer, the final residual block,
and the final result after the output TV layer. We observe:
the input TV layer performs a very weak noise reduction,
see column two vs. three in Fig. 8. Next, in column four,

3Available at https://github.com/cszn/KAIR

Method CBSD68 [49] Kodak24 [27] McMaster [83]
Noise-level σ 25 50 25 50 25 50
DnCNN [82] 31.24 27.95 32.14 28.95 31.52 28.62
DnCNNTV 31.26 28.07 32.15 29.09 32.32 29.35

Table 6. Quantitative comparison for image denoising. We report
the average PSNR (↑) for each of the methods.

we observe: the residual block outputs an image with sharp
edges but with high-frequency artifacts. These artifacts are
then smoothed by the final output TV layer (see col. five).
Limitations. We note that our result is not the state-of-the-
art model, i.e., SwinTransformer [44]. We have also added
TV layers to SwinTransformer models. However, λs learn to
be zero which effectively turns the TV layer off. We suspect
that the TV smoothing layer leads to overly smooth output.
Hence, when a deep-net has enough capacity the TV layer
may learn to use λ = 0 to avoid smoothing.

5. Conclusion
Optimization as a layer is a promising direction to in-

corporate inductive bias into deep-nets. In this work, we
propose to include total variation minimization as a layer.
Our method achieves 37× speedup over existing solutions
scaling TV layers to real computer vision tasks. On five
tasks, we demonstrate existing deep-net architectures can
benefit from use of TV-layers. We believe the TV layer is
an important building block for deep learning in computer
vision and foresee more applications to benefit from it.
Acknowledgements: This work is supported in part by NSF
#1718221, 2008387, 2045586, 2106825, MRI #1725729,
NIFA 2020-67021-32799 and Cisco Systems Inc. (CG
1377144 - thanks for access to Arcetri).
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