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Abstract

Despite recent success in incorporating learning into
point cloud registration, many works focus on learning fea-
ture descriptors and continue to rely on nearest-neighbor
feature matching and outlier filtering through RANSAC to
obtain the final set of correspondences for pose estima-
tion. In this work, we conjecture that attention mecha-
nisms can replace the role of explicit feature matching and
RANSAC, and thus propose an end-to-end framework to
directly predict the final set of correspondences. We use
a network architecture consisting primarily of transformer
layers containing self and cross attentions, and train it to
predict the probability each point lies in the overlapping
region and its corresponding position in the other point
cloud. The required rigid transformation can then be es-
timated directly from the predicted correspondences with-
out further post-processing. Despite its simplicity, our ap-
proach achieves state-of-the-art performance on 3DMatch
and ModelNet benchmarks. Our source code can be found
at https://github.com/yewzijian/RegTR.

1. Introduction
Rigid point cloud registration refers to the problem of

finding the optimal rotation and translation parameters that
align two point clouds. A common solution to point
cloud registration follows the following pipeline: 1) detect
salient keypoints, 2) compute feature descriptors for these
keypoints, 3) obtain putative correspondences via nearest
neighbor matching, and 4) estimate the rigid transforma-
tion, typically in a robust fashion using RANSAC. In recent
years, researchers have applied learning to point cloud reg-
istration. Many of these works focus on learning the feature
descriptors [14,15,54] and sometimes also the keypoint de-
tection [2, 20, 49]. The final two steps generally remain un-
changed and these approaches still require nearest neighbor
matching and RANSAC to obtain the final transformation.
These algorithms do not take the post-processing into ac-
count during training, and their performance can be sensi-
tive to the post-processing choices to pick out the correct
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Figure 1. Our network directly outputs final correspondences and
the overlap scores. The required rigid transformation can then be
directly computed from these correspondences without RANSAC.

correspondences, e.g. number of sampled interest points or
distance threshold in RANSAC.

Several works [44, 45, 50] avoid the non-differentiable
nearest neighbor matching and RANSAC steps by esti-
mating the alignment using soft correspondences computed
from the local feature similarity scores. In this work, we
take a slightly different approach. We observe that the
learned local features in these works are mainly used to es-
tablish correspondences. Thus, we focus on having the net-
work directly predict a set of clean correspondences instead
of learning good features. We are motivated by the recent
line of works [7, 30] which make use of transformer atten-
tion [43] layers to predict the final outputs for various tasks
with minimal post-processing. Although attention mech-
anisms have previously been used in registration of both
point clouds [20, 44] and images [35], these works utilize
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attention layers mainly to aggregate contextual information
to learn more discriminative feature descriptors. A subse-
quent RANSAC or optimal transport step is still often used
to obtain the final correspondences. In contrast, our Regis-
tration Transformer (REGTR) utilizes attention layers to di-
rectly output a consistent set of final point correspondences,
as illustrated in Fig. 1. Since our network outputs clean cor-
respondences, the required rigid transformation can be es-
timated directly without additional nearest neighbor match-
ing and RANSAC steps.

Our REGTR first uses a point convolutional backbone
[40] to extract a set of features while downsampling the in-
put pair of point clouds. The features of both point clouds
are passed into several transformer [43] layers consisting of
multi-head self and cross attentions to allow for global in-
formation aggregation, while taking into account the point
positions through positional encodings to allow the net-
work to utilize rigidity constraints to correct bad correspon-
dences. The resulting features are then used to predict the
corresponding transformed locations of the downsampled
points. We additionally predict overlap probability scores to
weigh the predicted correspondences when computing the
rigid transformation. Unlike the more common approach
of computing correspondences via nearest neighbor feature
matching, which requires interest points to be present at the
same locations in both point clouds, our network is trained
to directly predict corresponding point locations. As a re-
sult, we do not require sampling large number of interest
points (e.g. in [20, 54]) or a keypoint detector (e.g. [26, 55])
that produces repeatable points. Instead, we establish cor-
respondences on simple grid subsampled points.

Although our REGTR is simple in design, it achieves
state-of-the-art performance on the 3DMatch [54] and Mod-
elNet [46] datasets. It also has fast run times since it does
not require running RANSAC on a large number of putative
correspondences. In summary, our contributions are:

• We directly predict a consistent set of final point cor-
respondences via self and cross attention, without us-
ing the commonly used RANSAC nor optimal trans-
port layers.

• We evaluate on several datasets and demonstrate state-
of-the-art performance, achieving precise alignments
despite using a small number of correspondences.

2. Related Work
Correspondence-based registration. Correspondence-
based approaches for point cloud registration first estab-
lish correspondences between salient keypoints, followed
by robust estimation of the rigid transformation. To ac-
complish the first step, many keypoint detectors [38, 55]
and feature descriptors [34,41] have been handcrafted. Pio-
neered by 3DMatch [54], many researchers propose to im-
prove feature descriptors [14, 15, 24, 54] and also keypoint

detection [2,26,49] by learning from data. Recently, Preda-
tor [20] utilizes attention mechanisms to aggregate contex-
tual information to learn more discriminative feature de-
scriptors. Most of these works are trained by optimizing
a variant of the contrastive loss [11,37] between feature de-
scriptors of matching and non-matching points, and rely on
a subsequent nearest neighbor matching step and RANSAC
to select the correct correspondences.
Learned direct registration methods. Instead of com-
bining learned descriptors with robust pose estimation,
some works incorporate the entire pose estimation into the
training pipeline. Deep Closest Point (DCP) [44] proposes
a learned version of Iterative Closest Point (ICP) [4, 8],
and utilizes soft correspondences on learned pointwise fea-
tures to compute the rigid transform in a differentiable man-
ner. However, DCP cannot handle partial overlapping point
clouds and thus later works overcome the limitation by de-
tecting keypoints [45] or using optimal transport layers with
an added slack row and column [17, 50]. IDAM [27] con-
siders both feature and Euclidean space during its pairwise
matching process. PCAM [6] multiplies the cross-attention
matrices at multiple levels to fuse low and high-level con-
textual information. DeepGMR [53] learns to compute
point-to-distribution correspondences. A separate group of
works [1,21,28,36,48] rely on global feature descriptors and
circumvent the local feature correspondence step. Point-
NetLK [1] aligns two point clouds by minimizing the dis-
tances between their global PointNet [33] features, in a pro-
cedure similar to the Lucas-Kanade [3] algorithm. Li et
al. [28] extends it to use analytical Jacobians to improve the
generalization behavior. OMNet [48] incorporates masking
into the global feature to better handle partial overlapping
point clouds. Our method utilizes local features and is sim-
ilar to e.g. [44,45], but we focus on predicting accurate cor-
responding point locations via transformer attention layers.
Learned correspondence filtering. The putative corre-
spondences obtained from correspondence-based methods
contain outliers, and thus RANSAC is typically used to fil-
ter out wrong matches when estimating the required trans-
formation. However, RANSAC is non-differentiable and
cannot be used within a training pipeline. Recent works
alleviate this problem by modifying RANSAC to enforce
differentiability [5], or by learning to identify which of the
putative correspondences are inliers [13, 18, 25, 51]. In ad-
dition to inlier classification, 3DRegNet [32] also regresses
the rigid transformation parameters using a deep network.
Different from these works, we directly predict the clean
correspondences without explicitly computing the noisy pu-
tative correspondences.
Transformers. Transformers [43] propose a novel atten-
tion mechanism that makes use of multiple layers of self and
cross multi-head attention to exchange information between
the input and output. Although originally designed for NLP
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Figure 2. REGTR uses the KPConv convolutional backbone to extract a set of features for a sparse set of points. The features are
then passed into several transformer cross-encoder layers. Lastly, the output decoder predicts the overlap score and the corresponding
transformed coordinates of the sparse keypoints, which can be used for direct estimation of the pose. Best viewed in color.

tasks, the attention mechanism has recently been shown to
be useful for many computer vision tasks [7,16,30,52], and
we utilize it in our work to predict point correspondences.

3. Problem Definition
Consider two point clouds X ∈ RM×3 and Y ∈ RN×3,

which we denote as the source and target, respectively. The
objective of point cloud registration is to recover the un-
known rigid transformation consisting of a rotation R ∈
SO(3) and translation t ∈ R3 that aligns X to Y.

4. Our Approach
Figure 2 illustrates our overall framework. We first con-

vert the input point clouds into a smaller set of down-
sampled keypoints X̃ ∈ RM ′×3 and Ỹ ∈ RN ′×3 with
M ′ < M,N ′ < N , and their associated features FX̃ ∈
RM ′×D,FỸ ∈ RN ′×D (Sec. 4.1). Our network then passes
these keypoints and features into several transformer cross-
encoder layers (Sec. 4.2) before finally outputting the corre-
sponding transformed locations Ŷ ∈ RM ′×3, X̂ ∈ RN ′×3

of the keypoints in the other point cloud (Sec. 4.3). The
correspondences can then be obtained from the rows of
X̃ and Ŷ, i.e. {x̃i ↔ ŷi} and similarly for the other di-
rection. Concurrently, our network outputs overlap scores
ôX ∈ RM ′×1, ôY ∈ RN ′×1 that indicate the probability of
each keypoint lying in the overlapping region. Finally, the
required rigid transformation can be estimated directly from
the correspondences within the overlap region (Sec. 4.4).

4.1. Downsampling and Feature Extraction

We follow [2, 20] to adopt the Kernel Point Convolu-
tion (KPConv) [40] backbone for feature extraction. The

KPConv backbone uses a series of ResNet-like blocks and
strided convolutions to transform each input point cloud
into a reduced set of keypoints X̃ ∈ RM ′×3, Ỹ ∈ RN ′×3

and their associated features FX̃ ∈ RM ′×D,FỸ ∈ RN ′×D.
In contrast to [2, 20] that subsequently perform upsampling
to obtain feature descriptors of the original point cloud res-
olution, our approach directly predicts the transformed key-
point locations using the downsampled features.

4.2. Transformer Cross-Encoder

The KPConv features from the previous step are linearly
projected into a lower dimension d = 256. These projected
features are then fed into L = 6 transformer cross-encoder1

layers. Each transformer cross-encoder layer has three sub-
layers: 1) a multi-head self-attention layer operating on the
two point clouds separately, 2) a multi-head cross-attention
layer which updates the features using information from the
other point cloud, and 3) a position-wise feed-forward net-
work. The cross-attention enables the network to compare
points from the two different point clouds, and the self-
attention allows points to interact with other points within
the same point cloud when predicting its own transformed
position, e.g. using rigidity constraints. Note that the net-
work weights are shared among the two point clouds but
not among the layers.

Attention sub-layers. The multi-head attention [43] op-
eration in each sub-layer is defined as follows:

MHAttn(Q,K,V) = (Head1 ⊕ ...⊕ HeadH)WO (1a)

1We name the layers cross-encoder layers to differentiate them from the
usual transformer encoder layers [43] which only take in a single source.
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Headh = Attn
(
QWQ

h ,KWK
h ,VWV

h

)
, (1b)

where ⊕ denotes concatenation over the channel dimen-
sion, WQ

h ,W
K
h ,WV

h ∈ Rd×dhead and WO ∈ RHdhead×d are
learned projection matrices. We set the number of heads
H to 8, and dhead = d/H . Each attention head employs a
single-head dot product attention:

Attn(Q,K,V) = softmax

(
QK⊤
√
dhead

)
V. (2)

Residual connections and layer normalization are applied
to each sub-layer, and we use the “pre-LN” [47] ordering
which we find to be easier to optimize.

The query, key, values are set to the same point cloud
in the self-attention layers, i.e. MHAttn(FX̃ ,FX̃ ,FX̃) for
the source point cloud (and likewise for the target point
cloud). This allows points to attend to other parts within the
same point cloud. For the cross-attention layers, the keys
and values are set to be the features from the other point
cloud, i.e. MHAttn(FX̃ ,FỸ ,FỸ ) for the source point
cloud (and likewise for the target point cloud) to allow each
point to interact with points in the other point cloud.

Position-wise Feed-forward Network. This sub-layer
operates on the features of each keypoint individually. Fol-
lowing its usual implementation [43], we use a two-layer
feed-forward network with a ReLU activation function after
the first layer. Similar to the attention sub-layers, residual
connections and layer normalization are applied.

Positional encodings. Unlike previous works [20,44] that
use attentions to learn discriminative features, our trans-
former layers replace the role of RANSAC and thus requires
information of the point positions. Specifically, we incorpo-
rate positional information by adding sinusoidal positional
encodings [43] to the inputs at each transformer layer.

The outputs of the transformer cross-encoder layers are
features F̄X̃ ∈ RM ′×d, F̄Ỹ ∈ RN ′×d which are condi-
tioned on the other point cloud.

4.3. Output Decoding

The conditioned features can now be used to predict the
coordinates of transformed keypoints. To this end, we use a
two-layer MLP to regress the required coordinates. Particu-
larly, the corresponding locations Ŷ ∈ RM ′×3 of the source
keypoints X̃ in the target point cloud are given as:

Ŷ = ReLU(F̄X̃W1 + b1)W2 + b2, (3)

where W1,W2 and b1,b2 are learnable weights and bi-
ases, respectively. We use the hat accent (̂·) to indicate pre-
dicted quantities. A similar procedure is used to obtain the
predicted transformed locations X̂ of the target keypoints.

Alternatively, we also explore the use of a single-head
attention layer (cf . Tab. 4), where the predicted locations Ŷ
are a weighted sum of the target keypoint coordinates Ỹ:

Ŷ = Attn(F̄XWQ
out, F̄Y W

K
out, Ỹ), (4)

where Attn(·) is defined previously in Eq. (2), and
WQ

out,W
K
out ∈ Rd×d are learned projection matrices.

In parallel, we separately predict the overlap confidence
ôX ∈ RM ′×1, ôY ∈ RN ′×1 using a single fully connected
layer with sigmoid activation. This is used to mask out
the influence of correspondences outside the overlap region
which are not predicted as accurately.

4.4. Estimation of Rigid Transformation

The predicted transformed locations in both directions
are first concatenated to obtain the final set of M ′ + N ′

correspondences:

X̂corr =

[
X̃

X̂

]
, Ŷcorr =

[
Ŷ

Ỹ

]
, ôcorr =

[
ôX

ôY

]
. (5)

The required rigid transformation can be estimated from the
estimated correspondences by solving the following:

R̂, t̂ = argmin
R,t

M ′+N ′∑
i

ôi∥Rx̂i + t− ŷi∥2, (6)

where x̂i, ŷi, ôi denote the ith row of X̂corr, Ŷcorr, ôcorr,
respectively. We follow [18, 50] to solve Eq. (6) in closed
form using a weighted variant of the Kabsch-Umeyama
[22, 42] algorithm.

4.5. Loss Functions

We train our network end-to-end with the ground truth
poses {R∗, t∗} for supervision using the following losses:
Overlap loss. The predicted overlap scores are supervised
using the binary cross entropy loss. The loss for the source
point cloud X is given by:

LX
o = − 1

M ′

M ′∑
i

o∗x̃i
· log ôx̃i

+ (1− o∗x̃i
) · log (1− ôx̃i

).

(7)
To obtain the ground truth overlap labels o∗x̃i

, we first com-
pute the dense ground truth labels for the original point
cloud in a similar fashion as [20]. Specifically, the ground
truth label for point xi ∈ X is defined as:

o∗xi
=

{
1, ∥T ∗(xi)− NN(T ∗(xi),Y)∥ < ro

0, otherwise
, (8)

where T ∗(xi) denotes the application of the ground truth
rigid transform {R∗, t∗}, NN(·) denotes the spatial near-
est neighbor and ro is a predefined overlap threshold. We
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Figure 3. Pair of point clouds (left) and their corresponding ground
truth overlap labels for the dense points (middle) and downsam-
pled keypoints (right). Note that the keypoints near the overlap
boundaries have a ground truth label between 0 and 1.

then obtain the overlap labels o∗x̃i
for the downsampled key-

points through average pooling using the same pooling in-
dices from the KPConv downsampling. See Fig. 3 for an
example of our overlap ground truth labels. The loss LY

o

for the target point cloud Y is obtained in a similar fashion.
We thus get a total overlap loss of: Lo = LX

o + LY
o .

Correspondence loss. We apply a ℓ1 loss on the predicted
transformed locations for keypoints in the overlapping re-
gion:

LX
c =

1∑
i o

∗
x̃i

M ′∑
i

o∗x̃i
|T ∗(x̃i)− ŷi|, (9)

and similarly for the target point cloud. We thus get a total
correspondence loss of: Lc = LX

c + LY
c .

Feature loss. To encourage the network to take into ac-
count geometric properties when computing the correspon-
dences, we apply an InfoNCE [31] loss on the conditioned
features. Considering the set of points x ∈ X̃ with a cor-
respondence in Ỹ, the InfoNCE loss for the source point
cloud is:

LX
f = −Ex∈X̃

[
log

f(x,px)

f(x,px) +
∑

nx
f(x,nx)

]
, (10)

where we follow [31] to use a log-bilinear model for f(·, ·):

f(x, c) = exp
(
f̄Tx Wf f̄c

)
. (11)

f̄x denotes the conditioned feature for point x. px and nx

denote keypoints in Ỹ which match and do not match x,
respectively. They are determined using the positive and
negative margins (rp, rn) which are set as (m, 2m). m is
the voxel distance used in the final downsampling layer in
the KPConv backbone, and all negative points that falls out-
side the negative margin are utilized for nx. Since the two
point clouds contain the same type of features, we enforce
the learnable linear transformation Wf to be symmetrical
by parameterizing it as the sum of a upper triangular matrix

Uf and its transpose, i.e. Wf = Uf +U⊤
f . As explained

in [31], Eq. (10) maximizes the mutual information between
features for matching points. Unlike [2, 20], we do not use
the circle loss [39] that requires the matching features to
be similar (w.r.t. ℓ2 or cosine distance). This is unsuit-
able since: 1) our conditioned features contains informa-
tion about the transformed positions, and 2) our keypoints
are sparse and are unlikely to be at the same location in the
two point clouds, and therefore the geometric features are
also different.

Our final loss is a weighted sum of the three components:
L = Lc + λoLo + λfLf , where we set λo = 1.0 and λf =
0.1 for all experiments.

5. Experiments
5.1. Implementation Details

We train our network using AdamW [29] optimizer with
a initial learning rate of 0.0001 and weight decay of 0.0001.
Gradients are clipped at 0.1. For the 3DMatch dataset, we
train for 60 epochs with a batch size of 2, halving the learn-
ing rate every 20 epochs. We train on the ModelNet40
dataset for 400 epochs with a batch size of 4, and halv-
ing the learning rate every 100 epochs. Training requires
around 2.5 and 2 days for 3DMatch and ModelNet40 on a
single Nvidia Titan RTX, respectively.

5.2. Datasets and Results

3DMatch. The 3DMatch dataset [54] contains 46 train, 8
validation and 8 test scenes. We use the preprocessed data
from [20] containing voxel-grid downsampled point clouds,
and follow them to evaluate on both pairs with > 30%
overlap (3DMatch) and 10 − 30% overlap (3DLoMatch).
Each input point cloud contains an average of about 20,000
points, which are downsampled to an average of 345 points
by our KPConv backbone. We perform training data aug-
mentation by applying small rigid perturbations, jittering of
the point locations and shuffling of points.

Following [2,10,20], we evaluate using Registration Re-
call (RR) which measures the fraction of successfully regis-
tered pairs, defined as having a correspondence RMSE be-
low 0.2m. We also evaluate on the Relative Rotation Errors
(RRE) and Relative Translation Errors (RTE) that measures
the accuracy of successful registrations. We follow [20]
and compare against several recent learned correspondence-
based algorithms [2, 14, 19, 20]2. These algorithms tend
to perform better with a larger number of sampled inter-
est points, and therefore we only show the results for the
maximum number (5000) of sampled points. Since Preda-
tor [20] obtains the highest registration recall when us-
ing 1000 interest points, we also reran their open-source

2The initial Predator code had a bug which decreased the performance,
and we list the improved results using its corrected version.
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3DMatch 3DLoMatch
Method RR(%) RRE(◦) RTE(m) RR(%) RRE(◦) RTE(m)
3DSN [19] 78.4 2.199 0.071 33.0 3.528 0.103
FCGF [14] 85.1 1.949 0.066 40.1 3.147 0.100
D3Feat [2] 81.6 2.161 0.067 37.2 3.361 0.103
Predator-5k [20] 89.0 2.029 0.064 59.8 3.048 0.093
Predator-1k [20] 90.5 2.062 0.068 62.5 3.159 0.096
Predator-NR [20] 62.7 2.582 0.075 24.0 5.886 0.148
OMNet [48] 35.9 4.166 0.105 8.4 7.299 0.151
DGR [13] 85.3 2.103 0.067 48.7 3.954 0.113
PCAM [6] 85.5 1.808 0.059 54.9 3.529 0.099
Ours 92.0 1.567 0.049 64.8 2.827 0.077

Table 1. Performance on 3DMatch and 3DLoMatch datasets. Re-
sults for 3DSN, FCGF, D3Feat and Predator-5k are from [20].

ModelNet ModelLoNet
Methods RRE RTE CD RRE RTE CD
PointNetLK [1] 29.725 0.297 0.0235 48.567 0.507 0.0367
OMNet [48] 2.947 0.032 0.0015 6.517 0.129 0.0074
DCP-v2 [44] 11.975 0.171 0.0117 16.501 0.300 0.0268
RPM-Net [50] 1.712 0.018 0.00085 7.342 0.124 0.0050
Predator [20] 1.739 0.019 0.00089 5.235 0.132 0.0083
Ours 1.473 0.014 0.00078 3.930 0.087 0.0037

Table 2. Evaluation results on ModelNet40 dataset. Results of
DCP-v2, RPM-Net and Predator are taken are from [20].

code with 1000 interest points and include the results un-
der Predator-1k. Furthermore, we compare with several
methods [6,13,48] designed to avoid RANSAC. We trained
OMNet [48] on 3DMatch with a batch size of 32 for 2000
epochs using 1024 random points. For [6, 13], we use the
authors’ trained weights. We disabled ICP refinement in
DGR [13] for a fair comparison.

Table 1 shows the quantitative results, and Figs. 1 and 8a
to 8d show several examples of the qualitative results. We
also show the results for the individual scenes in the sup-
plementary. For both 3DMatch and 3DLoMatch bench-
marks, our method achieves the highest average registration
recall across scenes. Interestingly, our registration is also
very precise and achieved the lowest RTE and RRE on both
3DMatch and 3DLoMatch benchmarks despite only using a
small number of points for pose estimation. In addition, we
also compare with Predator-NR, a RANSAC-free variant of
Predator-1k that utilizes the product of the predicted over-
lap and matchability scores to weigh the correspondences
during pose estimation. The underperformance of Predator-
NR indicates that our proposed method is more suitable for
replacing RANSAC. The results support our claim that our
attention mechanism can replace the role of RANSAC since
our REGTR uses largely the same KPConv backbone as
Predator. Lastly, we note that OMNet does not perform well
on the 3DMatch dataset. This is likely due to the difficulty
in describing complex scenes with a single global feature
vector. This behavior is also previously observed in [13] for
another global feature-based algorithm, PointNetLK [1].

Method Preproc. Feat. Extract. Pose est. Total
3DSN [19] 27938 1872 2588 32398
FCGF [14] 15 41 1597 1653
D3Feat [2] 174* 27 795 996
Predator-5k [20] 245* 45 1017 1306
Predator-1k [20] 245* 45 189 479
OMNet [48] — 9 1 10
DGR [13] 28 31 1258 1318
PCAM [6] — 520 1063 1584
Ours 35* 54 2 91

Table 3. Run time in milliseconds on the 3DMatch benchmark test
set. *Similar pre-processing is used for D3Feat, Predator and our
algorithm, but our algorithm uses a faster GPU implementation.

ModelNet40. We also evaluate on the ModelNet40 [46]
dataset comprising synthetic CAD models. We follow the
data setting in [20, 50], where the point clouds are sampled
randomly from mesh faces of the CAD models, cropped
and subsampled. Following [20], we evaluate on two partial
overlap settings: ModelNet which has 73.5% pairwise over-
lap on average, and ModelLoNet which contains a lower
53.6% average overlap. We train only on ModelNet, and
perform direct generalization to ModelLoNet. We follow
[20, 50] and measure the performance using Relative Rota-
tion Error (RRE) and Relative Translation Error (RTE) on
all point clouds, as well as the Chamfer distance (CD) be-
tween the registered scans.

The results are shown in Tab. 2, with example quali-
tative results in Figs. 8e and 8f. We compare against re-
cent correspondence-based [20] and end-to-end registration
methods [1, 44, 48, 50]. Predator [20] samples 450 points
in this experiment. OMNet [48] was originally trained
only on axis-asymmetrical categories, and we retrained it
on all categories to obtain a slightly improved result. As
noted in [20], many of the end-to-end registration meth-
ods are specifically tuned for ModelNet. RPM-Net [50]
additionally uses surface normal information. Despite this,
our REGTR substantially outperforms all baseline methods
in all metrics under both normal overlap (ModelNet) and
low overlap (ModelLoNet) regimes. Our learned attention
mechanism is able to outperform the optimal transport (in
RPM-Net) and RANSAC step (in Predator).

5.3. Analysis

We perform further analysis in this section to better un-
derstand our algorithm behavior. All experiments in this
section are performed on the larger 3DMatch dataset.

Runtime. We compare the runtime of REGTR against
several algorithms in Tab. 3. We conducted the test on
a single Nvidia Titan RTX with Intel Core i7-6950X @
3.0GHz and 64GB RAM. Our entire pipeline runs under
100ms, and is feasible for many real-time applications. The
time consuming step for correspondence-based algorithms
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Figure 4. Histogram and CDF plot of ℓ2 errors of predicted corre-
spondences. 95.7% of predicted correspondences have errors be-
low 0.112m, the median keypoint-to-keypoint distance (denoted
by red dashed line). Errors are clipped at 0.2m for clarity, with
only 3.0% of predicted correspondences exceeding this error.

is the pose estimation which includes feature matching and
RANSAC. For example, excluding preprocessing required
for the KPConv backbone, Predator [20] takes 234ms for
the registration when sampling just 1,000 points. DGR [13]
and PCAM [6] also require long times for pose estimation
due to their robust refinement and RANSAC safeguard. Al-
though the global feature-based OMNet runs faster than our
algorithm, we note that it is unable to obtain good accuracy
on the 3DMatch dataset.

Accuracy of predicted correspondences. In Fig. 4, we
plot the distribution of ℓ2-error of the predicted corre-
spondences for keypoints within the overlap region (where
o∗x̃i

, o∗ỹi
> 0.5) for the 3DMatch test set. The median er-

ror of our predicted correspondences is 0.028m, which is
significantly smaller than the median distance between key-
points (0.112m). For comparison, an oracle matcher that
matches every keypoint to the closest keypoint using the
ground truth pose obtains a median error of 0.071m. Our
direct prediction of correspondences is able to overcome the
resolution issues from the downsampling, and thus explains
the precise registration obtained by REGTR.

We also visualize the predicted correspondences of a
point cloud pair in Fig. 5. The short green error lines in
Fig. 5b indicate our predicted transformed locations are
highly accurate within the overlap region, even in non-
informative regions (e.g. floor). Interestingly, correspon-
dence for points outside the overlap region are projected to
near the overlap boundaries. These observations suggest
that REGTR is able to make use of rigidity constraints to
guide the positions of the predicted correspondences.

Visualization of attention. In Fig. 6, we visualize the at-
tention for a point on the ground for the same point cloud
pair from the previous section. Since the point lies in a
non-informative region, the point attends to multiple simi-
lar looking regions in the other point cloud in the first trans-
former layer (Fig. 6a). At the sixth layer, the point is con-
fident of its position and mostly focuses on its correct cor-
responding location (Fig. 6b). The self-attention in Fig. 6c

(a) (b)

Figure 5. Visualization of predicted correspondences. Keypoints
are colored based on their predicted overlap score, where high
scores are denoted in red. (a) Source X and keypoints X̃, (b) Tar-
get Y and predicted correspondences Ŷ, with green lines showing
the correspondence error. Best viewed in color.

(a) Cross att. (layer 1) (b) Cross att. (layer 6) (c) Self att. (layer 6)

Figure 6. Visualization of attention weights for the point indicated
with a red dot. Brighter colors indicate higher attention.
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Figure 7. Performance for various number of cross-encoder layers.

shows that the point makes use of feature rich regions within
the same point cloud to help localize its correct location.

5.4. Ablations

We further perform ablation studies on the 3DMatch
dataset to understand the role of various components.

Number of cross-encoder layers. We evaluate how the
performance varies with the number of cross-encoder layers
in Fig. 7. Our network cannot function without any cross-
encoder layers, and we show the registration recall for two
to eight layers. Performance generally improves with more
cross-encoder layers, but saturates around L = 6 encoder
layers (which we use for all our experiments).

Comparison with RANSAC. We compare with a ver-
sion of REGTR where we replace our output decoder with
a two-layer MLP which outputs 256D feature descriptors
and a parallel single-layer decoder that outputs the overlap
score. The pose is subsequently estimated using RANSAC
on nearest neighbor feature matches. The network is trained

6683



So
ur
ce

Ta
rg
et

Re
gi
st
er
ed

(a) (b) (c) (d) (e) (f)

Figure 8. Example qualitative registration results for (a, b) 3DMatch, (c, d) 3DLoMatch (e) ModelNet40, and (f) ModelLoNet.

3DMatch 3DLoMatch
Method RR(%) RRE(◦) RTE(m) RR(%) RTE(◦) RTE(m)
RANSAC baseline 87.7 2.296 0.072 52.7 4.038 0.112
Weighted coor. 90.9 1.468 0.046 63.1 2.540 0.076
No feature loss 90.4 1.638 0.049 61.9 2.898 0.083
Circle loss 90.0 1.696 0.051 61.2 3.217 0.092
Loss on all layers 83.9 1.781 0.053 46.8 3.448 0.101
REGTR 92.0 1.567 0.049 64.8 2.827 0.077
REGTR+RANSAC 91.9 1.607 0.049 63.3 2.753 0.079

Table 4. Ablation of components and losses

using only Lo and Lf (using Circle Loss [39]). This results
in a lower registration recall, and significantly higher rota-
tion and translation errors as the downsampled keypoints do
not provide enough resolution for accurate registration.

We also try applying RANSAC to the predicted corre-
spondences from REGTR to see if the performance can fur-
ther improve. Row 7 of Tab. 4 shows marginally worse reg-
istration recall. This indicates that RANSAC is no longer
beneficial on the predicted correspondences that are already
consistent with a rigid transformation.

Decoding scheme. We compare with decoding the coor-
dinates as a weighted sum of coordinates (Eq. 4). Com-
pared to our simpler approach of regressing the coordinates
using a MLP, computing the coordinates as a weighted sum
achieves a slightly better RTE and RRE, but lower registra-
tion recall. See rows 2 and 6 of Tab. 4.

Loss ablations. Rows 3-6 of Tab. 4 shows the registra-
tion performance with different loss configurations. With-
out the feature loss to guide the network outputs, the net-
work obtained a 1.6% and 2.9% lower registration recall for
3DMatch and 3DLoMatch, respectively. Using circle loss
from [20] also underperformed as the network cannot incor-
porate positional information into the feature as effectively.
We also experimented with applying the losses on all L = 6

transformer layers (instead of just the final one) with the
output decoder shared among all cross-encoder layers. This
additional supervision led to a 8.1% (3DMatch) and 18.0%
(3DLoMatch) lower registration recall. Consequently, we
only apply the supervision for the output of the last cross-
encoder layer.

6. Limitations
Our use of transformers layers with quadratic complex-

ity prevents its use on large number of points, and we can
only apply them on downsampled point clouds. Although
our direct correspondence prediction alleviates the resolu-
tion issue, it is possible that a finer resolution can result in
even higher performance. We have tried transformer lay-
ers with linear complexity [12,23], but that obtained subpar
performance. Alternate workarounds include using sparse
attention [9], or performing a coarse-to-fine registration.

7. Conclusions
We propose the REGTR for rigid point cloud registra-

tion, which directly predicts clean point correspondences
using multiple transformer layers. The rigid transforma-
tion can then be estimated from the correspondences with-
out further nearest neighbor feature matching nor RANSAC
steps. The direct prediction of correspondences overcomes
the resolution issues from the use of downsampled features,
and our method achieves state-of-the-art performance on
both scene and object point cloud datasets.
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