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Abstract

This paper aims to leverage symbolic knowledge to im-
prove the performance and interpretability of the Visual Re-
lationship Detection (VRD) models. Existing VRD meth-
ods based on deep learning suffer from the problems of
poor performance on insufficient labeled examples and lack
of interpretability. To overcome the aforementioned weak-
nesses, we integrate symbolic knowledge into deep learn-
ing models and propose a bi-level probabilistic graphical
reasoning framework called BPGR. Specifically, in the high-
level structure, we take the objects and relationships de-
tected by the VRD model as hidden variables (reasoning
results); In the low-level structure of BPGR, we use Markov
Logic Networks (MLNs) to project First-Order Logic (FOL)
as observed variables (symbolic knowledge) to correct er-
ror reasoning results. We adopt a variational EM algorithm
for optimization. Experiments results show that our BPGR
improves the performance of the VRD models. In particu-
lar, BPGR can also provide easy-to-understand insights for
reasoning results to show interpretability.

1. Introduction

The goal of Visual Relationship Detection(VRD) is to
detect objects as well as their relationships with each other,
representing as (subject, predicate, object) triplet. As
shown Fig. 1 (a), a triplet is (person, hold, horse). As
a foundation visual recognition task, VRD can benefit a
wide range of high level image understanding tasks, such as
scene graph generation [38, 43], image captioning [15, 17],
and visual question answering [3, 4], etc. Consequently,
VRD has emerged as an important research topic in the
past few years. Most recent methods based on deep learn-
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Figure 1. An example for visual relationship detection and statis-
tic of datasets. (a) Different colored blocks with a line connecting
subject and object mean different relationships. It is detected three
triples (person, has, hat), (person, wear, shirt), and (person,
hold, horse) in the image. (b)VRD and VG200 are long-tail dis-
tribution. The horizontal axis represents the number of relation-
ships, and the vertical axis represents the number of instances of
the relationship.

ing have been proposed, including LS-VRU [46] and GPS-
Net [21], UVTransE [13], etc. However, these methods
mainly rely on language prior (semantic information) of en-
tities to help relationship detection, which suffers several
limitations. First, these approaches need a lot of labeled ex-
amples to get decent performance, which goes against the
characteristics of the dataset in Fig. 1 (b). Second, they are
black boxes, lacking interpretability which is very impor-
tant for many applications. An expected solution is neural-
symbolic systems, which combines the excellent perceptual
ability of neural networks and the cognitive ability of sym-
bolic systems [41].

Recently some studies attempted to explore combining
symbolic knowledge with the VRD models to enforce the
performance of detection. LENSR [37] uses Conjunctive
Normal Form (CNF) [8] or decision-Deterministic Decom-
posable Negation Normal Form (d-DNNF) [9] formulae to
construct a graph for each propositional logic and adopts
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graph neural network to encode them to models. DASL [33]
encodes logic rules into the structure of the deep learning
model for training. While these methods generally enrich
the flexibility compared to the pure deep learning methods,
they still have unnoticeable deficiencies. First, it is only
capturing local information in LENSR, i.e., they construct
an independent graph for each propositional logic and only
encode interaction information between nodes in a proposi-
tional logic. Second, it is an implicit reasoning process in
DASL. i.e., DASL encodes First-Order Logic as the neural
network structure, and then the neural network will com-
plete the next work.

To offset the above deficiencies, we adopt Markov Logic
Networks (MLNs) [31] to represent First-Order Logic
(FOL) and combine logic with the deep model in a prob-
abilistic graphical model. MLN can build a global depen-
dency graph for all FOLs and attain a joint probability dis-
tribution for all ground atoms. Furthermore, MLNs can be
used as a general framework for joining logical AI and sta-
tistical AI, and can capture uncertainty. The probabilistic
graphical model solves the model by way of probabilistic
inference, reflecting an explicit reasoning process.

Therefore, we propose a bi-level probabilistic graphical
reasoning framework (BPGR) to encode symbolic knowl-
edge into the VRD model. BPGR includes two parts: the vi-
sual reasoning module and the symbolic reasoning module.
The visual reasoning module extracts features of objects in
images and reasons objects and relationships. The symbolic
reasoning module uses symbolic knowledge to guide the
reasoning of the visual reasoning module towards a good
direction, which acts as an error correction. Specifically,
the symbolic reasoning module is a double layer proba-
bilistic graph and contains two types of nodes: one is the
reasoning result of the VRD model (the visual reasoning
module) in the high-level structure, and the other is ground
atoms of logic rules in the low-level structure. When the
probabilistic graphical model is constructed, the model can
be trained efficiently end-to-end in the variational expecta-
tion–maximization (EM) framework. In particular, BPGR
achieves superior performance on visual relationship detec-
tion dataset [23] and the scene graph dataset [38] and is also
shown interpretable for reasoning results. An overall frame-
work of our method is given in Fig. 2.

Our contributions can be summarized in threefold:

• We propose bi-level probabilistic graphical reason-
ing (BPGR) framework which is a novel VRD model
based on neural-symbolic systems to improve the de-
tection performance and provide interpretability of re-
sults. Our BPGR uses symbolic knowledge to guide
the model towards improved performance and rectifies
error reasoning results.

• We present a joint framework for modeling symbolic

knowledge and VRD models. Our framework can
capture global symbolic knowledge in logic rules and
maintain an explicit reasoning process than existing
neural-symbolic methods because it applies Markov
Logic Network (MLN) as knowledge representation
and integrates by way of probabilistic inference.

• Experimental results show that BPGR performs better
on two datasets of visual relationship detection, com-
pared to state-of-the-art methods. We provide visual-
ized results to show efficacy and interpretability.

2. Related work
Neural-symbolic systems. Recently, neural-symbolic rea-
soning has become a hot topic. It can combine the advan-
tages of both neural network and symbol, not only reduc-
ing data requirements but also enabling explainable artifi-
cial intelligent, such as pLogicNet [30], ExpressGNN [48],
DGP [14], CA-ZSL [24], VAI-SC [1]etc. These methods
use logic rules or knowledge graphs to improve the ability
of the knowledge graph reasoning or image classification
or generate descriptions for video, which are quite different
from the VRD task-focused in this paper.

Markov Logic Networks. Intelligent systems must be able
to handle the complexity and uncertainty of the real world.
MLN enables this by unifying FOL and probabilistic graph-
ical models into a single representation. It has been widely
studied due to the principle probabilistic models and effec-
tiveness in a variety of reasoning tasks, including knowl-
edge graph reasoning [30, 48], semantic parsing [29, 36],
social networks analysis [47], etc. MLN can capture the
complexity and uncertainty in relation data. However, in-
ference and learning in MLN are computationally expen-
sive due to the exponential cost of constructing the ground
MLN and the NP-hard optimization problem. This hinders
MLN to be applied to large-scale applications. Many works
appear in the literature to improve original MLN in accu-
racy [25, 34], and efficiency [6, 16, 30, 35, 48]. For exam-
ple, related works [30, 48] replace traditional inference al-
gorithms with neural networks.

Visual relationship detection. Visual relationship detec-
tion involves detecting the objects that occur in an image
as well as understanding the interactions between them. In
other words, it requires recognizing relationships from the
image. Most of these approaches can be divided into three
broad categories. The first group of methods uses structured
prediction techniques by message passing among the three
triplet variables [7, 19, 38, 49]. These methods take into ac-
count triplet dependencies by message passing among ob-
ject and predicate labels. The second group of methods
applies rank-based loss functions to encourage similar re-
lations to be close to each other in the learning feature
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space [18, 46]. The third branch of approaches introduces
extra information either in the form of word vector embed-
dings of the object labels or use knowledge from a large
corpus or logic [2, 20, 33, 37, 42, 45].

Our method can be categorized into the third category,
i.e., aiming to add extra information. In contrast to the
above-mentioned methods, BPGR has a consistent proba-
bilistic model built in the framework and can incorporate
symbolic knowledge in logic rules. Further, BPGR provides
interpretability while capturing rich external information.

3. Bi-level probabilistic graphical reasoning
framework

In neural-symbolic systems, the final objective is to find
a model F that can effectively map data I and symbolic
knowledge R (logic rules) to ground truth Y . In this paper,
the model is defined in Eq. (1).

∀(I, Y ) F (I, R) → Y, (1)

Based on the model’s definition, our BPGR includes two
main components: the visual reasoning module Pθ1(y|I)
and the symbolic reasoning module Pθ2,w(y,R), where y
is the preliminary reasoning result of the visual reason-
ing module, θ1 and θ2 are parameters, and w denotes the
weights of logic rules. Fig. 2 shows BPGR’s framework.
The former aims to attain scores of objects and relation-
ships from an image. The latter takes the result of the visual
reasoning module as the high-level nodes and the logic rules
as the low-level nodes of the probabilistic graphical model,
respectively. During training, we minimize the loss of the
visual reasoning module and maximize the joint probability
distribution of the symbolic reasoning module by a varia-
tional EM algorithm. During testing, we feed an image to
the visual reasoning module to infer results, then inferred
results are spread from the high-level structure to the low-
level structure to match logic rules as decision evidence.
The following section describes the whole model in detail.

3.1. Visual reasoning module

In this section, based on LS-VRU [46], we develop our
visual reasoning module (VRM). VRM’s main idea is to
minimize the distance between visual features and seman-
tic features in objects and relations respectively. Specifi-
cally, an image is feed and outputs object score matrix SO

∈ RT×O and relation score matrix SR ∈ RM×Re. Mean-
while, saving object’s feature MO ∈ RT×D to as an input
of the symbolic reasoning module. T represents the number
of objects in an image. O means the number of the object
category in the dataset. M is the number of object pairs.
Re means the number of relation category in the dataset.
D is the dimension of visual features. The above notations
are used by the VRM part of Fig. 2. The visual reason-

ing module adopts word2vec [26] as a semantic feature in
experiment.

3.2. Symbolic reasoning module

The symbolic reasoning module (SRM) is the key com-
ponent that makes the model different from existing meth-
ods. VRM’s reasoning results may be error, and we are
inspired by methods in image de-noising [5] to design a
probabilistic graphical model to combine VRM and SRM.
Therefore, this probabilistic graphical model can correct er-
ror reasoning results and achieve end-to-end training.

Logic rules are a kind of commonsense knowledge that is
easy to be understood by people. In this paper, we consider
the FOL language that describes knowledge in the form of
the logic rule, which has strong expression ability [10]. In
Fig. 2, the SRM includes two types of nodes and cliques.
Let y be the set of high-level nodes, and let A be the set of
low-level nodes consisting of ground atoms in logic rules.
Let {yi, Aj} be a clique expressing the correlation between
levels. Let subset Ar = {A1, · · · , Am} be a clique consist-
ing of the ground atoms in terms of a logic rule r, by assign-
ing constants to its arguments. Let each node of the SRM
represent a random variable, and the probabilistic graphical
model represents a joint probability distribution over vari-
ables as a product of factors, the formula is as follows:

P (y,R) =
1

Z
exp{

∑
yi∈y,Aj∈A

ϕb(yi, Aj) +
∑
r,Ar

ϕl(Ar)}, (2)

where Z is a normalization constant known as the partition
function, ϕb is the potential function between levels and im-
plies a distribution that encourages the connected high-level
nodes and low-level nodes to take the same values. ϕl is the
potential function of low level.

In the high-level structure, nodes indicate reasoning re-
sults and there are no edges among nodes. To attain the
clique {yi, Aj}, we build connections between the high-
level node and the low-level node according to their iden-
tifiers, which are defined in terms of both object region and
predicate arity. Nodes with the same identifiers connect.

In the low-level structure, nodes are ground atoms Aj

in FOL, and edges are constructed by MLN. MLN is an
undirected graphical model, where nodes are generated by
all ground atoms, and edge appears between two nodes if
the two corresponding ground atoms cooccur in at least one
ground FOL. Given the same MLN and different constant
sets C, one can form different ground MLN. The scale of
ground MLN is determined by the size of the constant set
C. A ground MLN can be defined as a joint distribution as:

P (A) =
1

Z(w)
exp{

∑
r∈R

wr

∑
Ar

ϕl(Ar)}, (3)

where Z(w) is the partition function summing overall
ground atoms A. ϕl is a potential function in terms of the
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Figure 2. The proposed BPGR. To introduce logic rules and correct error reasoning results of the VRD model, we design a bi-level
probabilical graphical reasoning framework, where the high-level structure is designed to take reasoning results of the visual reasoning
module, while the low-level structure is the ground atom of logic rules to correct the error in the high-level structure, such as correcting
“near” to “beside”. The model is trained to output reasoning results of the visual reasoning module based on symbolic knowledge. Note,
G means grounding operator. The solid line represents ground truth edges, the dotted line represents pseudo edges.

number of times the logic rule is true. wr represents the
weight of logic rule r. The greater the weight, the greater
the confidence of the logic rule.

3.3. Training loss

Our model is trained end-to-end. The final train-
ing loss includes: VRM’s loss Pθ1(y|I) and SRM’s loss
Pθ2,w(y,R), and cross-entropy of observed variables Lcro.
Therefore, we train the model by the following objective:

L = Pθ1(y|I) + Pθ2,w(y,R)− Lcro, (4)

Pθ1(y|I) includes three terms: triplet loss LT , triplet
softmax loss LS and visual consistency loss LC . Due to
limited space, see [46] for reference.

The loss of SRM is Eq. (2), which can be rewritten in
Eq. (5). The cross-entropy of the observed variable Lcro is
given in Section 3.4.

Pθ2,w(y,R) =
1

Z(w)
exp{

∑
yi∈y,Aj∈A

ϕb(yi, Aj)

+
∑
r∈R

wr

∑
Ar

ϕl(Ar)},
(5)

3.4. Optimization

We need to maximize L to train the whole model. How-
ever, due to the requirement of computing the partition

function Z(w) of Pθ2,w(y,R), it is intractable to directly
optimize this objective function. Different from [22], we in-
troduce the variational EM algorithm and optimize the vari-
ational evidence lower bound (ELBO):

LEBLO = EQθ2
[logPw(y,R)]− EQθ2

[logQθ2(y | R)], (6)

where Qθ2(y|R) is the variational posterior distribution.
In general, we can use the variational EM algorithm [11]

to optimize the ELBO, that is to minimize KL divergence
between the variational posterior distribution Qθ2(y|R) and
the true posterior distribution Pw(y|R) during the E-step.
Due to the complicated graph structure among variables,
the exact inference is computationally intractable. There-
fore, we adopt a mean-field distribution to approximate the
true posterior. In the mean-field variational distribution, be-
tween variables is independently inferred as follows:

Qθ2(y|R) =
∏

Ai∈A

Qθ2(Ai), (7)

Instead of traditional inference methods of Qθ2(Ai) with
a MLP as inference network [48], we employ the logic ten-
sor network (LTN) [32], which can learn representation of
relation data. The inference process is illustrated in Fig.
3. In the E-step, our LELBO(Qθ2 , Pw) in Eq. (6) can be

10612



rewritten as follow:

LELBO(Qθ2 , Pw) =
∑
r∈R

wr

∑
Ar

EQθ2
[ϕl(Ar)]− logZ(w)

+
∑

yi∈y,Aj∈A

ϕb(yi, Aj)− EQθ2
[
∑
Ai∈A

Qθ2(Ai)],

(8)

Lcro =
∑
Ai∈A

Qθ2(Ai) log Y, (9)

Eq. (4) is rewritten:

L = αPθ1(y|I) + βLELBO(Qθ2 , Pw)− γLcro, (10)

where α, β and γ are trade-off factor whose domains are in
the interval [0, 1].
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Figure 3. Inference network that inputs feature embeddings of
objects pair and outputs the probability of affiliation relationships.

In the M-step, we are learning the weight of the FOL. As
we need to optimize weights, the partition function Z(w) in
Eq. (5) is not a constant anymore. The partition function
Z(w) has an exponential number of terms, which makes it
intractable to directly optimize ELBO. To solve the above
problem, we use pseudo-log-likelihood [31], which is de-
fined as:

P ∗
w(y,R) := EQθ2

[
∑

r,Ai∈Ar

logPw(Ai|MBAi)], (11)

where MBAi
is Markov blanket of the ground atom Ai.

For each rule r that connects Ai to its Markov blanket, we
optimize the weights wr by gradient descent, the derivative
is following:

▽wrEQθ2
[logPw(Ai|MBAi)] ≃ YAi −Pw(Ai|MBAi), (12)

where YAi = 0 or 1 if Ai is an observed variable, and YAi =
Qθ2(Ai) otherwise.

3.5. Interpretability

Our proposed model can find corresponding logic rules
for reasoning results to validate the results are credible.
In the SRM, information is propagated from the low-level
structure to the high-level structure during training, which
uses the logic rule to guide VRD models learning. Inspired
by production system, information is propagated from the

high-level structure to the low-level structure, which can
find corresponding logic rules for reasoning results. Specif-
ically, according to reasoning results to match nodes of the
low-level structure, if the match is successful, the logic rule
containing nodes are triggered (that is, the clique consist-
ing of the nodes is chosen). We will calculate the probabil-
ity that the triggered rule is true according to t-norm fuzzy
logic [28]. In other words, the whole process is the same
as finding a path in the knowledge graph given head entity
and tail entity. Implementing this process, we can attain ev-
idence (logic rules) for reasoning results and choose the top
pieces of evidence according to posterior P (R | y) here.
The equation as following:

P (R | y) =
∏

r,Ai∈Ar

p(Ai | y). (13)

where r is a triggered logic rule here. p is the probability of
the ground atom is true, and the illustrative visual analysis
is given in Section 4.6.

4. Experiments

In this section, we evaluate our model on two classical
datasets: Visual Relationship Detection(VRD) [23] and Vi-
sual Genome with 200 categories (VG200) [38]. They are
widely used in previous studies [21,46]. Next, we introduce
two datasets in detail.

4.1. Datasets

The VRD [23] contains 5,000 images, with 4,000 as
train sets and 1,000 as test sets. There are 100 object classes
and 70 predicates (relations). The VRD includes 37,993 re-
lation annotations with 6,672 unique relations and 24.25 re-
lationships per object category. This dataset contains 1,877
relationships in the test set never occur in the training set,
thus allowing us to evaluate the generalization of our model
in zero-shot prediction.

The VG200 [38] contains 150 object categories and 50
predicates. Each image has a scene graph of around 11.5
objects and 6.2 relationships. 70% of the images is used for
training and the remaining 30% is used for testing.

The logic rules. To generate logic rules, we use way of
artificially constructed based on the training set. In this pa-
per, logic rules encode relationship between a subject and
multiple objects. They are constructed according to the la-
bel file in datasets, visual relationship together with its sub-
ject and object forms a logic rule. As shown in Fig. 4,
if triplet including (person, wear, jacket) and (person,
wear, skis), person(x) ∧ wear(x, y) ⇒ jacket(y) ∨
skis(y) is a logic rule and atom person(x) is true if x is
a person in image. The numbers of logic rule is 1,642 and
3,435 on VRD and VG200 datasets respectively.
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Table 1. Comparison with state-of-the-art on the VRD dataset. Table 1 comparative recall results for top 50/100 in “ReD” and “PhD”
respectively on VRD dataset. The best result is highlighted in bold. The result of state-of-the-art methods is taken from the original papers.
“−” denotes the corresponding result is not provided.

Methods ReD PhD ReD PhD

free k k = 1 k = 70 k = 1 k = 70

Recall@ 50 100 50 100 50 100 50 100 50 100 50 100

Lk distilation [42] 22.7 31.9 26.5 29.8 19.2 21.3 22.7 31.9 23.1 24.0 26.3 29.4
Zoom-Net [40] 21.4 27.3 29.1 37.3 18.9 21.4 21.4 27.3 28.8 28.1 29.1 37.3

CAI+SCA-M [40] 22.3 28.5 29.6 38.4 19.5 22.4 22.3 28.5 25.2 28.9 29.6 38.4
MF-URLN [44] 23.9 26.8 31.5 36.1 23.9 26.8 − − 23.9 26.8 − −
LS-VRU [46] 27.0 32.6 32.9 39.6 23.7 26.7 27.0 32.6 28.9 32.9 32.9 39.6
GPS-Net [21] 27.8 31.7 33.8 39.2 − − 27.8 31.7 − − 33.8 39.2

UVTransE [13] 27.4 34.6 31.8 40.4 25.7 29.7 27.3 34.1 30.0 36.2 31.5 39.8

BPGR(E) 28.1 34.7 34.7 42.0 24.7 27.9 28.1 34.7 29.9 34.1 34.7 42.0
BPGR(E+M) 29.4 35.3 36.2 43.0 26.2 29.4 29.4 35.3 32.3 36.4 36.2 43.0

Table 2. Comparative results for top 50/100 in “SGCLS” and
“PCLS” respectively on the VG200 dataset. The best result is
highlighted in bold.

Recall@
Metrics

SGCLS PCLS

Methods 20 50 100 20 50 100

VRD [23] − 11.8 14.1 − 27.9 35.0
Ass-Embedding [27] 18.2 21.8 22.6 47.9 54.1 55.4
Mess-Passing [38] 31.7 34.6 35.4 52.7 59.3 61.3
Graph-RCNN [39] − 29.6 31.6 − 54.2 59.1
Per-Invariant [12] − 36.5 38.8 − 65.1 66.9

Motifnet [43] 32.9 35.8 36.5 58.5 65.2 67.1
LS-VRU [46] 36.0 36.7 36.7 66.8 68.4 68.4
GPS-Net [21] 36.1 39.2 40.1 60.7 66.9 68.8

BPGR(k = 1) 37.0 39.3 39.3 67.8 69.1 70.0

4.2. Evaluation metrics

For VRD, we adopt evaluation metrics same as [46],
which runs Relationship detection (ReD) and Phrase de-
tection (PhD) and shows recall rates (Recall@) for the top
50 /100 results, with k = 1, 70 candidate relations per rela-
tionship proposal (or k relationship predictions for per ob-
ject box pair) before taking the top 50/100 predictions. ReD
is to input an image and output labels of triples and boxes
of the objects. PhD is to input an image and output labels
and boxes of triples.

For VG200, we use the same evaluation metrics used in
[46], including 1) Scene Graph Classification (SGCLS),
which is to predict labels of the subject, object, and predi-
cate given ground truth subject and object boxes; 2) Pred-
icate Classification(PCLS), where predict predicate labels
are given ground truth subject and object boxes and labels.
Recall@ under the top 20/50/100 predictions are reported.

For the logic rule, we compute the probability of a logic

rule that is true to as evaluation of logic rules. Here, we
adopt Łukaseiwicz of t-norm fuzzy logic [28].

Subject

Object

Triplets：

（person, wear, jacket）

（person, wear, skis）

Logic rule：

person(x) ∧ wear(x, y) ⇒ jacket(y) ∨ skis(y)

Figure 4. A generated logic rule. We obtain the subjects, the ob-
jects and relations directly from the annotations for the image. The
body of the logic rule includes two atoms based on subject and re-
lation. Two atoms are combined by “∧”. The head of the logic
rule consists of the object. All these atoms are combined by “∨”.

4.3. Implementation details

In experiment, we adopt Faster-RCNN with the VGG16
backbone as an object detector and our model is trained for
8 epochs on a single NVIDIA TITAN RTX. The learning
rate is 0.001 for the first 5 epochs and is 0.0001 for the
rest 3 epochs. Dimension of the object feature is D = 512.
The visual reasoning module is initialized with weights pre-
trained on the COCO dataset.

4.4. Results and analysis

We first show our experimental results and state-of-the-
art methods in Table 1 for the VRD dataset. Note that vari-
able k is the number of relation candidates when computing
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Table 3. Ablation experiment of our model on the VRD dataset.

Methods ReD PhD ReD PhD

free k k = 1 k = 70 k = 1 k = 70

Recall@ 50 100 50 100 50 100 50 100 50 100 50 100

BPGR-SRM 27.0 32.6 32.9 39.6 23.7 26.7 27.0 32.6 29.0 32.9 32.9 39.6
BPGR-VRM 28.3 34.4 35.0 41.9 25.3 28.2 28.3 34.4 31.0 34.8 35.0 41.9
BPGR-OI 28.8 35.0 35.7 42.9 25.4 28.7 28.8 35.0 31.4 35.5 35.7 42.9
BPGR 29.4 35.3 36.2 43.0 26.2 29.4 29.4 35.3 32.3 36.4 36.2 43.0

(a) ReD (b) PhD

Figure 5. Zero-shot learning performance on VRD dataset. It
shows results on relationship detection and phrase detection for
zero-shot learning. As the hyperparameter k increases, the results
show an upward trend.

the top 50/100. Since not all state-of-the-art methods speci-
fied k in their experiment, we use the way presented in [46]
to report results in the “free k” column when takes k as a
hyper-parameter.

The state-of-the-art methods are based on language prior.
Our BPGR(E+M) represents inference-and-learning and
BPGR(E) is inference-only when the weight of all logic
rules are fixed as 1. The result show that both BPGR(E) and
BPGR(E+M) outperform state-of-the-art methods in most
cases. With learning the weight of logic rules, BPGR(E+M)
achieves the best performance. The reason is that BPGR
can leverage the symbolic knowledge in logic rules to out-
perform those purely based on language prior. Compared to
baseline LS-VRU, BPGR achieves much better performance
and plays the function of correcting error overall.

Table 2 shows the result on VG200. It is not a clear value
of k in state-of-the-art methods for VG200. Therefore, the
result of our BPGR are reported for k = 1. We can see
that our BPGR outperforms the state-of-art method in two
metrics in three Recall@20/50/100. This clearly shows the
benefit of leveraging symbolic knowledge in logic rules. We
are noted that PCLS focus more on relationship recognition,
our BPGR has a higher score on PCLS evaluation metric.
This indicates that the logic rule are beneficial to relation-
ship recognition in the model.

In practical scenarios, the relationship in the visual rela-

LS-VRU

BPGR 

(sky, above, person) (person, under, sky)

(bike, under, person)

(sky, above, person) (person, under, sky)

(bike, under, person)

person

person

bike

skysky

motorcycle
motorcycle

motorcycle
motorcycle

(sky, above, person) (person, under, sky)

(bike, under, person)

(sky, above, person) (person, under, sky)

(bike, next to, person)

bike

person

person

sky sky

GT: GT:

GT:

(motorcycle, next to, motorcycle)

(motorcycle, next to, motorcycle)

(motorcycle, behind, motorcycle)

(motorcycle, next to, motorcycle)
GT:

Figure 6. Comparison of our BPGR with baseline LS-VRU on
detection results. The first row is BPGR’s detection results and
the second row represents LS-VRU’s detection results. “GT” is
ground truth.

tionship detection task is long tail distribution. Therefore, it
is significant to investigate the model generalization perfor-
mance on relationships with insufficient training data. We
have verified our BPGR and baseline LS-VRU in a zero-shot
environment that the training and testing data are disjoint
sets of relationships on the VRD dataset. Fig. 5 shows the
result. As expected, the performance of BPGR outperforms
LS-VRU on top 50/100. This shows the limitation of LS-
VRU when coping with sparse relationships. In contrast,
BPGR leverages both symbolic knowledge in logic rules and
language prior for reasoning, which is much less affected by
the sparse relationship.

4.5. Ablation experiments

To investigate how the model trade-off affects reasoning
performance, we design three variants to verify the effect of
individual components on BPGR. The three variants are as
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shirt(            )person(          ) ⇒ glasses(          ) ∨

wear(          ,         )

∧

⇒laptop(             ) on(              ,            )  table(            )  ∧

“An relationship that subject is person and object is glass or shirt is wear.”

“An relationship that subject is laptop and object is table is on.”

wear(          ,             )

wear

person

laptop
glasses

shirt

table

Figure 7. An example can describe the interpretability of reasoning results in an image. Our model can explain reasoning relationships
between objects by finding the FOL that characterizes the commonsense knowledge. For example, why is a relation “wear” between
“person” and “glasses” or “shirt”? According Eq. (13), the model can find the most confident logic rule is people(x) ∧ wear(x, y) ⇒
glasses(y) ∨ shirt(y). This indicates that the reasoning result of the model are consistent with commonsense.

follows: (1) BPGR-SRM(α = 1, β = 0, γ = 0): remov-
ing symbolic reasoning module. (2) BPGR-VRM(α = 1/2,
β = 1, γ = 1): removing a half of visual reasoning mod-
ule. (3) BPGR-OI(α = 1, β = 1, γ = 0): removing cross-
entropy of observed variables.

We are testing on the VRD dataset. The result are re-
ported in Table 3. It is observed that correlations among
the components of SRM, VRM and OI have a tremen-
dously positive influence on visual relationship detection,
and the SRM benefits the final results. This is consistent
with our theoretical analysis result: symbolic knowledge in
logic rules can rectify the result of VRM. Besides, BPGR-
VRM’s performance drops when reducing the proportion of
visual reasoning modules, which indicates that visual fea-
ture is an important factor for the model’s performance.

4.6. Visual analysis

Detection result analysis. Fig. 6 shows the reason-
ing result of our BPGR and baseline LS-VRU respectively.
Compared to LS-VRU, BPGR’s results are better. We see
that BPGR can play an important role in correcting error rea-
soning results. For example, LS-VRU shows some results
“(motorcycle, behind, motorcycle)”, “(bike, next to, per-
son)” and “(sky, above, building)” are not matching ground
truth. However, BPGR’s results are matching ground truth.
The above example is also shown that symbolic knowledge
in logic rules can guide learning toward of the model to cor-
rect error results from reasoning performance.

Interpretability analysis. We show a visual image for
interpretability in Fig. 7. For example, BPGR’s reasoning
result is (laptop, on, table) for an image. By Eq. (13),
the model can provide some logic rules of the high score.
we see that top 1 logic rule is laptop(x) ∧ on(x, y) ⇒
table(y). According to this logic rule, we know that when

the subject is “laptop” and the object is “table”, the rela-
tion is predicted as “on” in line with logic rule laptop(x)∧
on(x, y) ⇒ table(y). Therefore, the logic rule can explain
the reasoning results of the model to a certain extent.

5. Conclusion
To summarize, this paper contributes a novel framework

for combining symbolic knowledge with the VRD model.
Different from prior works, BPGR can utilize the proba-
bilistic graphical model to encode logic rules into the VRD
model to improve performance and provide interpretabil-
ity. Further, to capture global information and uncertainty
of symbolic knowledge in models, we model logic rules by
MLN. Our empirical results show the effectiveness of the
model over baselines. In the future, we will extend our idea
of the neural-symbolic to other domains, such as recom-
mended systems, etc. Further, we will design more general
logic rules or introduce other symbolic knowledge, and de-
sign different combine ways.
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