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Abstract

We introduce CAPRI-Net, a self-supervised neural net-
work for learning compact and interpretable implicit repre-
sentations of 3D computer-aided design (CAD) models, in
the form of adaptive primitive assemblies. Given an input
3D shape, our network reconstructs it by an assembly of
quadric surface primitives via constructive solid geometry
(CSG) operations. Without any ground-truth shape assem-
blies, our self-supervised network is trained with a recon-
struction loss, leading to faithful 3D reconstructions with
sharp edges and plausible CSG trees. While the parametric
nature of CAD models does make them more predictable
locally, at the shape level, there is much structural and
topological variation, which presents a significant general-
izability challenge to state-of-the-art neural models for 3D
shapes. Our network addresses this challenge by adaptive
training with respect to each test shape, with which we fine-
tune the network that was pre-trained on a model collection.
We evaluate our learning framework on both ShapeNet and
ABC, the largest and most diverse CAD dataset to date, in
terms of reconstruction quality, sharp edges, compactness,
and interpretability, to demonstrate superiority over current
alternatives for neural CAD reconstruction.

1. Introduction
Computer-Aided Design (CAD) models are ubiquitous

in engineering and manufacturing to drive decision mak-
ing and product evolution related to 3D shapes and ge-
ometry. With the rapid advances in AI-powered solutions
across all relevant fields, several CAD datasets [29, 50, 57]
have emerged to support research in geometric deep learn-
ing. A common characteristic of CAD models is that they
are composed of well-defined parametric surfaces meeting
along sharp edges. While the parametric nature of the CAD
shapes do make them more predictable locally and at the
primitive level, at the shape level, there is a great deal of
structural and topological variations, which presents a sig-
nificant generalizability challenge to current neural mod-
els for 3D shapes [8, 10, 21, 30, 35, 37, 40, 59, 63]. On the

Figure 1. Our network learns compact and interpretable implicit
representations of 3D CAD shapes in the form of primitive assem-
blies via CSG operations, without any assembly supervision.

other hand, existing networks for primitive fitting typically
focus on abstractions with simple, hence limited, primi-
tives [39, 42, 54, 64], hindering reconstruction quality.

In this paper, we develop a learning framework for 3D
CAD shapes to address these very challenges. Our goal is
to design a neural network that can learn a compact and
interpretable representation for CAD models, leading to
high-quality 3D reconstruction, while the network general-
izes well over ABC [29], the largest and most diverse CAD
dataset to date. This dataset is a collection of one million
CAD models covering a wide range of structural, topolog-
ical, and geometric variations, without any category labels,
in contrast to other prominent repositories of man-made
shapes such as ShapeNet [4] and ModelNet [60] which have
only limited1 number of object categories. Hence, targeting
the ABC dataset poses a real generalizability challenge.

Our network takes an input 3D shape as a point cloud or

1While the full ShapeNet dataset has 270 object categories, to the best
of our knowledge, most learning methods only work with up to 13.
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Figure 2. Overview of our network. Given an input 3D shape as a point cloud or voxels, we first map it into a latent code using an encoder.
This latent code is used to predict p primitives with parameters included in P. For any query point qj packed in matrix Q, we can obtain
the matrix D indicating approximate signed distance from the query point to each primitive. A selection matrix T is used to select a small
set of primitives from the primitive set to group convex shapes in matrix C which indicates inside/outside values for query points w.r.t
convex shapes. Then, we perform min operation on each half of C (i.e. Cl and Cr) to union convex shapes into two (possibly) concave
shapes and get inside/outside indication vectors al and ar for left and right concave shapes. Finally, we perform a difference operation as
al − ar to obtain the final point-wise inside/outside indicator s. LT, LW, and Lrec are the loss functions we define for our network.

voxel grids, and reconstructs it by a compact assembly of
quadric surface primitives via constructive solid geometry
(CSG) operations including intersection, union, and differ-
ence. Specifically, the learned quadrics are assembled by a
series of binary selection matrices. These matrices intersect
the quadrics to form convex parts, with union operations
to follow to obtain possibly concave shapes, and finally a
difference operation naturally models holes present in high-
genus models, which are frequently encountered in CAD.

The architecture of our network, shown in Figure 2, is in-
spired by BSP-Net [8]. At the high level, it is a coordinate-
based network trained with an occupancy loss reflecting the
reconstruction error; we also add a novel loss to accommo-
date a new difference operation. The reconstruction is per-
formed in a latent space that is obtained by an encoder ap-
plied to the input shape. The other learnable parameters of
the network include matrices that define the parameters of
the quadric surfaces and the CSG operations, respectively,
as well as MLP weights which map the latent code to the
primitive parameter matrix. The resulting reconstruction is
in the form of a CSG assembly, while the network training
does not require any ground-truth shape assemblies — the
network is self-supervised with the reconstruction loss.

Due to the significant variations among CAD shapes in
ABC, we found that our network, when trained on a model
collection only, does not generalize well. In fact, none of
the existing reconstruction networks we tested, including
IM-Net [10], OccNet [35], DISN [63], BSP-Net [8], gen-
eralized well on the ABC dataset. We tackle this issue by
further fine-tuning the network, that is pre-trained on a train-
ing set, to a test CAD shape, so that the resulting network is
adaptive to the test shape. Both pre-training and fine-tuning
are performed using the same network architecture, shown
in Figure 2, except that the encoder is not re-trained during
fine-tuning for efficiency. We coin our learning framework
CAPRI-Net, as it is trained to produce Compact and Adap-
tive PRImitive assemblies for CAD shapes.

We evaluate CAPRI-Net on both ABC and ShapeNet,
in terms of reconstruction quality, compactness as mea-
sured by primitive counts, and interpretability as exam-
ined by how natural the recovered primitive assemblies
are. Qualitative and quantitative comparisons are made to
BSP-Net [8], UCSG [28], and CSGStump [12], a concur-
rent work, all of which are representative of state-of-the-
art learning methods suitable for CAD shapes. The results
demonstrate superiority of CAPRI-Net on all fronts.

The primary application of CAPRI-Net is 3D shape re-
construction, where the network produces a novel implicit
field that is unlike those obtained by classical computer
graphics methods [23], e.g., a radial basis function [3], or
those learned by recent neural implicit models, e.g., IM-
Net [10], OccNet [35], and SIREN [48], etc. Our implicit
representation is structured, as a compact assembly, and
leads to quality reconstruction of 3D CAD models.

2. Related Work

We cover prior methods most closely related to our work,
including classical and emerging techniques for geometric
primitive fitting, as well as recent approaches for learning
implicit and structured 3D representations.

Primitive detection and fitting. There has been exten-
sive work in computer graphics and computer-aided geo-
metric design on primitive fitting. Given a raw 3D ob-
ject, different algorithms such as RANSAC [17] and Hough
Transform [24] have been used to detect primitives [27].
RANSAC based methods have been used in [32, 45], to de-
tect multiple primitives in dense point clouds. However, ba-
sic primitive fitting techniques such as RANSAC are limited
to predefined primitive types and cannot predict the shapes
that need to be subtracted in a complex CSG tree. Methods
such as [15,19] have then extracted a CSG tree from the raw
input. Hough Transform has been used to detect planes [2]
and cylinders [44] in point clouds. However, these meth-
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ods usually do not generalize as they require different hy-
per parameters per shape. Recently, neural net based algo-
rithms have been used to detect and fit primitives on point-
clouds [31, 47]. SPFN [31] uses supervised learning to first
detect primitive types and then estimate the parameter of the
primitives. ParseNet [47] extends SPFN by in-cooperating
spline patches and using differentiable metric-learning seg-
mentation. Our method differs in requiring no supervision,
being able to reconstruct a compact primitive assembly.

Neural implicit shape representations. Neural implicit
surface representation [10, 35, 40] have gained immense
popularity because of the ability to generate complex, high
spatial resolution 3D shapes while using a small memory
footprint during training. This representation has been used
in 3D domain for part understanding [9, 14, 59], unsuper-
vised single view reconstruction [26, 34, 38, 55] and scene
or object completion [11, 43]. More recently, neural im-
plicit representations have also been extended to 2D im-
ages and videos for application in single scene comple-
tion [36, 48, 52], image generative models [1, 16, 49], super
resolution [7] and dynamic scenes [33,41,62]. In our work,
we extend the use of neural implicit surface representation
to CAD models and show how our method can overcome
some of the challenges presented by CAD designs.

Structural representations. Structure-aware 3D repre-
sentations are typically defined by atomic geometry entities
and their relations [5], where the atomic entities can repre-
sent semantic parts [20,30, 37,51,59,61] or lower-level ge-
ometric primitives [8,13,42,54]. These entities can be com-
bined to form complete shapes as part collections [42, 54],
tree structures [8, 13, 28, 46], scene graphs [18, 56], hierar-
chical graphs [30, 37], or structural programs [53].

In CAPRI-Net, we represent the atomic geometry enti-
ties using primitives defined by a constrained, implicit form
of quadric equations. Works such as Superquadrics [42]
have used unconstrained explicit forms of superquadratic
equations but lead to primitives with low interpretability for
CAD modeling. Furthermore, they cannot produce plane-
based intersections to reconstruct sharp features.

Neural networks designed to learn CSG primitive assem-
blies include CSG-Net [46] and DeepCAD [58] which re-
quire supervision and others [8, 12, 28] that are unsuper-
vised. Among the latter, BSP-Net [8] is most closely re-
lated to our work, but they differ in several significant ways:
1⃝ CAPRI-Net can generate several different interpretable

primitives from a single quadric equation, while BSP-Net
only uses planes. 2⃝ Unlike BSP-Net, our network includes
a difference operation which is well-suited in CAD model-
ing. 3⃝ In addition, we introduce a new loss term which
encourages the use of the difference operation, resulting in
more compact and more natural CSG assemblies.

UCSG-Net [28] also learns CSG trees in an unsupervised
manner, but uses only box and sphere primitives which can

significantly limit the shape reconstruction quality. Also,
unlike BSP-Net and CAPRI-Net, the order of the CSG op-
erations from UCSG-Net are dynamic and not fixed. How-
ever, the order flexibility or generality comes at the cost of
making the assembly learning task much more difficult. As
we shall demonstrate, with a fixed order of CSG operations
(see Figure 2), CAPRI-Net tends to produce more natural
and more compact CSG trees than UCSG-Net.

In a concurrent work, CSG-Stump [12] also follows a
fixed order of CSG operations. Key differences to our work
include: 1⃝ CAPRI-Net relies on a simple quadric equation
to represent all primitives, while CSG-Stump needs to pre-
set the number for primitives for each primitive type. 2⃝
Like BSP-Net [8], CSG-Stump uses a non-differentiable in-
verse layer to model shape differences which limits the ap-
plicability of the difference operation to simple primitives.
In contrast, our network has a dedicated differentiable dif-
ference layer and a new loss term to support the handling of
complex convex shapes, leading to improved interpretabil-
ity of the CSG trees of our method.

3. Methodology
Our network, coined CAPRI-Net, takes as input a 3D

voxel shape and reconstructs the shape by predicting a set
of primitives that can be combined to make intermediate
convex and concave shapes via a CSG tree. In CAPRI-Net,
primitives are represented implicitly by a quadric equation,
which determines whether query point qj = (x, y, z) is in-
side or outside that primitive. Our selected quadric equation
has the capability of producing several useful primitives in-
cluding spheres, planes, or cylinders.

Voxelized inputs are fed to a 3D convolutional network,
the same as the encoder in IM-Net [10], to produce a la-
tent code that is passed to our primitive prediction network
(see Figure 2). The output of the primitive prediction net-
work is matrix P that holds the parameters of the predicted
primitives and is used to determine the signed distance of
the query points from all predicted primitives. These signed
distances are then passed to three CSG layers to output the
occupancy value for each query point, indicating whether a
point is inside or outside the shape.

3.1. Primitive Prediction

After obtaining a shape code with size 256 from an ap-
propriate encoder, the code is passed to our primitive pre-
diction network which is a multi-layer perceptron (MLP) to
output primitives’ parameters. To represent primitives, we
use the following quadric equation:

ax2 + by2 + cz2 + dx+ ey + fz + g = 0. (1)

Our MLP outputs Pp×7, where p is the number of prim-
itives represented by seven parameters (a, b, c, d, e, f, g).
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Specifically, P(i, :), which is the ith row of matrix P, has
the parameters of the ith primitive.

We sample n points near a given shape and learn the pa-
rameters of the p primitives to produce the same in/outside
as the ground truth. The approximate signed distances of all
points to all primitives are calculated as a matrix multipli-
cation: DT = PQ. Given a query point qj = (xj , yj , zj),
we get its signed distances to all primitives as: D(j, :) =
PQ(:, j), where Q(:, j) = (x2

j , y
2
j , z

2
j , xj , yj , zj , 1) is the

jth column of Q. Therefore, for n query points in training,
signed distance matrix Dn×p stores the distance between
point qj and the ith primitive at D(j, i). Note that D only
provides approximate signed distances, which are used to
estimate in/outside occupancy for our reconstruction loss.

As Equation (1) is quite general and capable of produc-
ing rather complex shapes, we constrain the first three pa-
rameters a, b, c to be non-negative to ease the learning task
while still covering frequently used convex quadric surfaces
in CAD, such as planes, cylinders, ellipses, and paraboloids.
But this would preclude primitives such as cones and tori.

3.2. CSG Operations

Constructive Solid Geometry (CSG) provides flexibility
and accuracy in shape design and modeling. Therefore, be-
ing able to interpret the results in the form of a CSG tree
has great benefits. In CAPRI-Net, we employ the three
main CSG operations: intersection, union and difference in
a fixed order to combine primitives and produce a shape.
We now discuss how to incorporate these operations in our
network to produce an interpretable and efficient CSG tree.
Intersection. By applying intersection operations, primi-
tives that have been previously identified are combined to
make a set of convex shapes. Having the signed distance
matrix Dn×p indicating point to primitive distances, prim-
itives involved in forming convex shapes are selected by a
selection matrix Tp×c. Relu activation function is first ap-
plied on D to map all the points inside the primitives to
zero. Therefore, multiplying relu(D) and T provides a ma-
trix containing point to convex distances. In fact, this matrix
multiplication serves as an implicit intersection operation
among primitives. This way, only when C(j, i) = 0, query
point qj is inside convex i:

C = relu(D)T

{
0 inside,
> 0 outside.

(2)

Union. After applying intersection operations on primitives
and forming a set of convex shapes, the convex shapes are
combined to obtain more complex and possibly concave
shapes. In CAPRI-Net, we group convex shapes into two
separate shapes whose in/outside indicators are stored in
ar and al. This gives the network the option to learn two
shapes that can later be fed into difference layer to produce

desired concavities or holes. To do so, we first split C into
two sub-matrices Cl and Cr both in size n× c

2 . Cl and Cr

contain the in/outside indicators of all points to all convex
shapes that are going to be combined into one shape on the
left (al) and another on the right (ar).

To compute al and ar, two different functions and nota-
tions are used according to our training stage. a+ and a∗

respectively refer to early and later stages. Details of our
multi-stage training are presented in Section 3.3.

We obtain a∗l and a∗r by applying a min operation on
each row of Cl and Cr. This way, if point qj is inside any
of the convex shapes in Cl, it will be considered as inside
in a∗l . Assume that Cl(j, :) is the jth row of Cl represent-
ing in/outside indicators of point qj with respect to convex
shapes, then we define:

a∗l (j) = mini< c
2
(Cl(j, i))

{
0 inside,
> 0 outside,

(3)

where a∗r is defined similarly with i ≥ c
2 , and a∗l and a∗r are

n× 1 vectors indicating whether a point is in/outside of the
left/right concave shape.

Using the min operation, gradients can be only back-
propagated to the convex shape with the minimum value.
Therefore, other convex shapes cannot be adjusted and
tuned during training. To facilitate learning, we distribute
gradients to all convex shapes by employing a (weighted)
sum in the early stage of our multi-stage training:

a+l (j) = C (
∑
i< c

2

WjC (1−Cl(j, i)))

{
1 ≈ inside,
< 1 ≈ outside,

(4)
where Wj is a weight vector and C clips the values into
[0, 1], and a+r is defined similarly with i ≥ c

2 .
This function gives the chance to all elements of C to

be adjusted during training. However, in this multiplica-
tion, small values referring to outside points can add up to
a value larger than 1 which classifies an outside point as
inside. Therefore, the in/outside in Equation (4) are only
approximate estimates. To avoid vanishing gradients, we
initially set Wj to very small values (i.e., 10−5) and gradu-
ally increase Wj to be 1 by Equation (9). This setup helps
the network converge to proper values for a+ at early stages
that are finalized in a∗ at later training stages.

Difference. Here, we introduce our novel difference oper-
ation which helps the network produce more complex and
sharper objects. After we obtain a∗l and a∗r , we perform a
difference operation as below:

s∗(j) = max(a∗l (j), α− a∗r(j))

{
0 inside,
> 0 outside,

(5)
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s+(j) = min(a+l (j), 1− a+r (j))

{
1 ≈ inside,
< 1 ≈ outside,

(6)

where s is used to reconstruct a shape since s(j) indicates
whether a query point qi is in/outside. Note that α needs to
be small and positive, since s∗ is close to 0 when points are
inside the shape; see parameters settings in Section 4.1.

3.3. Multi-Stage Training and Loss Functions

Directly learning a binary selection matrix T is diffi-
cult. In addition, as already discussed, a+ can facilitate
better gradient backward propagation than a∗. Therefore,
we perform a multi-stage training scheme exploiting differ-
ent training strategies to gradually achieve better results.

We start training by operations and functions with bet-
ter gradients, such as those in a+. Then we switch to more
accurate and interpretable operations and functions, such as
those in a∗. In summary, at stage 0, selection matrix T
is not binary and the max operation is not used in a+. At
stage 1, T is still not binary, but we use the max operation
to obtain a∗. At stage 2, T becomes binary to allow deter-
ministic selection of the right primitives. In the following,
we discuss each training stage in detail.
Stage 0. At this stage, we apply the following loss:

L+ = L+
rec + LT + LW, (7)

where LT and LW are defined similarly as in BSP-Net [8]
by forcing each entry of T to be between 0 and 1 and each
entry of W to be approximately 1:

LT =
∑
t∈T

max(−t, 0) + max(t− 1, 0), (8)

LW =
∑
i

|Wi − 1|. (9)

L+
rec in CAPRI-Net differs from the usual reconstruction

losses such as L1 or L2 that are normally used in deep
learning networks based on implicit representations. Note
that s in Equation (5) is considered as the final output of
our network to indicate whether a query point is inside or
outside the shape and g holds ground truth values of these
values: 1 for inside and 0 for outside. Instead of defining
the loss directly on s and g, we use two weighted L2 losses
for a+l and a+r separately to make them complement each
other and avoid vanishing gradients in the max operation
of Equation (5). Note that s is only used during meshing
and it helps remove redundant primitives; see details in the
supplementary material. Our L+

rec is defined as follows:

L+
rec =

1

n

n∑
j=1

[Ml(j) ∗ (g(j)− a+l (j))
2+

Mr(j) ∗ ((1− g(j))− a+r (j))
2],

(10)

where n is the number of query points. We define
Ml(j) = max(g(j),1(a+r (j) < β)) and Mr(j) =
max(g(j),1(a+l (j)>β)), where β is set close to the inside
value 1 in Equation (4). The function 1 transfers Boolean
values to float, while Ml and Mr adjust the losses on each
side with respect to the value of the other side.

Stage 1. In this stage, we use a∗, instead of a+, to encour-
age the network to produce accurate in/outside values for
the left and right shapes. The loss function for Stage 1 is

L∗ = L∗
rec + LT , (11)

where L∗
rec is a reconstruction loss for al and ar as below:

L∗
rec = L∗

l + L∗
r , (12)

L∗
l =

1

n

n∑
j=1

Ml(j) ∗ [(1− g(j)) ∗ (1− a∗l (j))+

wl ∗ g(j) ∗ a∗l (j)], and

(13)

L∗
r =

1

n

n∑
j=1

Mr(j) ∗ [g(j) ∗ (1− a∗r(j))+

wr ∗ (1− g(j)) ∗ a∗r(j)],

(14)

where Ml(j) = max(g(j),1(a∗r(j) > γ)), Mr(j) =
max(g(j),1(a∗l (j)< γ)), g serves as a mask, and γ is set
close to the inside value 0 in Equation (3).

Equation (13) acts as an L1 loss where (1−g)∗ (1−al)
encourages the outside points to be one and g ∗ al encour-
ages the inside points to remain inside with a value zero. wl

and wr are weights to control shape decomposition struc-
ture by encouraging the left shape to cover the volume occu-
pied by the ground truth shape and the right shape to cover
a meaningful residual volume. This way, an effective sub-
traction is obtained with capability of producing sharp and
detailed shapes with concavities and holes. We set wl = 10
and wr = 2.5 in all the experiments and show the effects of
these weights in our ablation study.

Stage 2. In the first two stages, we use LT to make each en-
try of selection matrix T to be a float value between 0 and 1
facilitating the learning, but this T is not CSG interpretable.
Therefore, we quantize T into Thard with float values into
binary values (i.e., thard = (t > η)?1 : 0), and use inter-
section operation with T replaced by Thard in Equation (2)
for each convex shape. Since values are small in T, we set
η = 0.01 in all experiments. Having Thard, we use the
same loss function in Equation (12) as stage 1 for training.

3.4. CAD Mesh Construction via CSG

During inference, after obtaining P and T, we assem-
ble the learned primitives into convex shapes and execute
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the learned CSG operations to output a CAD mesh, just as
in BSP-Net [8]. The output meshes contain sharp edges
and regular surfaces as expected from performing the CSG;
more details can be found in the supplementary material.

4. Result and Evaluation

In this section, we present qualitative and quantitative
results of our experiments to demonstrate the effectiveness
of CAPRI-Net. We test our network and state-of-the-art
methods for neural CAD modeling on both the CAD dataset
ABC [29] and ShapeNet [4]. We compare the performance
of the various networks for shape reconstruction from vox-
els and point clouds. We also conduct ablation studies to
assess the components of our network architecture.

4.1. Data Preparation and Training Details

We randomly chose, from the ABC dataset, 5,000 single-
piece shapes whose normalized bounding box has sides all
larger than 0.1. We use the same method as in IM-Net [10]
to discretize these shapes into 2563 voxels to sample 24,576
points close to the surface with their corresponding occu-
pancy values for pre-training . In addition, we sample 643

voxels for the input shape that is passed to the shape en-
coder. For ShapeNet, we employ the dataset provided by
IM-Net [10], which contains 643 voxelized and flood-filled
3D models from ShapeNet Core (V1) with sample points
close to surface for pre-training. Since achieving satisfac-
tory performance by other methods on ABC also requires
fine-tuning and this is time consuming (e.g., 15 minutes per
shape for BSP-Net), we have randomly selected a moder-
ately sized subset of shapes as test set to evaluate the fine-
tuning: 1,000 shapes from ABC, and 100 from each of the
13 categories from ShapeNet — 1,300 shapes in total.

In our experiments, we set the number of primitives as
p = 1, 024 and the number of convex shapes as c = 64,
relatively large values to account for more complex shapes.
The size of our latent code for all input types is 256 and a
two-layer MLP is also used to predict the parameters of the
primitives from the shape latent code. We set β = 0.5, for
Stage 0, and γ = 0.01, for Stage 1, since the occupancy
values get closer to 0 when points are inside the assembled
concave shape at Stage 1. We set α = 0.2 during meshing.

We first pre-train our network on a training set so as to
obtain a general and initial estimate of the primitive param-
eters and selection matrices. During fine-tuning, conducted
per test shape, we only optimize the latent code, primitive
prediction network and selection matrix for each shape in-
dividually. We pre-train our network in stage 0 on our train-
ing set with 1,000 epochs, which takes ≈ 9 hours using an
NVIDIA RTX 1080Ti GPU. We fine-tune our network in all
stages with 12,000 iterations for each stage, taking about 3
minutes per shape overall to complete.

Methods BSP-Net UCSG STUMP Ours
CD ↓ 0.491 0.300 1.180 0.136
NC ↑ 0.868 0.877 0.829 0.914
ECD ↓ 10.098 5.022 11.848 2.208
LFD ↓ 1,342.7 1,494.8 2,945.2 800.2
#Primitives (#P) ↓ 114.44 - - 46.93
#Convexes (#C) ↓ 11.60 12.72 90.88 6.03

Table 1. Comparing 3D shape reconstruction from voxels on ABC.
As UCSG and CSG-Stump do not produce surface primitives, only
convex solids (e.g., boxes and spheres), we count the convexes.

Methods BSP-Net UCSG STUMP Ours
CD ↓ 0.220 1.317 2.288 0.175
NC ↑ 0.869 0.815 0.792 0.872
ECD ↓ 2.111 5.233 10.457 2.101
LFD ↓ 2,254.4 3,582.5 4,983.2 1,824.1
#Primitives (#P) ↓ 214.70 - - 61.56
#Convexes (#C) ↓ 18.86 12.40 180.54 8.71

Table 2. Comparing 3D reconstruction from voxels on ShapeNet.

4.2. Reconstruction from Voxels

Given a low resolution input in voxel format (i.e. 643),
the task is to reconstruct a CAD mesh. First, we pre-train
our entire network with our training set. We then fine-tune
the shape’s latent code, primitive prediction network, and
the selection matrix for each shape individually.

At the fine-tuning stage, we first sample input voxels
whose centers are close to the shape’s surface (i.e. with
distance up to 1/64). We specifically keep voxels whose
occupancy values differ from their neighbors. We then
randomly sample other voxels’ centers and obtain 32,768
points. Sampled points are then scaled into the range
[−0.5, 0.5], these points along with their occupancy values
are used to supervise the fine-tuning step.

We compare CAPRI-Net with BSP-Net [8], UCSG [28],
and CSG-Stump [12] (labelled as STUMP), which output
structured parametric primitives. For a fair comparison, we
fine-tune all of these networks with the same number of it-
erations as well. For each shape, BSP-Net needed about 15
minutes, UCSG about 40 minutes, and CSG-Stump about
60 minutes to converge while our CAPRI-Net took only
about 3 minutes. Note that CSG-Stump employed differ-
ent network settings for shapes from ABC (with shape dif-
ferences) and ShapeNet (without shape difference) in their
experiments; we followed the same settings in our compar-
isons. Additional results can be found in the supplementary
material, where we also show results without fine-tuning.

Evaluation metrics. Our quantitative metrics for shape re-
construction are symmetric Chamfer Distance (CD), Nor-
mal Consistency (NC, higher is better), Edge Chamfer Dis-
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Methods w.o QS w.o Diff w.o Weight Ours
CD ↓ 0.22 0.20 0.18 0.14
NC ↑ 0.90 0.88 0.90 0.91
ECD ↓ 2.918 2.582 2.720 2.208
LFD ↓ 1,083.4 985.7 886.0 800.2
#P ↓ 57.58 62.62 58.95 46.93
#C ↓ 5.86 9.62 6.64 6.03

Table 3. Ablation study on ABC; see texts for descriptions.

Figure 3. Visual comparisons between reconstruction results from
643 voxel inputs on ABC. We also show number of surface primi-
tives (#P) and number of convexes (#C) reconstructed.

tance [8] (ECD), and Light Field Distance [6] (LFD). For
ECD, we set the threshold for normal cross products to 0.1
for extracting points close to edges. CD and ECD values
provided are computed on 8k surface sampled points and
multiplied by 1,000. For LFD, we render each shape at ten
different views and measure Light Field Distances.

Evaluation and comparison. We provide visual compar-
isons on representative examples from the ABC dataset in
Figure 3 and ShapeNet in Figure 4. Our method consis-
tently reconstructs more accurately the geometric and topo-
logical details such as holes and sharp features, owing to
the richer sets of supported surface primitives and the differ-
ence operation which was not present in BSP-Net. UCSG
performs well when the input can be well modeled by boxes
and spheres, but not others such as the lamp in Figure 4.
CSG-Stump tends to use considerably more difference op-
erations to model ABC shapes than CAPRI-Net. This could
also cause the shape surfaces to be carved by many redun-
dant simple primitives; see the top shape in Figure 3. In con-
trast, CAPRI-Net generally predicts fewer convexes and re-
dundant difference operations during inference. Also, since
CSG-Stump does not support difference operations between
complex shapes, it can fail to reconstruct small holes or in-
tricate concavities; see the third row of Figure 3. Overall,
with predefined primitives, neither UCSG nor CSG-Stump
is capable of reproducing delicate details or achieving the

Figure 4. Some reconstruction results from voxels on ShapeNet.

kind of reconstruction accuracies as CAPRI-Net.
Quantitative comparison results are shown in Tables 1

and 2. CAPRI-Net achieves the best reconstruction qual-
ity on all metrics reported. We measure compactness of the
reconstruction by counting average surface primitives and
convexes the methods produce. Again, CAPRI-Net outper-
forms all other compared alternatives on these statistics.
CSG trees. Our network can learn to produce a plausible
CSG tree from a given latent code without direct supervi-
sion as is shown in Figure 1.We provide additional CSG
trees and comparisons in the supplementary material.
Ablation. We examine the effects of three important de-
sign choices we made in CAPRI-Net: quadric surface (QS)
representation, difference layer (Diff), and weighted recon-
struction loss (Weight). We deactivate each of these com-
ponents and make three ablation studies called: w.o QS,
w.o Differ, and w.o Weight; see Table 3 and visual compar-
ison in supplementary material. It is apparent that quadric
surface representation makes our method suitable for ABC
dataset by using fewer appropriate primitives (e.g., cylin-
ders) in the reconstruction. Difference operation can also
offer compactness and fewer primitives in the final recon-
struction. Finally, the weighted reconstruction loss helps
CAPRI-Net reproduce fine details such as small holes.

4.3. Reconstruction from Point Clouds

In our last experiment, we test reconstruction of CAD
meshes from point clouds, each containing 8, 192 points
with normal vectors. During pre-training, we voxelize the
input point clouds to 643 and train a 3D convolution net-
work as the encoder to generate the shape latent code.

During the fine-tuning stage, network training adapts to
the original input point clouds, not the voxels. Specifically,
inspired from [25], for each point with its normal vector, we
sample 8 points along its normal with Gaussian distribution
(µ = 0, σ = 1/64). If this point is against point normal
direction, then occupancy value is 1, otherwise it is 0. This
way, we can sample 65, 536 points to fine-tune the network
for each shape. Similar to the fine-tuning step of voxelized
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Input BSP UCSG IM-Net SIREN CAPRI GTSTUMP

Figure 5. Visual comparisons between reconstruction results from point clouds (8,192 points) on ABC. Pay attention to the insets which
show noticeable surface artifacts from IM-Net and SIREN results, both at 1283 resolution.

Methods CD ↓ NC ↑ ECD ↓ LFD ↓ #P ↓ #C ↓
UCSG 1.33 0.85 5.76 2,428.3 - 12.16
BSP-Net 0.47 0.89 9.65 920.8 153.80 14.45
STUMP 6.58 0.85 8.89 4,649.8 - 62.345
Ours 0.14 0.92 1.57 581.8 64.06 6.82

Table 4. Comparing 3D point cloud reconstruction on ABC.

inputs, we only fine-tune our latent codes, primitive predic-
tion network and selection matrix.

Quantitative comparisons in Table 4 show that our net-
work outperforms BSP-Net, UCSG, and CSG-Stump across
the board. We provide additional ShapeNet comparison re-
sults in the supplementary material. With respect to state-
of-the-art, unstructured, non-parametric-surface learning
methods such as IM-Net [10] and SIREN [48], CAPRI-Net
produces comparable metric performances, but is slightly
worse, since there is an apparent trade-off between recon-
struction quality and the desire to obtain a compact prim-
itive assembly; see supplementary material for details. In
terms of visual quality however, as shown in Figure 5, ge-
ometric artifacts such as small bumps and pits are often
present on results from IM-Net and SIREN, while the mesh
surfaces produced by CAPRI-Net, are more regularized.

5. Discussion, limitation, and future work

In recent years, there has been a large volume of works
which target ShapeNet [4] for the development of neural
3D shape representations. We are not aware of similar ef-
forts devoted to CAD models which possess richer geomet-
ric and topological variations, but lack strong structural pre-
dictability tied to a limited number of object categories. Our
network, CAPRI-Net, fills this gap as it targets the ABC

dataset [29] whose CAD models exhibit these very charac-
teristics. As our results demonstrate, our reconstruction net-
work outperforms state-of-the-art alternatives on both ABC
and ShapeNet. Yet, CAPRI-Net only represents an early at-
tempt at learning primitive assemblies for CAD models and
beyond, since it is still limited on several fronts.

First, our network follows a fixed assembly order with
intersection followed by union and then a single difference
operation. As such, not all assemblies, e.g., a nested differ-
ence, can be represented. Second, despite the compactness
exhibited by the recovered assemblies, CAPRI-Net does not
have a network loss to enforce minimal CSG trees. Con-
sistent with the minimum description length principle [22],
devising such a loss could benefit many tasks beyond our
problem domain. Third, limited quadric primitive types
also affect reconstruction quality, so additional fine-tuning
is needed to improve generalization over data with signifi-
cant structure variations. However, our current fine-tuning
does not yet work well on single-view images as input for
the ABC CAD models. Last but not the least, our current
approach does not take full advantage of the local regularity
of CAD models due to their parametric nature.

In addition to addressing the above limitations, we would
also like to extend CAPRI-Net into a fully generative model
for CAD design. Conditioning the generator on design or
hand-drawn sketches is also a promising direction consider-
ing its application potential. Finally, learning functionality
of CAD models is also an intriguing topic to explore.
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[28] Kacper Kania, Maciej Zięba, and Tomasz Kajdanowicz.
UCSG-Net–unsupervised discovering of constructive solid
geometry tree. arXiv preprint arXiv:2006.09102, 2020. 2,
3, 6

[29] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. ABC: A big cad model
dataset for geometric deep learning. In CVPR, June 2019. 1,
6, 8

[30] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao
Zhang, and Leonidas Guibas. Grass: Generative recursive
autoencoders for shape structures. ACM Trans. on Graphics
(TOG), 2017. 1, 3

[31] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi,
and Leonidas J Guibas. Supervised fitting of geometric prim-
itives to 3d point clouds. In CVPR, 2019. 3

11776



[32] Yangyan Li, Xiaokun Wu, Yiorgos Chrysathou, Andrei
Sharf, Daniel Cohen-Or, and Niloy J Mitra. Globfit: Con-
sistently fitting primitives by discovering global relations. In
SIGGRAPH, 2011. 2

[33] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. arXiv preprint arXiv:2011.13084, 2020. 3

[34] Shichen Liu, Shunsuke Saito, Weikai Chen, and Hao Li.
Learning to infer implicit surfaces without 3d supervision.
arXiv preprint arXiv:1911.00767, 2019. 3

[35] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In CVPR,
2019. 1, 2, 3

[36] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV. Springer, 2020. 3

[37] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka,
Niloy Mitra, and Leonidas J Guibas. Structurenet: Hierar-
chical graph networks for 3d shape generation. SIGGRAPH
Asia, 2019. 1, 3

[38] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
CVPR, 2020. 3

[39] Chengjie Niu, Jun Li, and Kai Xu. Im2struct: Recovering 3d
shape structure from a single RGB image. In CVPR, 2018. 1

[40] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In CVPR, 2019. 1, 3

[41] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo-
Martin Brualla. Deformable neural radiance fields. arXiv
preprint arXiv:2011.12948, 2020. 3

[42] Despoina Paschalidou, Ali Osman Ulusoy, and Andreas
Geiger. Superquadrics revisited: Learning 3d shape parsing
beyond cuboids. In CVPR, 2019. 1, 3

[43] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. arXiv preprint arXiv:2003.04618, 2020. 3

[44] Tahir Rabbani and Frank Van Den Heuvel. Efficient hough
transform for automatic detection of cylinders in point
clouds. Isprs Wg Iii/3, Iii/4, 2005. 2

[45] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Ef-
ficient ransac for point-cloud shape detection. Computer
graphics forum, 2007. 2

[46] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos
Kalogerakis, and Subhransu Maji. CSGNet: neural shape
parser for constructive solid geometry. In CVPR, 2018. 3

[47] Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos
Kalogerakis, Siddhartha Chaudhuri, and Radomír Měch.
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