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Abstract

The goal of person search is to localize a target per-
son from a gallery set of scene images, which is extremely
challenging due to large scale variations, pose/viewpoint
changes, and occlusions. In this paper, we propose the Cas-
cade Occluded Attention Transformer (COAT) for end-to-
end person search. Our three-stage cascade design focuses
on detecting people in the first stage, while later stages si-
multaneously and progressively refine the representation for
person detection and re-identification. At each stage the
occluded attention transformer applies tighter intersection
over union thresholds, forcing the network to learn coarse-
to-fine pose/scale invariant features. Meanwhile, we cal-
culate each detection’s occluded attention to differentiate a
person’s tokens from other people or the background. In
this way, we simulate the effect of other objects occlud-
ing a person of interest at the token-level. Through com-
prehensive experiments, we demonstrate the benefits of our
method by achieving state-of-the-art performance on two
benchmark datasets.

1. Introduction
Person search aims to localize a particular target person

from a gallery set of scene images, which is an extremely
difficult fine-grained recognition and retrieval problem. A
person search system must both generalize to separate peo-
ple from the background, and specialize to discriminate
identities from each other.

In real-world applications, person search systems must
detect people across a wide variety of image sizes and
re-identify people despite large changes in resolution and
viewpoint. To this end, modern person search methods, ei-
ther two-step or one-step (i.e., end-to-end), consist of reli-
able person detection and discriminative feature embedding
learning. Two-step methods [5, 10, 13, 18, 30, 38] conduct
person re-identification (ReID) on cropped person patches

*Rui Yu’s work on this paper was done when he was a summer intern
at Kitware.

Figure 1. Main challenges of person search, e.g., scale variations,
pose/viewpoint change, and occlusion. The boxes with the same
color represent the same ID. For better viewing, we highlight the
small-scale individuals at bottom-right corners.

found by a separate object detector. In contrast, end-to-end
methods [2, 20, 32–34, 39] jointly solve the detection and
ReID sub-problems in a more efficient, multi-task learning
framework. However, as shown in Figure 1, they still suffer
from three main challenges:
• There is a conflict in feature learning between person

detection and ReID. Person detection aims to learn fea-
tures which generalize across people to distinguish peo-
ple from the background, while ReID aims to learn fea-
tures which do not generalize across people but distin-
guish people from each other. Previous works follow a
“ReID first” [33] or “detection first” [20] principle to give
priority to one subtask over the other. However, it is diffi-
cult to balance the importance of two subtasks in different
situations when relying on either strategy.

• Significant scale or pose variations increase identity
recognition difficulty; see Figure 1. Feature pyramids or
deformable convolutions [14, 18, 33] have been used to
solve scale, pose or viewpoint misalignment in feature
learning. However, simple feature fusion strategies may
introduce additional background noise in feature embed-
dings, resulting in inferior ReID performance.

• Occlusions with background objects or other people make
appearance representations more ambiguous, as shown in
Figure 1. The majority of previous person search meth-
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Figure 2. Our proposed cascade framework for person search.

ods focus on holistic appearance modeling of people by
anchor-based [20] or anchor-free [33] methods. Despite
the improvement of person search accuracy, these are
prone to fail with complex occlusions.
To deal with the aforementioned challenges, as shown

in Figure 2, we propose a new Cascade Occluded Atten-
tion Transformer (COAT) for end-to-end person search.
First, inspired by Cascade R-CNN [1], we refine the per-
son detection and ReID quality by a coarse-to-fine strategy
in three stages. The first stage focuses on discriminating
people from background (detection), but crucially, is not
trained to discriminate people from each other (ReID) with
a ReID loss. Later stages include both detection and ReID
losses. This design improves detection performance (see
Section 4.3), as the first stage can generalize across peo-
ple without having to discriminate between persons. Sub-
sequent stages simultaneously refine the previous stages’
bounding box estimates and identity embeddings (see Ta-
ble 1). Second, we apply multi-scale convolutional trans-
formers at each stage of the cascade. The base feature
maps are split into multiple slices corresponding to different
scales. The transformer attention encourages the network
to learn embeddings on the discriminative parts of each per-
son for each scale, helping overcome the problem of region
misalignment. Third, we augment the transformer’s learned
feature embeddings with an occluded attention mechanism
that synthetically mimics occlusions . We randomly mix-
up partial tokens of instances in a mini-batch, and learn
the cross-attention among the token bank for each instance.
This trains the transformer differentiate tokens from other
foreground and background detection proposals. Experi-
ments on the challenging CUHK-SYSU [32] and PRW [38]
datasets show that the proposed network outperforms state-
of-the-art end-to-end methods, especially in terms of the
cross-camera setting on the PRW dataset.
Contributions. 1) To our knowledge, we propose the first
cascaded transformer-based framework for end-to-end per-
son search. The progressive design effectively balances per-
son detection and ReID and the transformers help attend to
scale and pose/viewpoint changes. 2) We improve perfor-
mance with an occluded attention mechanism in the multi-
scale transformer that generates discriminative fine-grained

person representations in occluded scenes. 3) Extensive
experiments on two datasets show the superiority of our
method over existing person search approaches.

2. Related Work
Person Search. Person search methods can be roughly
grouped into two-step and end-to-end approaches. Two-
step methods [5, 10, 13, 18, 30] combine a person detector
(e.g., Faster R-CNN [27], RetinaNet [22], or FCOS [28])
and a person ReID model sequentially. For example,
Wang et al. [30] build a person search system including
an identity-guided query detector followed by a detection
results adapted ReID model. On the other hand, end-to-
end methods [6, 20, 32, 33] integrate the two models into
a unified framework for better efficiency. Chen et al. [6]
share detection and ReID features but decompose them in
the polar coordinate system in terms of radial norm and
angle. Yan et al. [33] propose the first anchor-free per-
son search method, which tackles the misalignment issues
in different levels (i.e., scale, region, and task). Recently,
Li and Miao [20] share the stem representations of person
detection and ReID, but solve the two subtasks by two-
head networks sequentially. In contrast, inspired by Cas-
cade R-CNN [1], our method follows an end-to-end strat-
egy that balances person detection and ReID progressively
via a three-stage cascade framework.
Visual Transformers in Person ReID. Based on the origi-
nal transformer model [29] for natural language processing,
Vision Transformer (ViT) [11] is the first pure transformer
network to extract features for image recognition. CNNs
are widely adopted to extract base features and so reduce
the scale of training data required for a pure transformer
approach. Luo et al. [25] develop a spatial transformer
network to sample an affined image from the holistic im-
age to match a partial image. Li et al. [19] propose the
part-aware transformer to perform occluded person Re-ID
through diverse part discovery. Zhang et al. [36] introduce a
transformer-based feature calibration to integrate large scale
features as a global prior. Our paper is the first in the lit-
erature to perform person search with multi-scale convolu-
tional transformers . It not only learns discriminative ReID
features but also distinguishes people from the background
in a cascade pipeline.
Attention Mechanism in Transformers. Attention mech-
anism plays a crucial role in transformers. Recently, many
ViT variants [3, 16, 21, 35] have computed discriminative
features using a variety of token attention methods. Chen et
al. [3] propose a dual-branch transformer with a cross-
attention based token fusion module to combine two scales
of patch features. Lin et al. [21] alternate attention in the
feature map patches for local representation and attention
on the single channel feature map for global representation.
Yuan et al. [35] introduce the tokens-to-token process to
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gradually tokenize images to tokens while preserving struc-
tural information. He et al. [16] rearrange the transformer
layers’ patch embeddings via shift and patch shuffle opera-
tions. Unlike these methods that rearrange features within
an instance, the proposed occluded attention module con-
siders token cross-attention between either positive or nega-
tive instances from the mini-batch. Thus our method learns
to differentiate tokens from other objects by synthetically
mimicking occlusions.

3. Cascade Transformers
As discussed in previous works [14, 20, 33], person de-

tection and person ReID have conflicting goals. Hence, it
is difficult to jointly learn discriminative unified representa-
tions for the two subtasks on the top of the backbone net-
work. Similar to Cascade R-CNN [1], we decompose fea-
ture learning into sequential steps in T stages of multi-scale
transformers. That is, each head in the transformer refines
the detection and ReID accuracy of the predicted objects
stage-by-stage. Thus we can progressively learn coarse-to-
fine unified embeddings.

Nevertheless, in the case of occlusions by other people,
objects or the background, the network may suffer from
noisy representations of the target identity. To this end,
we develop the occluded attention mechanism in the multi-
scale transformer to learn an occlusion-robust representa-
tion. As shown in Figure 2, our network is based on the
Faster R-CNN object detector backbone with Region Pro-
posal Network (RPN). However, we extend the framework
by introducing a cascade of occluded attention transformers
(see Figure 3), trained in an end-to-end manner.

3.1. Coarse-to-fine Embeddings

After extracting the 1024-dim stem feature maps from
the ResNet-50 [15] backbone, we use the RPN to generate
region proposals. For each proposal, the RoI-Align opera-
tion [27] is applied to pool an h×w region as the base fea-
ture maps F , where h and w denote the height and width of
the feature maps respectively, and c is the number of chan-
nels.

Afterwards, we employ a multi-stage cascade structure
to learn embeddings for person detection and ReID. The
output proposals of the RPN are used at the first stage for
re-sampling both positive and negative instances. The box
outputs of the first stage are then adopted as the inputs of the
second stage, and so forth. At each stage t, the pooled fea-
ture map of each proposal is sent to the convolutional trans-
formers for that stage. To obtain high-quality instances, the
cascade structure imposes progressively more strict stage-
wise constraints. In practice, we increase the intersection-
over-union (IoU) thresholds ut gradually. The transformers
at each stage are followed by three heads, like NAE [6],
including a person/background classifier, a box regressor,

and a ReID discriminator. Note that we remove the ReID
discriminator at the first stage to focus the network on first
detecting all people in the scene before refinement.

3.2. Occluded Attention Transformer

In the following, we describe the details of the occluded
attention transformers, shown in Figure 3.
Tokenization. Given the base feature map F ∈ Rh×w×c,
we tokenize it for transformer input at different scales. For
multi-scale representation, we first split F channel-wise
into n slices, F̄ ∈ Rh×w×ĉ, where ĉ = c

n to deal with each
scale of token. In contrast to ViT [11] with its tokenization
of large image patches, our transformer leverages a series of
convolutional layers to generate tokens based on the sliced
feature maps F̄ . Our method benefits from CNNs’ induc-
tive biases and learns the CNN’s local spatial context. The
different scales are realized by different sizes of convolu-
tional kernels.

After converting the sliced feature maps F̄ ∈ Rh×w×ĉ

to the new token map F̂ ∈ Rĥ×ŵ×ĉ by one convolutional
layer, we flatten it into tokens inputs x ∈ Rĥŵ×ĉ for one
instance. The number of tokens calculated as

N =
ĥŵ

d2
=

⌊h+2p−k
s + 1⌋ × ⌊w+2p−k

s + 1⌋
d2

, (1)

where we have the kernel size k, stride s, and padding p for
the convolutional layer. d is the patch size of each token.
Occluded attention. To handle occlusions, we introduce
a new token-level occluded attention mechanism into the
transformers to mimic occlusions found in real applica-
tions. Specifically, we first collect the tokens from all the
detection proposals in a mini-batch, denoted as token bank
X = {x1,x2, · · · ,xP }, where P is the number of detection
proposals in the batch at each stage. Since the proposals the
from RPN contain positive and negative examples, the to-
ken bank is composed of both foreground person parts and
background objects. We exchange tokens among the token
bank, based on the same exchange index set M for all the
instances. As shown in Figure 3, the exchanged tokens cor-
respond to a semantically consistent but randomly selected
sub-regions in the token maps. Each exchanged token is
denoted as

xi = {xi(M̄),xj(M)}, i = 1, 2, · · · , P, i ̸= j, (2)

where xj denotes another sample randomly selected from
the token bank. M̄ indicates the complementary set of M,
i.e., xi = xi(M̄)

⋃
xi(M). Given the exchanged token

bank X, we compute the multi-scale self-attention among
them, as shown in Figure 3. In terms of each scale of tokens,
we run two sub-layers of the transformers (i.e., Multi-head
Self-Attention (MSA) and a Feed Forward Network (FFN)
as in [29]). Specifically, the mixed tokens x are transformed
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Figure 3. Architecture of occluded attention transformer. The randomly selected regions for token exchange are the same within one
mini-batch. For clarity, we only show three instances in a mini-batch and occluded attention for one scale. Best view in color.

into query matrices Q ∈ Rĥŵ×ĉ, key matrices K ∈ Rĥŵ×ĉ,
and value matrices V ∈ Rĥŵ×ĉ by three individual fully
connected (FC) layers. We can further compute multi-head
attention and the weighted sum over all values as

MSA(Q,K,V) = softmax(
QKT√
ĉ/m

)V, (3)

where we split queries, keys, and values into m heads for
more diversity, i.e., from tensor with the size of ĥŵ× ĉ to m
pieces with the size of ĥŵ × ĉ

m . The independent attention
outputs are then concatenated and linearly transformed into
the expected dimension. Following the MSA module, the
FFN module nonlinearly transforms each token to enhance
its representation ability. The enhanced feature is then pro-
jected to the size of ĥ× ŵ × ĉ as the transformer’s output.

Finally, we concatenate the outputs of the n scales of
transformers to original spatial size ĥ × ŵ × c. Note that
there is a residual connection outside each transformer.
After the global average pooling (GAP) layer, the ex-
tracted features are fed into subsequent heads for box re-
gression, person/background classification, and person re-
identification.
Relations to concurrent works. There are two concurrent
ViT based works [3, 16] in different fields. Chen et al. [3]
develop a multi-scale transformer including two separate
branches with small-patch and large-patch tokens. The two-
scale representation is learned based on a cross-attention to-
ken fusion module, where a single token for each branch
is treated as a query to exchange information with other
branches. Instead, we leverage a series of convolutional
layers with different kernels to generate multi-scale tokens.
Finally, we concatenate the enhanced feature maps corre-
sponding to each scale in specific slice of the transformers.

To deal with occlusion and misalignment in person
ReID, He et al. [16] shuffle person part patch embeddings
and re-group them, each group of which contains several
random patch embeddings of an individual instance. In con-
trast, our method first exchanges partial tokens of instances
in a mini-batch, and then calculate the occluded attention
based on mixed tokens. Thus the final embeddings partially
cover the target person with extracted features from a differ-
ent person or a background object, yielding more occlusion-
robust representations.

3.3. Training and Inference

In the training phase, the proposed network is trained
end-to-end for person detection and person ReID. The per-
son detection loss Ldet consists of regression and classifica-
tion loss terms. The former is a Smooth-L1 loss of regres-
sion vectors between ground-truth and foreground boxes,
while the latter computes the cross-entropy loss of predicted
classification probabilities of the estimated boxes.

To supervise person ReID, we use the classic non-
parametric Online Instance Matching (OIM) loss [32] LOIM,
which maintains a lookup table (LUT) and a circular queue
(CQ) to store the features of all the labeled and unlabeled
identities from recent mini-batches, respectively. We can
efficiently compute the cosine similarities between the sam-
ples in the mini-batch and LUT/CQ for embedding learning.
Moreover, inspired by [24], we add another cross-entropy
loss function LID to predict the identities of people for an
additional ID-wise supervision. In summary, we train the
proposed COAT by using the following multi-stage loss:

L =

T∑
t=1

Lt
det + I(t > 1)(λOIMLt

OIM + λIDLt
ID), (4)
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where t ∈ {1, 2, . . . , T} denotes the index of the stage and
T is the number of cascade stages. The coefficients λOIM
and λID are used to balance the OIM and ID loss terms.
I(t > 1) is the indicator function to indicate that we do not
consider person ReID loss at the first stage.

In the inference phase, we replace the occluded atten-
tion mechanism with the classic self-attention module in the
transformers by removing the token mix-up step in Figure 3.
We output the detection bounding boxes with correspond-
ing embeddings at the last stage and use NMS operations to
remove redundant boxes.

4. Experiments

All experiments are conducted in PyTorch with
one NVIDIA A100 GPU. For a fair comparison with
prior works, we use the first four residual blocks
(conv1∼conv4) of ResNet-50 [15] as the backbone and
resize the images to 900× 1500 as the input.

4.1. Datasets

We evaluate our method on two publicly available
datasets. The CUHK-SYSU dataset [32] annotates 8, 432
identities and 96, 143 bounding boxes in 18, 184 images.
The default gallery size is set as 100 for the 2, 900 testing
identities in 6, 978 images. The PRW dataset [38] collects
data from 6 cameras, including 932 identities and 43, 110
pedestrian boxes in 11, 816 frames. PRW is divided into
a training set with 5, 704 frames and 482 identities and a
testing set with 2, 057 query persons in 6, 112 frames.

We follow the standard evaluation metrics for person
search [32, 38]. A box is matched if the overlap ratio be-
tween the predicted and ground-truth boxes with the same
identity is more than 0.5 IoU. For person detection, we
use Recall and Average Precision (AP). For person ReID,
we use the mean Average Precision (mAP) and cumulative
matching characteristics (top-1) scores.

4.2. Implementation Details

Similar to Cascade R-CNN [1], we use T = 3 stages in
the cascade framework, where 128 detection proposals are
extracted per image for each stage. Following [6, 20, 32],
the scale of the base feature map is set as h = w = 14. The
index of exchanging tokens in Eq. (2) is set as the random
horizontal or vertical strip in the token map. The number
of heads in Eq. (3) is set as m = 8. The IoU thresholds
ut for detection are set as 0.5, 0.6, 0.7 for the three sequen-
tial stages. The kernel sizes of the convolutional layers to
compute the tokens are set as k = {1 × 1, 3 × 3} for the
three stages, with corresponding strides s = {1, 1} and
paddings p = {0, 1} to guarantee the same size of output
feature maps. Due to the small feature size, we set d = 1
in Eq. (2), i.e., conducting pixel-wise tokenization. The CQ

Stage1 Stage2 Stage3 mAP top-1
(a) w/o Transformers:

% 43.5 81.2
†% % 47.7 84.6
†% †% % 48.4 85.2
†% % % 49.5 85.5
% % % 47.2 84.9

(b) w/ Transformers:
! 43.3 78.7

†! ! 50.8 84.9
†! †! ! 51.3 85.5
†! ! ! 53.3 87.4
! ! ! 50.3 84.0

(c) IoU Thresholds:
0.5 0.5 0.5 52.5 86.0
0.6 0.6 0.6 52.6 86.2
0.7 0.7 0.7 51.0 85.5
0.5 0.6 0.6 52.6 86.3
0.5 0.6 0.7 53.3 87.4

Table 1. Comparison with different cascade variants of COAT on
PRW [38]. “%” means using the same ResNet block (conv5)
as [6, 20, 32], while “!” means using the proposed transformers
at each stage. “†” means the heads without the ReID loss. Gray
highlighting indicates the parameters selected for our final system.

size of the OIM loss is set as 5, 000 and 500 for CUHK-
SYSU and PRW respectively. The loss weights in Eq. (4)
are set as λOIM = λID = 0.5.

We use the SGD optimizer with momentum 0.9 to train
our model for 15 epochs, with an initial learning rate warm-
ing up to 0.003 during the first epoch, being reduced by a
factor of 10 at the 10-th epoch. At the inference phase, we
use NMS with 0.4/0.4/0.5 threshold to remove redundant
boxes detected by the first/second/third stage.

4.3. Ablation Studies

We conduct a series of ablation studies on the PRW
dataset [38] to analyze our design decisions.
Contribution of cascade structure. To show the cascade
structure’s contribution, we evaluate coarse-to-fine con-
straints in terms of the number of cascade stages and IoU
thresholds.

First, we replace the occluded attention transformer with
the same ResNet block (conv5) as [6,20,32] at each stage.
As shown in Table 1(a), the cascade structure significantly
improves person search accuracy when adding more stages,
i.e., from 43.5% to 49.5% in mAP and 81.2% to 85.5%
in top-1 accuracy. As we introduce the proposed occluded
attention transformer, the performance is further improved
(see Table 1(b)), which demonstrates our occluded attention
transformer’s effectiveness .

Moreover, the increasing IoU thresholds ut in the cas-
cade design improve person search performance. As re-
ported in Table 1(c), equal IoU thresholds at each stage pro-

7271



Figure 4. Detection and person search results for COAT and two
compared methods on PRW, both with (person ReID only) and
without (person search) ground-truth detection boxes being pro-
vided. ∗ denotes the oracle results using the ground-truth boxes.

duce lower accuracy than our method. For example, more
false positives or false negatives are introduced if ut = 0.5
or ut = 0.7. In contrast, our method can select detection
proposals with increasing quality for better performance,
i.e., generating more candidate detections in the first stage
and only highly-overlapping detections by the third stage.
Relations between person detection and ReID. As dis-
cussed in the introduction, there is a conflict between per-
son detection and ReID. In Figure 4, we explore the rela-
tionship between the two subtasks. We compare our COAT
with state-of-the-art NAE [6] and SeqNet [20], which share
the same Faster R-CNN detector. We also construct three
COAT variants with different stages, i.e., COAT-t, where
t = 1, 2, 3 denotes the number of stages. When looking
solely at person ReID rather than person search, i.e., when
ground-truth detection boxes are given, COAT outperforms
the two competitors with an over 3% gain in top-1 and over
6% gain in mAP. Meanwhile, our is slightly worse in person
detection accuracy than SeqNet [20]. These results indicate
that our improved ReID performance comes from coarse-to-
fine person embeddings rather than more precise detections.

We also observe that the person detection performance
is improved from t = 1 to t = 2 but then slightly reduced
with t = 3. We speculate that this is because, when trading-
off person detection and ReID, our method focuses more on
learning discriminative embeddings for person ReID, while
slightly sacrificing detection performance.

In addition, from Table 1(a)(b), note that the COAT vari-
ant with ReID loss in the first stage performs worse than
our method (50.3 vs. 53.3 for mAP). Simultaneously learn-
ing a discriminative representation for person detection and
ReID is extremely difficult. Therefore, we remove the ReID
disciminator head at Stage 1 in the COAT method (c.f. Fig-
ure 2). If we continue removing the ReID discriminator at
the second stage, the ReID performance is reduced by ∼ 2%
in mAP. This shows the ReID embeddings do benefit from
multi-stage refinement.
Comparison with other attention mechanisms. To ver-
ify the effectiveness of our occluded attention mechanism in
the transformer, we apply the recently proposed Jigsaw [16]

Method Tokens Feats mAP top-1
Vanilla Attention 52.9 86.4

CrossViT [3] ! 49.9 86.1
Jigsaw [16] ! 51.9 86.0

Batch DropBlock [7] ! 52.7 86.7
Cutout [8] ! 53.2 86.6
Mixup [37] ! 52.8 86.6

Occluded Attention ! 53.3 87.4

Table 2. Comparison of our attention mechanisms and other re-
lated modules. “Tokens” and “Feats” denote token-level enhanced
attention and feature-level augmentation respectively.

and CrossViT [3] in our method. As discussed in Sec-
tion 3.2, Jigsaw Patch [16] is used to generate robust ReID
features by shift and patch shuffle operations. CrossViT [3]
is a dual-branch transformer to learn multi-scale features. It
is also noteworthy that they leverage large image patches as
the input for pure vision transformers. We also evaluate the
COAT variant a vanilla self-attention mechanism, denoted
as vanilla attention.

In Table 2, CrossViT [3] focuses on exchanging infor-
mation between two scales of tokens, achieving inferior
mAP. The results show that Jigsaw [16] also hurts mAP.
We speculate that either exchanging query information in
CrossViT [3] or the shift and shuffle feature operations in
Jigsaw [16] are ambiguous in such small 14× 14 base fea-
ture maps, limiting the power of them for person search. In
contrast, our occluded attention is designed for small fea-
ture maps and obtains better performance, i.e., both 0.4%
gain in mAP and 1.0% gain in top-1 score. Instead of shar-
ing class tokens in different branches or shuffling channels
of feature maps based on an individual instance, we effec-
tively learn context information across different instances in
a mini-batch, and differentiate the person from other people
or the background to synthetically mimic occlusion.

Comparison with feature augmentation. Our method
is related to previous augmentation strategies for person
ReID, such as Batch DropBlock Network [7], Cutout [8]
and Mixup [37]. As presented in Table 2, person search
accuracy is not improved by using feature augmentation,
simply augmenting feature patches with zeros.

Influence of occluded attention mechanism. As discussed
in Section 3.2, we use occluded attention to calculate dis-
criminative person embeddings. We evaluate the use of oc-
cluded attention (token mixup) and different scales in Ta-
ble 3. Note, the top-1 score is improved from 86.4 to 87.4
with occluded attention and that multiple convolutional ker-
nels for tokenization improve performance. Note that mul-
tiple convolutions do not increase the model size, since the
feature maps F are channel-wise sliced for each scale.
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Figure 5. Qualitative examples of top-1 person search results of NAE [6], SeqNet [20] and COAT on PRW (1st row) and CUHK-SYSU
(2nd and 3rd rows) datasets, where small query, failure and correct cases are highlighted in yellow, red and green boxes respectively.

Method Token Mixup Scales mAP top-1
Vanilla Attention {1× 1} 52.1 85.3
Vanilla Attention {3× 3} 53.1 86.0
Vanilla Attention {1× 1, 3× 3} 52.9 86.4

Occluded Attention ! {1× 1} 52.2 86.5
Occluded Attention ! {3× 3} 52.5 86.4
Occluded Attention ! {1× 1, 3× 3} 53.3 87.4

Table 3. Comparison of our attention mechanisms and other re-
lated modules. “Scales” denotes the used convolutional kernels.

4.4. Comparison with State-of-the-art

As presented in Table 4, we compare our COAT with
state-of-the-art algorithms, including both two-step meth-
ods [5, 10, 13, 18, 30, 38] and end-to-end methods [2, 4, 6, 9,
12, 17, 20, 23, 26, 31–34, 39], on two datasets.
Results on CUHK-SYSU. With the gallery size of 100,
our method achieves the best 94.2% mAP and compa-
rable 94.7% top-1 scores compared to the best two-step
method TCTS [30] with explicitly trained bounding box
and ReID feature refinement modules. Among end-to-
end methods, our method performs better than state-of-
the-art AlignPS+ [33] with a multi-scale anchor-free repre-
sentation [28], SeqNet [20] with two-stage refinement and
AGWF [12] with part classification based sub-networks.
The results indicate the effectiveness of our cascaded multi-
scale representation. Using the post-processing operation
Context Bipartite Graph Matching (CBGM) [20], both mAP
and top-1 scores of our method can be further improved
slightly. For a comprehensive evaluation, as shown in Fig-
ure 6, we compare mAP scores of competitive methods as
we increase gallery size. Since it is challenging to consider
more distracting people in the gallery set, the performance

(a) End-to-end models (b) Two-step models

Figure 6. Comparison with (a) end-to-end models and (b) two-step
models on CUHK-SYSU with different gallery sizes.

of all compared methods is reduced as the gallery size in-
creases. However, our method consistently outperforms all
the end-to-end methods and the majority of two-step meth-
ods. When the gallery size is larger than 1, 000, our method
performs slightly worse than the two-step TCTS [30].
Results on PRW. Although the PRW dataset [38] is more
challenging, with less training data but larger gallery size,
than the CUHK-SYSU dataset [32], the results show a sim-
ilar trend. Our method achieves comparable performance
as AGWF [12] and a significant gain of 6.7% mAP and
4.0% top-1 scores than SeqNet [20]. DMRNet [14] and
AlignPS [33] leverage stronger object detectors, such as
RetinaNet [22] and FCOS [28], than the Faster R-CNN [27]
in our method, but still achieve inferior performance. Fur-
ther, we compare performance on PRW’s multi-view gallery
(see the group marked by † in Table 4). Our method out-
performs existing methods in terms of both mAP and Top-1
scores with a clear margin. We attribute this to our cascaded
transformer structure which generates more discriminative
ReID features, especially in the cross-camera setting with
significant pose/viewpoint changes.
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Method CUHK-SYSU PRW
mAP top-1 mAP top-1

Tw
o-

st
ep

DPM [38] - - 20.5 48.3
MGTS [5] 83.0 83.7 32.6 72.1
CLSA [18] 87.2 88.5 38.7 65.0
RDLR [13] 93.0 94.2 42.9 70.2
IGPN [10] 90.3 91.4 47.2 87.0
TCTS [30] 93.9 95.1 46.8 87.5

E
nd

-t
o-

en
d

OIM [32] 75.5 78.7 21.3 49.9
IAN [31] 76.3 80.1 23.0 61.9
NPSM [23] 77.9 81.2 24.2 53.1
RCAA [2] 79.3 81.3 - -
CTXG [34] 84.1 86.5 33.4 73.6
QEEPS [26] 88.9 89.1 37.1 76.7
HOIM [4] 89.7 90.8 39.8 80.4
APNet [39] 88.9 89.3 41.9 81.4
BINet [9] 90.0 90.7 45.3 81.7
NAE [6] 91.5 92.4 43.3 80.9
NAE+ [6] 92.1 92.9 44.0 81.1
DMRNet [14] 93.2 94.2 46.9 83.3
PGS [17] 92.3 94.7 44.2 85.2
AlignPS [33] 93.1 93.4 45.9 81.9
AlignPS+ [33] 94.0 94.5 46.1 82.1
SeqNet [20] 93.8 94.6 46.7 83.4
AGWF [12] 93.3 94.2 53.3 87.7
COAT 94.2 94.7 53.3 87.4
AlignPS [33]+CBGM [20] 93.6 94.2 46.8 85.8
AlignPS+ [33]+CBGM [20] 94.2 94.3 46.9 85.7
SeqNet+CBGM [20] 94.8 95.7 47.6 87.6
COAT+CBGM 94.8 95.2 54.0 89.1
HOIM† [4] - - 36.5 65.0
NAE+† [6] - - 40.0 67.5
SeqNet† [20] - - 43.6 68.5
SeqNet+CBGM† [20] - - 44.3 70.6
AGWF† [12] - - 48.0 73.2
COAT† - - 50.9 75.1
COAT+CBGM† - - 51.7 76.1

Table 4. Comparison with the state-of-the-art methods. † denotes
the performance only evaluated on the multi-view gallery. Bold
indicates highest score in the group.

Qualitative results. Some example person search results
on two datasets are shown in Figure 5. Our method can
deal with cases of slight/moderate occlusion and scale/pose
variations, while other state-of-the-art methods such as Se-
qNet [20] and NAE [6] fail in these scenarios.
Efficiency comparison. We compare our efficiency
with three representative end-to-end networks including
NAE [6], AlignPS [33] and SeqNet [20] which have pub-
licly released source code. We evaluate the methods with
the same scale test images and on the same GPU.

From Table 5, we compare the number of parameters, the
multiply–accumulate operations (MACs), and the running
speed in frames per second (FPS). Our method has lower
computational complexity and slightly slower speed than
other compared methods, but achieved +6.6% and +4.0%
gains in mAP and top-1 accuracy respectively. In con-
trast to [11, 16], we employ only one encoder layer in our
transformers and use multi-scale convolutions to reduce the

Method Params(M) MACs(G) FPS mAP top-1
NAE [6] 33.43 287.35 14.48 43.3 80.9

AlignPS [33] 42.18 189.98 16.39 45.9 81.9
SeqNet [20] 48.41 275.11 12.23 46.7 83.4

COAT 37.00 236.29 11.14 53.3 87.4

Table 5. Comparison of person search efficiency.

number of channels before tokenization, increasing COAT’s
efficiency.

5. Conclusion
We have developed a new Cascade Occluded Attention

Transformer (COAT) for end-to-end person search. No-
tably, COAT learns a discriminative coarse-to-fine repre-
sentation for both person detection and person ReID via a
cascade transformer framework. Meanwhile, the occluded
attention mechanism synthetically mimics occlusions from
either foreground or background objects. COAT outper-
forms state-of-the-art methods, which we hope will inspire
more research into transformer-based person search meth-
ods.
Ethical considerations. Like most technologies, person
search methods may have societal benefits and negative im-
pacts. How the technology is employed is critical. For ex-
ample, person search can identify persons of interest to aid
law enforcement and counter-terrorism operations. How-
ever, the technology should only be used in locations where
an expectation of privacy is waived by entering those loca-
tions, such as public areas, airports, and private buildings
with clear signage. These systems should not be employed
without probable cause, or by unjust governments that seek
to acquire ubiquitous knowledge of the movements of all of
their citizens to enable persecution and repression.

For comparability, this research uses human subjects im-
agery collected in prior works. CUHK-SYSU [32] was col-
lected from “street snaps” and “movie snapshots”, while
PRW [38] was collected with video cameras in a public area
of a university campus. No mention is made in either paper
of review by an ethical board (e.g., an Institutional Review
Board), but these papers were published before this new
standard was established at CVPR or most major AI con-
ferences. Our preference would be to work with ethically
collected person search datasets, and we would welcome a
public disclosure from the authors of their ethical compli-
ance. We believe the community should focus resources on
developing ethical person search datasets and phase out the
use of legacy, unethically collected datasets.
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FA8650-19-C-6036. Any opinions, findings and conclu-
sions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the
views of the United States Air Force.

7274



References
[1] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: delv-

ing into high quality object detection. In CVPR, pages 6154–
6162, 2018. 2, 3, 5

[2] Xiaojun Chang, Po-Yao Huang, Yi-Dong Shen, Xiaodan
Liang, Yi Yang, and Alexander G. Hauptmann. RCAA: re-
lational context-aware agents for person search. In ECCV,
pages 86–102, 2018. 1, 7, 8

[3] Chun-Fu Chen, Quanfu Fan, and Rameswar Panda. Crossvit:
Cross-attention multi-scale vision transformer for image
classification. In ICCV, 2021. 2, 4, 6

[4] Di Chen, Shanshan Zhang, Wanli Ouyang, Jian Yang, and
Bernt Schiele. Hierarchical online instance matching for per-
son search. In AAAI, pages 10518–10525, 2020. 7, 8

[5] Di Chen, Shanshan Zhang, Wanli Ouyang, Jian Yang, and
Ying Tai. Person search via a mask-guided two-stream CNN
model. In ECCV, pages 764–781, 2018. 1, 2, 7, 8

[6] Di Chen, Shanshan Zhang, Jian Yang, and Bernt Schiele.
Norm-aware embedding for efficient person search. In
CVPR, pages 12612–12621, 2020. 2, 3, 5, 6, 7, 8

[7] Zuozhuo Dai, Mingqiang Chen, Xiaodong Gu, Siyu Zhu,
and Ping Tan. Batch dropblock network for person re-
identification and beyond. In ICCV, pages 3690–3700, 2019.
6

[8] Terrance Devries and Graham W. Taylor. Improved regular-
ization of convolutional neural networks with cutout. CoRR,
abs/1708.04552, 2017. 6

[9] Wenkai Dong, Zhaoxiang Zhang, Chunfeng Song, and Tie-
niu Tan. Bi-directional interaction network for person search.
In CVPR, pages 2836–2845, 2020. 7, 8

[10] Wenkai Dong, Zhaoxiang Zhang, Chunfeng Song, and Tie-
niu Tan. Instance guided proposal network for person search.
In CVPR, pages 2582–2591, 2020. 1, 2, 7, 8

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 2, 3, 8

[12] Byeong-Ju Han, Kuhyeun Ko, and Jae-Young Sim. End-to-
end trainable trident person search network using adaptive
gradient propagation. In ICCV, pages 925–933, 2021. 7, 8

[13] Chuchu Han, Jiacheng Ye, Yunshan Zhong, Xin Tan, Chi
Zhang, Changxin Gao, and Nong Sang. Re-id driven local-
ization refinement for person search. In ICCV, pages 9813–
9822, 2019. 1, 2, 7, 8

[14] Chuchu Han, Zhedong Zheng, Changxin Gao, Nong Sang,
and Yi Yang. Decoupled and memory-reinforced net-
works: Towards effective feature learning for one-step per-
son search. In AAAI, pages 1505–1512, 2021. 1, 3, 7, 8

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 3, 5

[16] Shuting He, Hao Luo, Pichao Wang, Fan Wang, Hao Li,
and Wei Jiang. Transreid: Transformer-based object re-
identification. In ICCV, 2021. 2, 3, 4, 6, 8

[17] Hanjae Kim, Sunghun Joung, Ig-Jae Kim, and Kwanghoon
Sohn. Prototype-guided saliency feature learning for person
search. In CVPR, pages 4865–4874, 2021. 7, 8

[18] Xu Lan, Xiatian Zhu, and Shaogang Gong. Person search by
multi-scale matching. In ECCV, pages 553–569, 2018. 1, 2,
7, 8

[19] Yulin Li, Jianfeng He, Tianzhu Zhang, Xiang Liu, Yongdong
Zhang, and Feng Wu. Diverse part discovery: Occluded per-
son re-identification with part-aware transformer. In CVPR,
2021. 2

[20] Zhengjia Li and Duoqian Miao. Sequential end-to-end net-
work for efficient person search. In AAAI, pages 2011–2019,
2021. 1, 2, 3, 5, 6, 7, 8

[21] Hezheng Lin, Xing Cheng, Xiangyu Wu, Fan Yang, Dong
Shen, Zhongyuan Wang, Qing Song, and Wei Yuan. CAT:
cross attention in vision transformer. CoRR, abs/2106.05786,
2021. 2

[22] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He,
and Piotr Dollár. Focal loss for dense object detection. In
ICCV, pages 2999–3007, 2017. 2, 7

[23] Hao Liu, Jiashi Feng, Zequn Jie, Jayashree Karlekar, Bo
Zhao, Meibin Qi, Jianguo Jiang, and Shuicheng Yan. Neural
person search machines. In ICCV, pages 493–501, 2017. 7,
8

[24] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei
Jiang. Bag of tricks and a strong baseline for deep person
re-identification. In CVPRW, pages 1487–1495, 2019. 4

[25] Hao Luo, Wei Jiang, Xing Fan, and Chi Zhang. Stnreid:
Deep convolutional networks with pairwise spatial trans-
former networks for partial person re-identification. IEEE
TMM, 22(11):2905–2913, 2020. 2

[26] Bharti Munjal, Sikandar Amin, Federico Tombari, and Fabio
Galasso. Query-guided end-to-end person search. In CVPR,
pages 811–820, 2019. 7, 8

[27] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with re-
gion proposal networks. IEEE TPAMI, 39(6):1137–1149,
2017. 2, 3, 7

[28] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:
fully convolutional one-stage object detection. In ICCV,
pages 9626–9635, 2019. 2, 7

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, pages
5998–6008, 2017. 2, 3

[30] Cheng Wang, Bingpeng Ma, Hong Chang, Shiguang Shan,
and Xilin Chen. TCTS: A task-consistent two-stage frame-
work for person search. In CVPR, pages 11949–11958, 2020.
1, 2, 7, 8

[31] Jimin Xiao, Yanchun Xie, Tammam Tillo, Kaizhu Huang,
Yunchao Wei, and Jiashi Feng. IAN: the individual aggrega-
tion network for person search. PR, 87:332–340, 2019. 7,
8

[32] Tong Xiao, Shuang Li, Bochao Wang, Liang Lin, and Xiao-
gang Wang. Joint detection and identification feature learn-
ing for person search. In CVPR, pages 3376–3385, 2017. 1,
2, 4, 5, 7, 8

7275



[33] Yichao Yan, Jingpeng Li, Jie Qin, Song Bai, Shengcai Liao,
Li Liu, Fan Zhu, and Ling Shao. Anchor-free person search.
In CVPR, 2021. 1, 2, 3, 7, 8

[34] Yichao Yan, Qiang Zhang, Bingbing Ni, Wendong Zhang,
Minghao Xu, and Xiaokang Yang. Learning context graph
for person search. In CVPR, pages 2158–2167, 2019. 1, 7, 8

[35] Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi,
Francis E. H. Tay, Jiashi Feng, and Shuicheng Yan. Tokens-
to-token vit: Training vision transformers from scratch on
imagenet. In ICCV, pages 558–567, 2021. 2

[36] Guowen Zhang, Pingping Zhang, Jinqing Qi, and Huchuan
Lu. Hat: Hierarchical aggregation transformers for person
re-identification. In ACMMM, 2021. 2

[37] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and
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