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Abstract

Autonomous driving faces great safety challenges for a
lack of global perspective and the limitation of long-range
perception capabilities. It has been widely agreed that
vehicle-infrastructure cooperation is required to achieve
Level 5 autonomy. However, there is still NO dataset from
real scenarios available for computer vision researchers
to work on vehicle-infrastructure cooperation-related prob-
lems. To accelerate computer vision research and inno-
vation for Vehicle-Infrastructure Cooperative Autonomous
Driving (VICAD), we release DAIR-V2X Dataset, which is
the first large-scale, multi-modality, multi-view dataset from
real scenarios for VICAD. DAIR-V2X comprises 71254 Li-
DAR frames and 71254 Camera frames, and all frames
are captured from real scenes with 3D annotations. The
Vehicle-Infrastructure Cooperative 3D Object Detection
problem (VIC3D) is introduced, formulating the problem of
collaboratively locating and identifying 3D objects using
sensory inputs from both vehicle and infrastructure. In ad-
dition to solving traditional 3D object detection problems,
the solution of VIC3D needs to consider the temporal asyn-
chrony problem between vehicle and infrastructure sensors
and the data transmission cost between them. Further-
more, we propose Time Compensation Late Fusion (TCLF),
a late fusion framework for the VIC3D task as a bench-
mark based on DAIR-V2X. Find data, code, and more up-
to-date information at https://thudair.baai.ac.cn/index and
https://github.com/AIR-THU/DAIR-V2X.

1. Introduction
Autonomous driving (AD) is arguably one of the hottest

topics currently occupying public attention and imagina-

*Corresponding author. 3,4 Work done while at AIR.

tion. The success of deep neural networks brings the
promise of solving AD’s core requirement to perceive the
surrounding environment from point cloud [15, 20, 28], im-
ages [7, 18] or multi-modality data [21, 24]. Despite its

Figure 1. Datasets available for 3D Object Detection in au-
tonomous driving. DAIR-V2X is the first real-world V2X dataset
for VICAD.

great progress recently, autonomous driving still faces great
safety challenges for a lack of global perspective and the
limitation of long-range perception capability. It has been
widely agreed that vehicle-infrastructure cooperation is re-
quired to achieve Level 5 autonomy. Utilizing both vehi-
cle and infrastructure sensors brings a number of signifi-
cant advantages, including providing a global perspective
far beyond the current horizon and covering blind spots.
Advances in communications like V2X (vehicle to every-
thing) have made it possible to utilize data from infrastruc-
ture sensors [3,22]. However, there is still NO dataset from
real scenarios available for researchers to work on vehicle-
infrastructure cooperation-related problems.

To accelerate computer vision research and innovation
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Table 1. A detailed comparison between autonomous driving-related datasets. - indicates that specific information is not provided. In
particular, DAIR-V2X is composed of DAIR-V2X-C, DAIR-V2X-V and DAIR-V2X-I, where DAIR-V2X-C is captured by both vehicle
and infrastructure sensors, DAIR-V2X-V is captured by vehicle sensors, and DAIR-V2X-I is captured by infrastructure sensors.

Dataset Year Real/Simulated View Image Pointcloud 3D boxes Classes
KITTI [10] 2012 real single vehicle 15k 15k 200k 8
nuScenes [2] 2019 real single vehicle 1.4M 400k 1.4M 23
Waymo Open [23] 2019 real single vehicle 1M 200k 12M 4
ApolloScape [12] 2018 real single vehicle 144k 0 70k 8-35
BBD100K [30] 2020 real single vehicle 100M 0 0 10
ONCE [17] 2021 real single vehicle 7M 1M 417k 5
SYNTHIA [19] 2016 simulated single vehicle 213k 0 - 13
V2X-Sim [16] 2021 simulated multi-vehicle 0 10k 26.6k 2
highD [13] 2018 real infrastructure (UAV) 1.53M 0 0 1
DAIR-V2X (Our) 2021 real vehicle-infrastructure cooperative 71k 71k 1.2M 10
- DAIR-V2X-C 2021 real vehicle-infrastructure cooperative 39k 39k 464k 10
- DAIR-V2X-V 2021 real single vehicle 22k 22k 239k 10
- DAIR-V2X-I 2021 real infrastructure 10k 10k 493k 10

for Vehicle-Infrastructure Cooperative Autonomous Driv-
ing (VICAD), we release DAIR-V2X Dataset, which is the
first large-scale, multi-modality, multi-view dataset for VI-
CAD. It contains 71254 LiDAR frames and 71254 Cam-
era frames captured in intersection scenes where a well-
equipped vehicle passes through intersections with infras-
tructure sensors deployed. 40% of the frames are captured
from infrastructure sensors and 60% of the frames are cap-
tured from vehicle sensors. All of them are precisely la-
beled by expert annotators. The dataset covers 10 km of
city roads, 10 km of highway, 28 intersections, and 38 km2

of driving regions with diverse weather and lighting varia-
tions. More details could be found in Tab. 1.

In this paper, the Vehicle-Infrastructure Cooperative 3D
Object Detection (VIC3D) task is introduced, formulating
the problem of cooperatively locating and identifying 3D
objects using sensory inputs from both vehicle and infras-
tructure. In addition to solving traditional 3D object detec-
tion problems, the solution of VIC3D needs to consider the
temporal asynchrony problem and data transmission cost
between vehicle and infrastructure sensors.

To resolve the VIC3D object detection task and facilitate
future research, we also introduce our VIC3D object detec-
tion benchmark in this paper. For data with less temporal
asynchrony problems, we implement both early fusion and
late fusion approaches. Results show that the average preci-
sion of fusion methods is 10 to 20 points higher than detec-
tors that only use information from a single view. Results
also show that early fusion can achieve better performance
than late fusion but requires more data transmission. With
the DAIR-V2X dataset, we expect more future research to
achieve a performance-bandwidth trade-off. For data with
severe temporal asynchrony, we propose a Time Compensa-
tion Late Fusion framework, which can effectively alleviate
the temporal asynchrony problem.

The key contributions of our work are as follows:

• We release the DAIR-V2X dataset, which is the first
large-scale dataset for vehicle-infrastructure coopera-
tive autonomous driving. All frames are captured from
real scenarios with 3D annotations.

• We formulate the problem of cooperatively locating
and identifying 3D objects using sensory inputs from
both vehicle and infrastructure as VIC3D.

• We introduce benchmarks for VIC3D object detection
and single-view 3D object detection tasks. The results
show the effectiveness of vehicle-infrastructure coop-
eration in VIC3D object detection. Especially, we pro-
pose the Time Compensation Late Fusion framework
to alleviate the temporal asynchrony problem.

2. Relative Work

2.1. Autonomous Driving Datasets

In recent years, an increasing number of autonomous
driving datasets have been released and greatly promoted
the development of autonomous driving research. Datasets
like SYNTHIA [19] and Cityscapes [5] mainly focus on
2D annotations for images. KITTI [10] and nuScenes [2]
are multi-modality datasets providing camera images as
well as LiDAR point clouds. Nevertheless, all datasets men-
tioned above only provide data from a single-vehicle view.
V2X-SIM [16] is an attempt to generate a multi-vehicle
view dataset, but the dataset was generated by a simula-
tor rather than captured from real scenarios. Compared
with those datasets, our DAIR-V2X dataset is the first large-
scale, multi-modality, multi-view dataset captured from real
scenarios for VICAD, and contains data captured from the
Vehicle-Infrastructure Cooperative view. Tab. 1 shows the
comparison of our dataset with the others. In our DAIR-
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Figure 2. a) Acquisition system with infrastructure sensors. b) Acquisition system with vehicle sensors. c) Infrastructure-view image and
point cloud with 3d annotation. Paired vehicle-view and infrastructure-view information complement each other in the perspective of view.
d) Vehicle-view image and point cloud with 3d annotation.

V2X, we also provide a Repo3D [29] dataset composed of
multi-source infrastructure images and 3D annotations, for
those who are interested in Mono3D object detection and
domain adaptation.

2.2. 3D Detection
3D object detection serves as the prerequisite for the suc-

cess of autonomous driving. Many techniques have been
introduced and can be roughly classified into three cate-
gories. a) Image-based 3D Detection refers to methods
that detect 3D objects directly from 2D images. ImVox-
elNet [7] is a good example to make predictions from im-
ages. b) Pointcloud-based 3D Detection stands for manners
that make 3D object detection merely from point clouds.
PointPillars [15], SECOND [27], and 3DSSD [28] are such
approaches that achieve convincing detection results from
point clouds. c) Multimodality-based 3D Detection uses
both images and point clouds to make predictions. Point-
painting [24] and MVXNet [21] are practices of fusing im-
age and LiDAR features to predict 3D bounding boxes.
While 3D object detection has made great progress recently,
there are still some tough problems that remain to solve
such as blind spots and weak long-distance perception. To
explore how to utilize the infrastructure information to solve
the problems mentioned above, we conduct VIC3D object
detection based on our dataset proposed in this paper.

2.3. Multi-Sensor Fusion
Multi-sensor fusion [26] is the integration of heteroge-

neous information collected by different sensors to alleviate
the uncertainty and vulnerability of systems that rely on a
single sensor. Based on the fusion stage, multi-sensor fu-
sion can be categorized into early fusion, intermediate fu-
sion, and late fusion. a) In early fusion, raw data from dif-
ferent sensors are directly transferred and fused [9]. b) In in-
termediate fusion, intermediate representations like features
extracted from the models are fused [4,21]. c) In late fusion,

the prediction outputs like 3D information of the objects are
fused [11]. VIC3D can be considered as a variant of the
multi-sensor problem, so previous fusion methods can be
taken into consideration to integrate the infrastructure in-
formation. However, in addition to the multi-sensor fusion
challenges, VIC3D faces difficulties caused by the temporal
asynchrony problem and the data transmission constraint.

2.4. V2X Cooperative Perception

V2X aims to build a communication system between ve-
hicles and other devices in a complex traffic environment.
Current V2X research mainly focuses on V2V (Vehicle-to-
Vehicle) and V2I (Vehicle-to-Infrastructure) area. V2VNet
[25] is a pioneering work in V2V that broadcasts com-
pressed intermediate features and propagates message re-
ceived from nearby vehicles to generate motion forecasts.
Works of V2I [6, 31] leverage infrastructure LiDAR data to
generate and broadcast detection results. However, none of
these approaches have been verified on a dataset captured
from real scenarios. This may cause a huge gap between
theory and practice. Therefore, we release the DAIR-V2X
dataset to boost further study in this field.

3. The DAIR-V2X Dataset
In order to facilitate research on VICAD, we re-

lease DAIR-V2X, a large-scale, multi-modality, multi-view
dataset from real scenarios with 3D annotations for vehicle
infrastructure cooperation. Here we describe how we set up
infrastructure and vehicle sensors, select interesting scenes,
annotate the dataset and protect the privacy of third parties.

3.1. Setup

Equipment. Equipment for data collection are composed
of infrastructure sensors and vehicle sensors. a) Infrastruc-
ture sensors. Each of the 28 intersections selected from
Beijing High-level Autonomous Driving Demonstration
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Table 2. Key Sensor Specifications in DAIR-V2X. Veh. stands for
vehicle view, and Inf. stands for infrastructure view.

Sensor Details
Inf. LiDAR 300 beams, 10Hz capture frequency, 100o

horizontal FOV, −30o to 10o vertical FOV,
≤ 280m range, ±3cm accuracy

Inf. Camera RGB, 25Hz capture frequency, 1920x1080
resolution, JPEG compressed

Veh. LiDAR 40 beams, 10Hz capture frequency, 360o

horizontal FOV, −30o to 10o vertical FOV,
≤ 200m range, ±0.33o vertical resolution

Veh. Camera RGB, 20Hz capture frequency, 1920x1080
resolution, JPEG compressed

Veh. GPS & IMU 1000HZ update rate

Area are deployed with four pairs of 300-beam LiDAR and
high-resolution camera. The DAIR-V2X dataset picks only
one pair of them. b) Vehicle sensors. One 40-beam LiDAR
and one high-quality camera looking forward are mounted
on top of the autonomous vehicles. Specific layout is
posted in Figure 2, and precise details are displayed in
Table 2.

Coordinate. There are 5 types of coordinate systems on
DAIR-V2X, i.e., the LiDAR coordinate, the camera coor-
dinate, the image coordinate, the world coordinate, and the
positioning coordinate. The origin of the LiDAR coordinate
system is located at the center of the LiDAR sensor, the x-
axis is positive forwards, the y-axis is positive to the left,
and the z-axis is positive upwards. The infrastructure Li-
DAR coordinate system is converted from its original sys-
tem which has an inclination angle with the ground. The
real-time relative pose of the equipped vehicle is obtained
from GPS/IMU combined with SLAM and a local map.
There is also manual secondary labeling confirmation to en-
sure calibration accuracy. The Lidar-to-Camera transforma-
tion is obtained by multiplying Lidar-to-World and World-
to-Camera transformations.

3.2. Data Acquisition
Collection. We drive a well-equipped vehicle in the col-
lection area and save the corresponding vehicle frames and
infrastructure frames respectively. After the collection of
raw data, we manually select 100 representative scenes of
20s duration. Such scenes include vehicle data and infras-
tructure data, where vehicles drive through intersections de-
ployed with equipment. We sample key frames at 10Hz
from both sides to form DAIR-V2X-C. In DAIR-V2X-C, it
is important to note that the timestamp difference between
a vehicle frame and its closest infrastructure frame could
be slightly varied, due to the asynchronous triggering be-
tween vehicle sensors and infrastructure sensors. We sam-
ple 22K frames from additionally about 350 vehicle-only
segments of 60s duration to form DAIR-V2X-V, and sam-

ple 10K frames from additionally about 150 infrastructure-
only segments duration to form DAIR-V2X-I, to enlarge the
dataset. Compared to the single-view data in DAIR-V2X-
C, DAIR-V2X-V and DAIR-V2X-I contains more diverse
scenes and will be more challenging to only improve the
single-view performance.
Annotation. With multiple validation steps and refine-
ment processes, expert annotators make high-quality an-
notations for infrastructure frames and vehicle frames
respectively. Specifically, annotators exhaustively label
each of the 10 object classes in every image and point
cloud frame with its category attribute, occlusion state,
truncated state, and a 7-dimensional cuboid modeled as
x, y, z, width, length, height, and yaw angle. 10 cate-
gories include different vehicles, pedestrian, different cy-
clists. Moreover, experts also meticulously annotate objects
in camera images with a rectangle bounding box modeled
as x, y, width, and length.

To be mentioned, we also conduct semi-automatic label-
ing for the cooperative annotations with vehicle and infras-
tructure frame pairs. We first select vehicle and infrastruc-
ture frame pairs from DAIR-V2X-C. The timestamp differ-
ences between the two frames of the selected pairs are less
than 10ms (We call it the Synchronous Case which is de-
fined in Section 4.1. To obtain more cooperative annota-
tions, we extend the threshold from 10ms to 30ms). Next,
we convert infrastructure 3D boxes into vehicle LiDAR co-
ordinate system and fuse the vehicle annotations and infras-
tructure annotations. For each 3D box in the infrastructure
annotation, if we can not find any 3D box in the vehicle an-
notation that has the same location and category, we add the
infrastructure 3D box into the vehicle annotations; in this
way, we get the vehicle-infrastructure cooperative annota-
tions. We manually supervise and adjust the cooperative
annotations to generate more accurate annotations. Here we
take 9331 infrastructure frames and vehicle frames as well
as the cooperative annotations to form the VIC-Sync dataset
for our VIC3D object detection benchmark.
Protection. The whole dataset is desensitized before public
release. Complied with local laws and regulations, we erase
all localization information, including road name, map data,
and positioning information, to make sure our dataset meets
requirements. In addition, we utilize professional labeling
tools to blur all the information suspected of privacy viola-
tion, including road signs, license plates and faces, to pro-
tect privacy and avoid violating personal rights.

4. Task & Metrics

Autonomous driving faces great safety challenges for a
lack of global perspective and the limitation of long-range
perception capabilities. Since 3D object detection is one
of the key perception tasks in autonomous driving, in this
paper, we focus on the vehicle-infrastructure cooperative
(VIC) 3D object detection task, the vehicle receives and
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integrates information from infrastructure to localize and
recognize objects surrounding itself. Compared with tradi-
tional multi-sensor 3D object detection tasks, VIC3D object
detection has the following alternative characteristics:

• Transmission Cost. Limited by physical communica-
tion conditions, fewer data should be transmitted from
infrastructure to reduce bandwidth consumption, alle-
viate time delay, and satisfy real-time requirements.
Thus, the solution to VIC3D object detection needs to
balance the trade-off between the performance and the
transmission cost.

• Temporal Asynchrony. Timestamps of data from the
vehicle sensors and the infrastructure sensors are dif-
ferent due to the asynchronous triggering and time
delay caused by transmission cost, to generate the
temporal-spatial error. Therefore, temporal synchro-
nization should be considered in solving VIC3D.

To better formulate the VIC3D object detection task, we
will give a detailed definition to the VIC3D object detection
and then provide two metrics to measure detection perfor-
mance and transmission cost in this section.

4.1. VIC3D Object Detection

VIC3D object detection can be formulated as the opti-
mization problem of effectively integrating infrastructure
and vehicle information to localize and recognize 3D
objects considering transmission cost. Here we discuss
what the input and output of VIC3D should be.

Input. The input of VIC3D is composed of data from the
vehicle and the infrastructure.

• Vehicle Frame Iv(tv): captured at time tv as well as its
relative pose Mv(tv), where Iv(·) denotes the captur-
ing function of vehicle sensors.

• Infrastructure Frame Ii(ti): captured at time ti as well
as its relative pose Mv(ti), where Ii(·) denotes the
capturing function of infrastructure sensors.

Note that ti should be earlier than tv because there is a time
delay caused by data transmission from the infrastructure
to the vehicle. Considering that the objects would move
so slightly in the tiny time interval that the spatial offset
can be ignored, we take the case that |tv − ti| ≤ 10ms
as Synchronous Case (i.e. tv ≈ ti). Similarly, we take
the case that |tv − ti| > 10ms as Asynchronous Case.
In addition, we allow using more infrastructure frames
previous to Ii(ti) in solving VIC3D to make full use of the
infrastructure computing resources.

Ground Truth. The outputs of VIC3D object detection
contain 3D information like the location, category, and ori-
entation of objects surrounding the vehicle. The corre-
sponding ground truth of VIC3D is the fusion result of in-
frastructure and vehicle ground truth, which could be for-

mulated as:
GT = GTv ∪GTi, (1)

where GTv is the ground truth for vehicle sensor percep-
tion and GTi is the ground truth for infrastructure sensor
perception.

VIC3D is mainly used to improve the perception perfor-
mance of the self-driving vehicle. We are more concerned
about a certain range of egocentric surroundings and the 3D
information of objects at time tv than at ti. Therefore, GTv

and GTi should both be based on time tv . However, the
timestamp of the input frames captured from the infrastruc-
ture and captured from the vehicle could be different that
tv ̸= ti. This not only brings challenges to fusing the in-
frastructure information in model prediction but also creates
huge problems to generate the ground truth. That’s because
objects annotated with infrastructure frame at time ti may
move to different locations at time tv , and we cannot di-
rectly get the infrastructure frame at time tv to annotate.

In response to these difficulties, we discuss how we gen-
erate the ground truth for VIC3D based on DAIR-V2X.

• Synchronous Case (i.e. tv ≈ ti). Under this condition,
an object that appears in vehicle frame Iv(tv) should
have the same spatial location as it appears in infras-
tructure frame Ii(ti). Therefore, we can directly take
the vehicle-infrastructure cooperative 3D annotations
obtained by semi-automatic labeling illustrated in Sec-
tion 3.2 as ground truth.

• Asynchronous Case (i.e. tv ̸= ti). If we can find such
infrastructure frame Ii(t′i) satisfying |tv−t

′

i| ≤ 10ms,
we can generate ground truth with Ii(t

′

i). If not, we
have to estimate the 3D states of objects at tv to gener-
ate ground truth. This work can be carried out based on
the tracking ID and kinematic equation after we pro-
vide the tracking ID in future work.

4.2. Evaluation Metrics.
VIC3D object detection has two major goals: better

detection performance and less transmission cost. We
describe the metrics for such two goals below.

Average Precision. AP (Average precision) is a popular
metric for measuring the object detectors performance [8].
We also use AP to evaluate the 3d detection performance
with cooperative annotations as ground truth. Since we are
more concerned about egocentric surroundings, we remove
objects outside the designed area. Here we set the designed
area as a rectangular area as [0, -39.12, 100, 39.12].
Transmission Cost. We use AB (Average Byte) to measure
the transmission cost. Here Byte is a unit of digital informa-
tion that consists of eight bits. To simplify the problem, we
ignore the time consumption of data encoders and decoders
during transmission. That means the less transmission cost,
the less time delay. Data to be transmitted from the infras-
tructure can be one or a combination of the following forms.
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Table 3. VIC3D object detection Benchmark on DAIR-V2X-C.

Modality Fusion Model Dataset
AP3D(IoU=0.5) APBEV (IoU=0.5) AB

Overall 0-30m 30-50m 50-100m Overall 0-30m 30-50m 50-100m (Byte)

Image
Veh.-Only ImvoxelNet [7] VIC-Sync 12.03 16.25 7.25 2.28 13.62 17.66 8.58 2.82 0
Inf.-Only ImvoxelNet [7] VIC-Sync 19.93 27.34 17.61 14.43 25.31 32.02 23.28 20.38 102.32

Late Fusion ImvoxelNet [7] VIC-Sync 26.56 34.20 17.20 9.81 31.40 37.75 21.21 12.99 102.32

Pointcloud

Veh.-Only PointPillars [15] VIC-Sync 31.33 27.48 25.58 12.63 35.06 30.55 28.65 14.16 0
Inf.-Only PointPillars [15] VIC-Sync 17.62 16.54 10.98 9.17 24.40 21.47 16.00 13.07 336.16

Late Fusion PointPillars [15] VIC-Sync 41.90 37.65 32.72 18.84 47.96 42.40 37.65 22.08 336.16
Early Fusion PointPillars [15] VIC-Sync 50.03 53.07 60.38 33.05 53.73 55.80 64.08 36.17 1382275.75

Pointcloud
Late Fusion PointPillars [15] VIC-Async-1 40.21 34.17 29.40 15.50 46.41 38.05 34.10 19.20 341.08
Late Fusion PointPillars [15] VIC-Async-2 35.29 32.16 28.07 13.44 40.65 35.62 32.35 15.88 306.79
Early Fusion PointPillars [15] VIC-Async-1 47.47 48.88 58.86 30.89 51.67 52.70 63.09 34.72 1362216.0

Pointcloud
TCLF PointPillars [15] VIC-Async-1 40.79 34.67 29.69 15.76 46.80 38.24 34.27 19.40 539.60
TCLF PointPillars [15] VIC-Async-2 36.72 33.91 29.41 14.52 41.67 36.78 33.36 17.18 506.70

• Raw data such as images or point clouds contains com-
plete information but requires much transmission cost.

• Intermediate representation requires less transmission
cost while retaining valuable information, which may
achieve a better performance-transmission trade-off.
Surely, this requires a more sophisticated design to ex-
tract suitable intermediate representation.

• Object-level outputs directly provide 3D object infor-
mation. Although it is transmission-efficient, it may
lose valuable information.

• Other auxiliary information like scene flows help to al-
leviate temporal asynchrony problems.

5. Benchmark

In this section, we provide a VIC3D object detection
benchmark and a Single-View (SV) 3D object detection
benchmark on our DAIR-V2X dataset, analyze their char-
acteristics and suggest avenues for future research.

5.1. Benchmark for VIC3D object detection

We provide a benchmark for VIC3D object detection on
the VIC-Sync dataset extracted from DAIR-V2X-C, which
is illustrated in Section 3.2. The dataset is composed of
9311 pairs of infrastructure and vehicle frames as well as
their cooperative annotations as ground truth. Besides, we
take the temporal asynchrony between the infrastructure
frame and the vehicle frame into consideration in the bench-
mark, which is mainly caused by the difference in the sam-
pling rate and transmission delay. To simulate the tempo-
ral asynchrony phenomenon, we replace each infrastructure
frame in the VIC-Sync dataset with the infrastructure frame
which is k-th frame previous to the original infrastructure
frame to construct the VIC-Async-k dataset for the bench-
mark. In our experiments, we set k = 1, 2. We split VIC-
Sync and VIC-Async-k datasets to train/valid/test part as
5:2:3 respectively. We use cooperative annotations to eval-
uate the detection results under the vehicle-egocentric view.
The experiment results are presented in Table 3.

5.1.1 Baselines

Here we present several baselines with different modalities
and fusion methods for VIC3D object detection.

LiDAR detection baseline with Late Fusion. To demon-
strate the performance improvement by utilizing both in-
frastructure and vehicle data, we implement a late fusion
framework with an infrastructure detector and a vehicle de-
tector. Firstly, we choose PointPillars [15] as the 3D detec-
tor and train the two detectors with infrastructure-view and
vehicle-view data in VIC-Sync separately. Then, we con-
vert the infrastructure predictions into the vehicle LiDAR
coordinate system and merge the prediction results with a
matcher based on the Euclidian distance measurement and
the Hungarian method [14] to generate fusion results.

To illustrate the temporal asynchrony problem, we also
implement the LiDAR detection late fusion baseline on the
VIC-Async-k dataset. In addition, based on tracking and
state estimation we propose the Time Compensation Late
Fusion (TCLF) framework. The TCLF is mainly composed
of the following three parts: 1) Estimating the velocity of
the objects with two adjacent infrastructure frames. 2) Esti-
mating the state of the infrastructure objects at tv . 3) Fusing
the estimated infrastructure predictions and vehicle predic-
tions following the way of LiDAR late fusion baseline. The
details of the TCLF framework could be seen in Fig. 3.

Note that we also report the evaluation results only with
the infrastructure data and only with the vehicle data, which
are named as Veh.-Only and Inf.-Only respectively. The
evaluation results are presented in Tab. 3.

Image detection baseline with Late Fusion. To exam-
ine image-only VIC3D object detection, we also implement
the late fusion framework only with infrastructure images
and vehicle images. We choose ImvoxelNet [7] as the 3D
detector and train infrastructure detector and vehicle detec-
tor with the corresponding part of VIC-Sync training data
separately. We implement the image detection late fusion
following the LiDAR detection late fusion.
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Figure 3. Time Compensation Late Fusion (TCLF) Framework. ∆t denotes the sampling interval of infrastructure sensors. We predict and
match the boxes between two infrastructure frames. For matched vehicles, we compute their velocities directly. For unmatched vehicles,
we feed the position and motion information of the current scene into an MLP to predict their velocities. Finally, we can approximate the
positions of vehicles at tv by linear interpolation, and fuse the results of the vehicle frame.

LiDAR detection baseline with Early Fusion. To ex-
plore the fusion effect at the raw data level, we implement
the early fusion with PointPillars [15] as the 3D detector
on the VIC-Sync dataset. We first convert the infrastructure
point cloud in the VIC-Sync dataset into the vehicle LiDAR
coordinate system, then fuse the infrastructure point cloud
and vehicle point cloud. We directly train and evaluate the
detector with the fused point cloud. Further to illustrate the
temporal asynchrony problem, we also implement the early
fusion with PointPillars [15] on the VIC-Async-k dataset.

Figure 4. Prediction results of the vehicle frame (orange) and
infrastructure frame (blue). We observe that infrastructure data
(thick blue boxes) supplements the blind spot and extends the per-
ception field for the vehicle.

Figure 5. Prediction results with and without time compensation.
The results of TCLF (blue) have a larger overlap with ground truth
(black) than the results without time compensation (orange).

5.1.2 Analysis

Here we analyze the properties of the methods for the
VIC3D object detection benchmark in Section 5.1.1.

Cooperative-view vs. Single-view. We compare the per-
formance of the methods whether using both infrastructure
data and vehicle data. In Tab. 3, the detection performance
of late fusion is much better than the performance of Veh.-
Only or Inf.-Only, whether it is Image-based or LiDAR-
based or it is based on VIC-Sync dataset or VIC-Async-
k dataset. For example, the LiDAR detection with Late
Fusion achieves overall 41.90 AP points for 3D detection
and overall 47.96 AP points for BEV detection on the VIC-
Sync dataset. However, the LiDAR detection only with ve-
hicle data just achieves overall 31.33% AP for 3D detec-
tion and overall 35.06% AP for BEV detection, and the Li-
DAR detection only with infrastructure data just achieves
overall 17.62% AP for 3D detection and overall 24.40%
AP for BEV detection. The experiment results demonstrate
that fusing the infrastructure information can effectively im-
prove the perception performance of the vehicle. This is
mainly because infrastructure data provides supplementary
information that makes up for the vehicle’s perception field.
A visualization example is shown in Fig. 4.

Temporal Asynchrony vs Time Compensation. Tempo-
ral asynchrony brings challenges to fusing the infrastructure
data. Compared with the results on the VIC-Sync dataset,
the performance of LiDAR detection with fusion drops sig-
nificantly on VIC-Async-k (2 points on VIC-Async-1 and
6 points on VIC-Async-2). The decline is mainly due to
the state changes of moving objects, resulting in matching
difficulties and fusion errors. However, our TCLF can ef-
fectively improve the performance of late fusion up to 0.5%
AP and 1.5% AP on VIC-Async-1 and VIC-Async-2 re-
spectively, which demonstrates that time compensation can
effectively alleviate the temporal asynchrony problems es-
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Table 4. SV3D Detection Benchmark on DAIR-V2X-V

Modality Model
Vehicle3D(IoU=0.5) Pedestrian3D(IoU=0.25) Cyclist3D(IoU=0.25)

Easy Middle Hard Easy Middle Hard Easy Middle Hard

Image ImvoxelNet [7] 38.37 24.28 21.54 4.54 4.54 4.54 10.38 9.09 9.09
PointCloud PointPillars [15] 61.76 49.02 43.45 33.40 24.68 22.39 38.24 33.80 32.35
PointCloud SECOND [27] 69.44 59.63 57.63 43.45 39.06 38.78 44.21 39.49 37.74

Image+PointCloud MVXNet [21] 69.86 60.74 59.31 47.73 43.37 42.49 45.68 41.84 40.55

Table 5. SV3D Detection Benchmark on DAIR-V2X-I

Modality Model
Vehicle3D(IoU=0.5) Pedestrian3D(IoU=0.25) Cyclist3D(IoU=0.25)

Easy Middle Hard Easy Middle Hard Easy Middle Hard

Image ImvoxelNet [7] 44.78 37.58 37.55 6.81 6.746 6.73 21.06 13.57 13.17
PointCloud PointPillars [15] 63.07 54.00 54.01 38.53 37.20 37.28 38.46 22.60 22.49
PointCloud SECOND [27] 71.47 53.99 54.00 55.16 52.49 52.52 54.68 31.05 31.19

Image+PointCloud MVXNet [21] 71.04 53.71 53.76 55.83 54.45 54.40 54.05 30.79 31.06

pecially when the time delay is larger. A visualization ex-
ample is provided in Fig. 5.

Early Fusion vs. Late Fusion. Compared with late fu-
sion, early fusion achieves up to 8% AP higher under both
BEV and 3D benchmarks, whether it is based on the VIC-
Sync dataset or the VIC-Async-1 dataset. However, early
fusion should transmit the whole point cloud and suffers an
extremely high transmission cost, which is about 4000 times
more than late fusion. For more practical applications, we
encourage future research on achieving better performance
while consuming less transmission bandwidth. We will also
release the feature fusion for the benchmark in the future.

5.2. Benchmark for SV3D Detection

We present an extensive 3D detection benchmark for
those who are interested in Single-View (SV) 3D detection
tasks based on DAIR-V2X-V and DAIR-V2X-I datasets.
Compared with the single-side data in DAIR-V2X-C, the
two datasets are more diverse and could be more challeng-
ing to implement 3D object detection. Hence, we encourage
researchers who just aim at improving the performance of
vehicle 3D object detection or infrastructure 3D object on
DAIR-V2X-V and DAIR-V2X-I.

We split DAIR-V2X-V and DAIR-V2X-I datasets to
train/valid/test part as 5:2:3 respectively. We present a num-
ber of baselines with methods based on different modalities
on the two datasets respectively: ImvoxelNet [7], PointPil-
lars [15], SECOND [27] and MVXNet [21]. We evaluate
3D object detection performance using the PASCAL criteria
as KITTI [10], that distant objects are filtered out based on
their bounding box height in the image plane. Three types
of modes are used for evaluation, including Easy, Moder-
ate, and Hard modes. We implement these baselines with
MMDetection3D Framework [1]. Evaluation results are

shown in Tab. 4 and Tab. 5.

6. Conclusion

In this paper, we introduce DAIR-V2X, the first large-
scale, multi-modality, multi-view dataset for vehicle-
infrastructure cooperative autonomous driving, and all
frames are captured from real scenes with 3D annotations.
We also define VIC3D object detection to formulate the
problem of collaboratively locating and identifying 3D ob-
jects using sensory input from both vehicle and infras-
tructure. In addition to solving traditional 3D object de-
tection problems, the solution of VIC3D needs to con-
sider the temporal asynchrony problem between vehicle and
infrastructure sensors and the data transmission cost be-
tween them. To facilitate future research, we provide a
VIC3D benchmark for detection models with our proposed
Time Compensation Late Fusion framework, as well as ex-
tensive benchmarks for 3D detection on vehicle-view and
infrastructure-view datasets. Results show that integrating
data from infrastructure sensors achieves an average of 15%
AP higher than single-vehicle 3D detection, and TCLF can
alleviate temporal asynchrony problems.
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