
HP-Capsule: Unsupervised Face Part Discovery by Hierarchical Parsing
Capsule Network

Chang Yu1,2, Xiangyu Zhu1,2, Xiaomei Zhang1,2, Zidu Wang1,2, Zhaoxiang Zhang1,2,3, Zhen Lei1,2,3*

1NLPR, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

3 Centre for Artificial Intelligence and Robotics, Hong Kong Institute of Science & Innovation,
Chinese Academy of Sciences

{chang.yu, xiangyu.zhu, zlei}@nlpr.ia.ac.cn
{zhangxiaomei2016, wangzidu2022, zhaoxiang.zhang}@ia.ac.cn

Figure 1. A brief review of the Hierarchical Parsing Capsule Network (HP-Capsule). Given a large scale of unlabeled images (left),
HP-Capsule can automatically discover the hierarchical face parts (middle) and give unsupervised face segmentation results as by-products
(right).

Abstract

Capsule networks are designed to present the objects
by a set of parts and their relationships, which provide an
insight into the procedure of visual perception. Although
recent works have shown the success of capsule networks on
simple objects like digits, the human faces with homologous
structures, which are suitable for capsules to describe,
have not been explored. In this paper, we propose a
Hierarchical Parsing Capsule Network (HP-Capsule) for
unsupervised face subpart-part discovery. When browsing
large-scale face images without labels, the network first
encodes the frequently observed patterns with a set of
explainable subpart capsules. Then, the subpart cap-
sules are assembled into part-level capsules through a
Transformer-based Parsing Module (TPM) to learn the
compositional relations between them. During training,
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as the face hierarchy is progressively built and refined,
the part capsules adaptively encode the face parts with
semantic consistency. HP-Capsule extends the application
of capsule networks from digits to human faces and takes a
step forward to show how the neural networks understand
homologous objects without human intervention. Besides,
HP-Capsule gives unsupervised face segmentation results
by the covered regions of part capsules, enabling qualitative
and quantitative evaluation. Experiments on BP4D and
Multi-PIE datasets show the effectiveness of our method.

1. Introduction

Psychological studies [12,22,27] reveal that: The recog-
nition procedure is often assigned with hierarchical struc-
tural descriptions by parsing the shapes into components
and organizing them with their spatial relationships. This
statement is consistent with the improvements of various
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Figure 2. The parts discovered by SCAE [17] on digits and faces.
Even though SCAE can capture parts on simple digits, it tends
to fail on more complicated objects like human faces, learning
holistic templates as parts.

perceptual tasks which incorporate part-level information
for better embeddings [3, 24, 37]. However, most of the
existing methods implement the parsing in a predefined
way [18,20,40,43], where the definitions of parts are given
by humans. Such handcrafted parsing can not reflect how
neural networks understand objects.

To explore the visual perception mechanism of neural
networks, an intriguing way is to learn the parsing directly
from the data. The network should discover the visual part
concepts with as little human intervention as possible and
keep the semantic consistency across different samples, as
shown in Figure 1. This unsupervised learning task is still
a challenging problem, as the semantic parts are difficult to
be described mathematically.

Capsule networks, which are designed to present objects
by a set of parts and their relationships, are a feasible
solution for this unsupervised parsing task. Among the cap-
sule structures proposed in recent years [13, 14, 17, 25, 26],
SCAE [17] is most suitable for this unsupervised face part
discovery task since it presents objects with a part-whole
hierarchy and defines the capsule as a set of explainable
parameters including presences, poses, and visualizable
templates. However, SCAE can only parse simple objects
like handwritten digits. When extended to face images,
SCAE fails to capture face parts and decomposes faces
as a whole, generating holistic representations in the part
capsules, as shown in Figure 2.

In this paper, we will improve the capsule network to
handle human faces, which have homologous structures
but diverse appearances. A Hierarchical Parsing Capsule
Network (HP-Capsule) is proposed to discover hierarchical
face parts and their relationships directly from the unlabeled
image sets. Specifically, HP-Capsule understands faces
with two sub-modules: a capsule-based autoencoder for
subpart discovery and a Transformer-based Parsing Module
(TPM) for hierarchy construction. During training, the
frequently observed patterns are first captured and encoded
by the capsule encoder with a set of explainable capsule
parameters. A Visibility Activation Function (VAF) is

proposed to constrain the process of reconstructing the
input image with capsule templates, so that the object
is spatially decomposed into subparts rather than holistic
representations. Then, the discovered subparts are regarded
as visual words and sent to TPM to be aggregated to higher-
level part capsules, where the subpart-to-part hierarchy is
naturally built. Several constraints are incorporated to
preserve the shape and appearance consistency so that the
generated parts have more prominent semantics.

As a by-product, the covered regions of part capsules
can be regarded as the segmentation maps, which can
be used for the unsupervised face segmentation task, en-
abling the evaluation of our method. Compared with other
unsupervised segmentation methods, HP-Capsule shows
better semantic consistency and provides more interpretable
descriptions about the discovered parts, including the visu-
alizable templates and the statistics on presence and pose.

To summarize, the main contributions of this work are:

• This paper proposes a Hierarchical Parsing Capsule
Network (HP-Capsule) for unsupervised face hier-
archy discovery. HP-Capsule provides an insight
into how the neural network understands homologous
structures without human intervention.

• In the subpart discovery process, we propose a Vis-
ibility Activation Function (VAF), which enforces the
network to concentrate on template regions with higher
visibility, to ensure the objects are decomposed into
localized subparts rather than holistic representations.

• A Transformer-based Parsing Module (TPM) is pro-
posed to aggregate subparts into parts, constructing the
subpart-part face hierarchy. The covered regions of
part capsules can also be used for unsupervised face
segmentation. Experiments on BP4D and Multi-PIE
show the effectiveness of our method.

2. Related Work
Capsule Networks. Inspired by the sparse connection

of human brains, capsule networks are designed to present
the objects with a dynamic parse tree. Given an input
image, the capsule network would automatically activate
some of the capsules and then pass them to the next layers.
When assigning the capsules with explicit meanings, the
interpretability of the network would be improved. Recent
works have shown the success of capsules on various
tasks [28, 36, 38, 44] but most of them use capsules as
the enhanced MLPs, while the interpretability, as well as
the parsing characteristics of capsules, have not been well
explored. For years, capsule networks have evolved many
versions [13, 14, 17, 25, 26]. Among them, SCAE [17]
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Figure 3. Overview of the Hierarchical Parsing Capsule Network (HP-Capsule). HP-Capsule understands faces with two sub-modules: the
capsule autoencoder with Visibility Activation Function (VAF) for subpart discovery and the Transformer-based Parsing Module (TPM)
for hierarchy construction. During training, the frequently observed patterns are firstly captured and encoded with a set of explainable
capsule parameters, which are then passed through the VAF for subpart discovery. After that, the explored subpart capsules are sent into
the TPM for higher-level part capsules. TPM is trained with the shape consistency loss and the pseudo subpart-part relationships generated
by clustering. By automatically aggregating subparts into parts, the face hierarchy is naturally built.

is an intriguing structure that describes the objects with a
set of visualizable templates through unsupervised learning.
However, SCAE can only tackle simple objects like hand-
written digits where the learned templates are stroke-like.
Recently, Sabour et al. [26] extend the capsule network for
complicated images like human bodies, but it needs optical
flow as clues and can only show the mask of each part. In
this paper, we extend SCAE to more complicated objects
like human faces, discovering the face hierarchy directly
from the unlabeled image sets.

Unsupervised Part Discovery. Unsupervised learning
has witnessed impressive progress in recent years [2, 4,
10, 29, 31, 33–35]. Our work is related to the task of
unsupervised part discovery, which aims to discover visual
concepts from unlabeled images or videos. In the early
years, Feng et al. [6] propose the local non-negative matrix
factorization (LNMF) to learn part-based representations
for human faces. By adding localized sparsity factorization,
LNMF can learn part-based basis, but the performance
is still constrained as the faces are presented in the lin-
ear space. Recent works [1, 8] show that the semantic
parts have already been included in the CNN features.
Inspired by this, Collins et al. [5] propose to use non-
negative matrix factorization (NMF) on CNN activations
to locate the semantic concepts on image sets. However,
this approach needs to solve optimization during inference
and lacks interpretability. Besides using activation maps,
other methods [7, 26, 39] try to use motion clues in videos
to discover parts as the regions with the same semantics
always move together. Differently, our method does not
need motion clues and the learned parts can be visualized
directly to gain better explainability.

Unsupervised Face Segmentation. Recently, several

works have made positive progress on the unsupervised
face segmentation task. Hung et al. [15] propose several
loss functions to learn the face parts that are geometrically
concentrated and robust to spatial transformations. Their
method needs saliency maps to suppress the background
features and Liu et al. [19] argue that this might make
the method less reliable. As a result, they propose a con-
centration loss to separate the background and a squeeze-
and-expand block for better shape representations. Gao
et al. [7] propose a dual procedure by leveraging the
motion clues embedded in videos to further improve the
performance. Compared with these methods, our networks
are more explainable and can obtain parts with better
semantic consistency.

3. Methodology

Given a collection of images from the same category, our
work aims to learn a model that can discover hierarchical
parts and their relationships from a single image. In the
following parts, we will introduce the overall framework
in Section 3.1, the capsule autoencoder with Visibility
Activation Function for subpart discovery in Section 3.2,
and the Transformer-based Parsing Module for hierarchy
construction in Section 3.3.

3.1. Overall Framework

In this paper, we propose a Hierarchical Parsing Capsule
Network for unsupervised face hierarchy discovery, which
includes a capsule autoencoder for subpart discovery and
a parsing module for hierarchy construction. The overall
framework is shown in Figure 3.

Given an input image I, the network first uses a capsule
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(a) The subpart templates discovered w/o VAF.

(b) The subpart templates discovered with VAF.

Figure 4. The impact of the Visibility Activation Function (VAF).
Compared with the holistic templates in (a), the subpart templates
discovered in (b) are sparse and local-connected.

encoder to estimate K subpart capsules:

Θs
1,Θ

s
2, ...,Θ

s
K = Eenc(I), (1)

where each subpart capsule Θs
k is a set of

parameters with explainable physical meanings:
Θs

k : {psk, θsk, T s
k , V

s
k , f

s
k}, k ∈ [1,K], including presence

probability psk ∈ R1×1, pose θsk ∈ R1×6, template
T s
k ∈ RHs×W s

, visibility map V s
k ∈ RHs×W s

and
input-specific feature fs

k ∈ R1×D. Particularly, T s
k and V s

k

describe the shape and the visible region of the discovered
subparts, which are shared among samples.

The discovered subpart capsules are regarded as visual
words and are sent into a transformer-based parsing module
to estimate higher-level part capsules, where the subpart-to-
part hierarchy is naturally built:

Θp
1,Θ

p
2, ...,Θ

p
M = ETPM (Θs

1,Θ
s
2, ...,Θ

s
K), (2)

where the m-th part capsule Θp
m : {T p

m, V p
m, rpm} includes

template T p
m ∈ RHp×Wp

, visibility map V p
m ∈ RHp×Wp

and relationship rpm ∈ R1×K that describes the compo-
sitional relations between all subpart capsules. The T p

m

and V p
m are aggregated from subparts according to the

relationship rpm. When the face hierarchy is constructed,
the part capsules naturally encode the discovered face parts
with semantics, whose covered regions can also be used for
unsupervised face segmentation.

3.2. Subpart Discovery by Visibility Activation
Function

Parts can be roughly defined as sparse and local-
connected regions that are semantically consistent across
objects [8, 15]. The recent capsule network SCAE [17]
has shown promising results on simple objects like digits,
but tends to fail on more complicated objects like human
faces. As shown in Figure 4a, SCAE captures holistic face
representations as the templates in subpart capsules. To
enable the learning of part-level templates, we propose

a Visibility Activation Function (VAF) for the capsule
autoencoder.

During training, the network firstly uses a self-attention
based capsule encoder [17] to estimate the parameters of
subpart capsules Θs

k : {psk, θsk, T s
k , V

s
k , f

s
k}. Secondly,

the color component Cs
k is decoded from feature fs

k for
template refinement. Thirdly, template T s

k and visibility
map V s

k are transformed by the pose parameter θsk. Finally,
the transformed T̂ s

k and V̂ s
k are passed through VAF to get

the activated template T̃ s
k . This capsule encoding process

can be formulated as:

psk, θ
s
k, T

s
k , V

s
k , f

s
k = Eenc(I),

Ck
s = MLP (fs

k) ,

T̂ s
k , V̂

s
k = AffineTrans(T s

k , V
s
k , θ

s
k),

T̃ s
k = VAF

(
T̂ s
k , V̂

s
k

)
.

(3)

Considering the visibility map V̂ s controls the silhouette
of subparts, we employ VAF to suppress the learning of
invisible regions, which is formulated as:

T̃ s
ki,j

=

{
T̂ s
ki,j

, if V̂ s
ki,j

≥ γ

− 1, otherwise,
(4)

where i, j stands for the position of the pixel and γ is the
hyper-parameter threshold for activation.

VAF encourages the network to reconstruct the input
image only with the high-visibility template regions, so
that the non-activated regions with low visibility, which
are always represented as the blurred mean face, are sup-
pressed without receiving back-propagated signals during
training. By Eqn. 3, the templates of subpart capsules can
be transformed into the image space. If the input image I
is modeled as a Gaussian Mixture of subpart capsules, the
reconstruction loss is given by:

Lrec = −
∏
i,j

K∑
k=1

pskV̂
s
ki,j

N (Ii,j | Cs
ki,j

· T̃ s
ki,j

;σ2
k), (5)

where σ2
k presents the variance of the Gaussian Mixture.

We also incorporate Lpres to constrain the sparisty of the
activated subpart capsules:

Lpres =
1

B

B∑
b=1

(
K∑

k=1

psk,b − τ

)2

+
1

K

K∑
k=1

(
B∑

b=1

psk,b −
τB

K

)2

,

(6)
where B stands for the batch size and τ is the hyper-
parameter for the average number of activated subpart
capsules. The network optimized by Eqn. 6 will try to
activate the same number but different subpart capsules
during the mini-batch.

Besides, we employ two losses to constrain the connec-
tivity of the discovered subparts, including the Lcen for
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geometrical concentration [15] and Lstd for balancing the
visible regions of different subpart templates:

Lcen =
∑
k

∑
i,j

∥(i, j)− (W s/2, Hs/2)∥2 · V s
ki,j

,

Lstd = std

(∑
i,j

V s
ki,j

)
,

(7)

where W s and Hs are the width and height of subpart
templates, std stands for the standard deviation.

The loss function for subpart discovery is combined as:

Lsubpart = λrecLrec + λpresLpres + λcenLcen + λstdLstd.
(8)

As shown in Figure 4b, the network with VAF can
effectively discover the localized appearance of faces.

3.3. Hierarchy Construction via Transformer-based
Parsing Module

The affine transformation and compositions of small
subparts make them feasible enough to handle pose and
appearance variations. However, they have ambiguous
semantics due to their limited expressive power. As shown
in Figure 5, the discovered skin template may respond to
both forehead and cheekbone and the eyes-related template
highlights both left and right eyes. Therefore, if the subparts
are assembled with appearance as clues only, there will
be ambiguity in the face hierarchy, leading to flaws of the
aggregated parts.

We propose a Transformer-based Parsing Module (TPM)
to automatically construct the stable subpart-part hierarchy.
If we regard each subpart capsule as a visual word, the
collection of subpart capsules becomes a sentence, which
is very long since we need numbers of subparts (75 in
this paper) to handle the complicated appearance of faces.
Tranformer [30], which is originally proposed to capture the
long-range dependencies across words in natural language
processing, is naturally extendable to our task. In this paper,
we adopt transformer to model the subpart-part relation-
ships, where the subpart capsules Θs

k : {psk, θsk, T s
k , V

s
k , f

s
k}

are sent as input sequences to estimate part capsules Θp
m :

{T p
m, V p

m, rpm}:

rp1 , r
p
2 , ..., r

p
M = Transformer(Θs

1,Θ
s
2, ...,Θ

s
K),

T p
m =

∑
k

rpmk
pskC

s
kT̂

s
k ,

V p
m =

∑
k

rpmk
pskV̂

s
k ,

(9)

where rpm = [rpm1
, ..., rpmK

] describes the probability that
subpart capsules belongs to the m-th part. During train-
ing, we utilize K-means [23] to generate pseudo subpart-
part relationships for the transformer and the Lcls can be

Figure 5. Examples of subparts and their corresponding heatmaps.
Some smaller subparts lack semantics due to their ambiguity at
different positions.

formulated as:

Lcls = − 1

K

∑
k

∑
m

řpmk
log(rpmk

),

řpm = K-means
([

V̂ s
k + tsxk

; V̂ s
k + tsyk

])
,

(10)

where tsxk
, tsyk

are the translation parameters derived from
the pose params θsk. Besides, we also assign a silhouette loss
Lsilh to constrain the shape consistency across samples:

Lsilh =
1

M

∑
m

∥V p
m − V̌ p

m∥2, (11)

where V̌ p
m is the averaged visibility map for the mini-batch.

As for subpart assembling, since each subpart capsule
should only belong to one part capsule, we pernalize the
sparsity of compositional relations with Lrela:

Lrela =
1

K

∑
k

[
−
∑
m

rpmk
log(rpmk

)

]
. (12)

The proposed TPM incorporates both appearance and
geometric clues for subparts assembling so that the gener-
ated parts have more prominent semantics. The overall loss
function for hierachy construction can be be formulated as:

Lpart = λclsLcls + λsilhLsilh + λrelaLrela, (13)

where λcls, λsilh and λrela are the hyper-parameters to
combine different loss functions.

4. Experiments
4.1. Implementation Details

HP-Capsule contains two sub-networks: the subpart
capsule autoencoder with VAF and the Transformer-based
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Parsing Module. We replace the four convolutional layers
in PCAE [17] with two Residual Blocks [11] as the capsule
autoencoder. For the transformer, we adopt the slot atten-
tion [21] with learnable slots as encoder and use MLP as
decoder, where the iteration of slot attention is set to 3. We
extract the foreground mask by SSFNet [41] to concentrate
on the part discovery. For fair comparisons, we do the
same operation for other unsupervised face segmentation
methods that required foreground masks.

During training, the capsule autoencoder is first trained
to converge and then refined together with TPM. For opti-
mization, we use Adam optimizer [16] with 10−4 learning
rate. All experiments are implemented on Pytorch with a
single NVIDIA Tesla M40 GPU.

4.2. Datasets

BP4D. We evaluate our model on the BP4D [42] from
FG3D dataset [45]. After 3D augmentation by [45],
it contains 23,359 images from 41 subjects with various
expressions and poses. We randomly choose 90% for
training and 10% for testing.

Multi-PIE. The Multi-PIE dataset [9] contains 337
subjects with various expressions. The images are captured
under 15 different views spaced in 15◦ intervals. In this
paper, we choose the images from the middle 5 cameras
with flash to avoid extreme poses, which contains 8,974
images. In the experiments, Multi-PIE is used to test
the generalization ability. We split the dataset as 90%
for training and 10% for testing, as the evaluation of
unsupervised face segmentation also needs samples to train
the fitting model.

4.3. Evaluation Metrics

The Normalized Concentrated Distance (NCD) is used
in the ablation study to estimate the concentration of parts,
which is formulated as:

NCD =
1

N

∑
n

∑
i,j

∥(i, j)− (cni , c
n
j )∥2 · Sni,j

/zn,

(cni , c
n
j ) =

∑
i,j

i · Sni,j
/zn,

∑
i,j

j · Sni,j
/zn

 ,

(14)

where Sn is the covered region of n-th part, (cni , c
n
j ) is

the centroid of the n-th part, zn =
∑

i,j Sni,j
is for

normalization.
The Normalized Mean Error (NME) of landmarks is

used as an alternative way to evaluate the parsing quality,
which is formulated as:

NME =
1

N

∑
n

∥vn − v∗n∥2
d

, (15)

where N is the number of landmarks, vn is the land-
mark predicted from the segmentation results, v∗n is the

Figure 6. The qualitative ablation study of HP-Capsule. We could
see that VAF helps discover effective subparts and TPM improves
the semantics of parts.

Table 1. The quantitative ablation study on BP4D. The results
show the importance of VAF and TPM for hierarchical face part
discovery.

VAF TPM NCD NMEDL(%)

30.72 -
✓ 19.27 6.21
✓ ✓ 18.79 6.10

ground truth and d is the inter-ocular distance. Follow-
ing SCOPS [15], NMEL uses the centroids of segmenta-
tion maps as landmarks and converts them to the human-
annotated landmarks by a linear mapping. During the test,
we map the predicted 5 landmarks to 5 and 68 ground-
truth landmarks separately. However, the centroids of the
segmentation maps are too coarse to measure the parsing
manners. In this paper, we propose NMEDL to evaluate the
semantic consistency on a detailed level. NMEDL uses a
very shallow network to predict the landmarks directly from
the segmentation maps, which contains only one Residual
Block and one linear layer.

4.4. Ablation Study

We perform the ablation study to show the importance of
the VAF for subpart discovery and the TPM for hierarchy
construction.

Figure 6 shows the visualization results on face part
discovery and segmentation. The first row shows that the
original capsule network can not handle the faces, where
the discovered parts are holistic and cover almost the whole
face. In the second row, with the VAF, the network can
capture effective local parts, as the regions with lower
visibility are suppressed during training. However, the
subparts have ambiguous semantics due to their limited
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Figure 7. The hierarchical face parts discovered by HP-Capsule. For each input, HP-Capsule automatically selects a set of subparts to
describe current object (marked with red boxes) and aggregates them to get parts with more prominent semantics (marked with blue dot
boxes), constructing a bottom-up hierarchy.

Figure 8. The importance of each region for face recognition. The
color of columns is identical to segmentation maps. The regions
with eyes are more important for recognition.

expressive power, demonstrated in Figure 5. Therefore,
if only using the pseudo subpart-part relationships for
hierarchy construction (Eqn. 10), the aggregated parts will
suffer serious flaws and become ambiguous in semantics,
shown in the second row. After introducing the TPM
for refinement, the semantics of parts is improved. The
importance of VAF and TPM is further validated by the
quantitative evaluation in Table 1.

4.5. Analysis on the Exploited Face Hierarchy

For each input, HP-Capsule automatically activates a
subset of subpart capsules and aggregates them to higher-
level part capsules, constructing a bottom-up hierarchy.
Figure 7 shows the hierarchical face parts discovered by
HP-Capsule. It can be seen that HP-Capsule almost recon-
structs the original images and parses them into five parts:
nose, left side of mouth and cheek, right side of mouth
and cheek, the left upper face containing left eye and left
ear, and the right upper face. The last column shows the
corresponding subparts of each part. Through the templates

defined in capsules, the discovered concepts can be directly
visualized without any decoding operations, which makes
them easier for us to understand.

We also design a toy experiment to show which part
capsule is important for face recognition. We assign each
subpart capsule a trainable non-negative scalar wk as at-
tention weight and send the weighted subpart capsule pa-
rameters wkΘ

s
k to a linear classifier for face recognition:

y = Linear(w1Θ
s
1, ..., wKΘs

K). The classifier is trained
with softmax and L1 penalization for the sparsity of wk.
The averaged weights for each part are shown in Figure 8.
It can be seen that eye regions are most important for
face recognition, which is consistent with the work of
Williford et al. [32] that shows eyes and nose contain more
discriminative features for face recognition.

4.6. Comparison on Unsupervised Face Segmenta-
tion

The covered regions of parts discovered by HP-Capsule
can be used for the unsupervised face segmentation task, en-
abling the comparison with other state-of-the-art methods.

Methods. The unsupervised face segmentation from
unlabeled images is a challenging task that has not been
well explored. DFF [5] proposes to use non-negative matrix
factorization upon the CNN features to discover the seman-
tic concepts, which needs to optimize on the whole datasets
during inference to keep semantic consistency. SCOPS [15]
incorporates the invariance between TPS transformation as
clues and proposes a framework with several loss functions
for unsupervised segmentation. However, their method
mainly relies on the concentration loss, which tends to cut
the images into the same region regardless of the face poses.
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Figure 9. The qualitative comparsion of unsupervised face
segmentation on BP4D. HP-Capsule shows better semantic
consistency across samples.

Figure 10. The qualitative comparison of unsupervised face
segmentation on Multi-PIE. HP-Capsule shows better stability
when generalized to another dataset.

Table 2. The quantitative comparison of unsupervised face
segmentation on BP4D. NMEL(%) and NMEDL(%) evaluate the
semantic consistency of landmarks.

Method NMEL NMEDL

NGT = 5 NGT = 68

DFF [5] 18.85 18.62 12.26
SCOPS [15] 9.10 9.67 6.74
HP-Capsule 8.81 9.11 6.10

Evaluation on BP4D. From Figure 9, it can be
seen that without any spatial transformation as clues,
HP-Capsule still outperforms other methods with better
semantic consistency. As shown in the second row, the
results of SCOPS sometimes take the right eye as the right
green part, sometimes take it as the top pink part or even
split it from the middle. In comparison, HP-Capsule keeps
the same parsing manners under different poses. This is
because the shared templates of HP-Capsule encode the
frequently observed patterns and the intrinsic geometric
clues are captured for better image reconstruction. Results
in Table 2 also validate the effectiveness of our method.

Table 3. The quantitative comparison of unsupervised face
segmentation on Multi-PIE. NMEL(%) and NMEDL(%) evaluate
the semantic consistency of landmarks.

Method NMEL NMEDL

NGT = 5 NGT = 68

DFF [5] 21.88 20.21 17.35
SCOPS [15] 16.15 15.25 13.54
HP-Capsule 12.34 12.30 11.57

Evaluation on Multi-PIE. To further investigate the
generalization of methods, we employ Multi-PIE for cross-
data evaluation. In Figure 10, we can see that the SCOPS
cannot separate the foreground well even it has already been
trained with the ground-truth masks of BP4D. Different
from previous methods, HP-Capsule learns to estimate face
parts with explicit semantics and generalizes well on the
Multi-PIE dataset, which is also validated in Table 3.

5. Discussion and Conclusion
In this paper, we propose the HP-Capsule for unsuper-

vised face part discovery. By incorporating the Visibility
Activation Function and the Transformer-based Parsing
Module, the network successfully discovers face parts and
constructs the face hierarchy from the unlabeled images.
This work extends the application of capsule networks from
digits to human faces and provides an insight into the visual
perception mechanism of networks. Besides, HP-Capsule
gives unsupervised face segmentation results by the covered
regions of part capsules, enabling the comparison with other
state-of-the-art methods. Experiments on BP4D and Multi-
PIE show the superior performance of our method.

Limitation. HP-Capsule presents the face hierarchy
with a set of visualizable templates, whose representation
power is limited by the number of the templates. Improving
the representation ability of templates while maintaining
their interpretability remains a challenging task and de-
serves further studies in future work.

Broader Impacts. The proposed method is a gen-
erative model that discovers face hierarchy based on the
learned statistics of the training dataset, which will reflect
biases in those data, including ones with negative societal
impacts. These issues are worth further consideration if the
capsules are utilized to generate images.
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