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Abstract

Subgraph recognition aims at discovering a compressed
substructure of a graph that is most informative to the graph
property. It can be formulated by optimizing Graph Infor-
mation Bottleneck (GIB) with a mutual information estima-
tor. However, GIB suffers from training instability and de-
generated results due to its intrinsic optimization process.
To tackle these issues, we reformulate the subgraph recog-
nition problem into two steps: graph perturbation and sub-
graph selection, leading to a novel Variational Graph Infor-
mation Bottleneck (VGIB) framework. VGIB first employs
the noise injection to modulate the information flow from
the input graph to the perturbed graph. Then, the perturbed
graph is encouraged to be informative to the graph prop-
erty. VGIB further obtains the desired subgraph by filtering
out the noise in the perturbed graph. With the customized
noise prior for each input, the VGIB objective is endowed
with a tractable variational upper bound, leading to a su-
perior empirical performance as well as theoretical prop-
erties. Extensive experiments on graph interpretation, ex-
plainability of Graph Neural Networks, and graph classifi-
cation show that VGIB finds better subgraphs than existing
methods 1.

1. Introduction

Graph classification, which aims to identify the labels
of graph-structured data, has attracted much attention in
diverse fields such as biochemistry [11, 19, 20, 34], so-
cial network analysis [14, 22, 44], and computer vision
[7, 23, 24, 27]. Recently, there has been a surge of interest

*Corresponding Author
1Code is avaliable on https://github.com/Samyu0304/

VGIB

in its reverse problem. That is, to recognize a compressed
subgraph of the input, which is most predictive to the graph
label [52]. Such a subgraph enjoys superior property for
predictive performance since it drops noisy and redundant
information and only preserves label-relevant information
[46,53]. Meanwhile, the produced subgraph serves as an in-
trinsic explanation to the prediction of the graph model [49].
Hence, recognizing a compressed yet informative subgraph,
namely the subgraph recognition, is the fundamental prob-
lem of many tasks. For example, biochemists are inter-
ested in discovering the substructure of the molecule which
most affects the molecule properties [20, 53]. In the ex-
plainability of Graph Neural Networks (GNNs), it is vital
to generate the explanatory subgraph of the input, which
faithfully interprets the predicted results [28, 49]. In graph
classification, the significant substructures, such as nodes,
edges, and subgraphs, are highlighted to improve the pre-
dictive performances [3, 26, 39]. The subgraph recognition
problem is first studied in a unified view under the Graph
Information Bottleneck (GIB) framework [52]. It employs
the Shannon mutual information to quantify the compressed
and informative nature of the subgraph distribution. Al-
though GIB permits theoretical analysis of the subgraph
recognition problem, its optimization process is inefficient
and unstable due to mutual information estimation, which is
shown in Fig. 1. Meanwhile, the inaccurate estimated value
leads to degenerated performance on subgraph recognition.
These issues motivate us to advance the existing framework
for improved subgraph recognition.

In this work, we address all the above issues with the pro-
posed Variational Graph Information Bottleneck (VGIB).
VGIB reformulates the subgraph recognition problem into
two steps: graph perturbation and subgraph selection. Dur-
ing graph perturbation, VGIB employs a noise injection
method to selectively inject noises into the input graph to
obtain the perturbed graph. The intuition is that the noise
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Figure 1. Training dynamics of VGIB and GIB. Lcls and LMI

refer to the prediction and compression term of two methods. (a).
VGIB converges fast and stable. (b). GIB suffers from an unstable
training process and inaccurate estimation of mutual information
in the red circle (mutual information is non-negative).

injection naturally modulates the information flow from the
input graph to the perturbed graph. Specifically, the more
injected noise leads to more significant information distor-
tion in the perturbed graph, which in analogy to the com-
pressed nature of the subgraph. Hence, VGIB approaches
the compression condition in GIB with the total amount of
injected noise in the perturbed graph, leading to a tractable
variational upper bound. Meanwhile, VGIB encourages the
perturbed graph to be informative of the graph property,
which indicates less injected noise. This trade-off condi-
tion guides the noise injection module to only inject noise
into the insignificant substructure while preserving the pre-
dictive portion of the input. However, the design of noise
injection is non-trivial. First, the action space of noise injec-
tion is discrete, leading to the difficulty of optimization with
gradient methods. Hence, we employ the Gumbel-Softmax
reparametrization for noise injection. Secondly, injecting
random noise will break the semantic information of the in-
put and lead to the difficulty of noise quantification. To this
end, we customize the Gaussian prior for each input graph.
With the above configurations, the VGIB objective enables
a tractable variational upper bound and is efficient to opti-
mize the gradient-based method. After training VGIB with
graph perturbation, only the insignificant substructure of the
graph is perturbed and the informative subgraph is well-
preserved. Thus, in the subgraph selection step, one can
obtain the found subgraph by dropping the injected noise.

We evaluate the proposed VGIB framework on various
tasks, including explainability of GNNs, graph interpre-
tation, and graph classification. The experimental results
show that VGIB enjoys significant efficiency in optimiza-
tion and outperforms the baseline methods with better found
subgraphs.

2. Related Work

Information Bottleneck. The information bottleneck
(IB) principle attempts to juice out a compressed but pre-
dictive code of the input signal [43]. Alemi et al. [2] first
empowers deep learning with a variational information bot-
tleneck (VIB). Currently, the applications of IB and VIB in

deep learning are mainly attributed to representation learn-
ing and feature selection. In the representation learning
scenario, researchers employ a deterministic or stochastic
encoder to learn a compressed yet meaningful represen-
tation of the input data, to facilitate various downstream
tasks, such as computer vision [29,30], reinforcement learn-
ing [13, 16], natural language processing [45], speech and
acoustics [32], and node representation learning [46]. For
the feature selection, IB is used to select a subset of in-
put features such as pixels in images or dimensions in vec-
tors, which are maximally predictive to the label of input
data [1, 21, 38]. [1, 38] inject noises into the intermediate
representations of a pretrained network and select the ar-
eas with maximal information per dimension. [21] learns
the drop rates for each dimension of the vector-structured
features. Unlike the prior work on the regular data, Yu et
al. [52] first recognize a predictive yet compressed subgraph
from the irregular graph input and thus facilitates various
graph-level tasks.

Graph Classification. The goal of graph classification
is to infer the label or property of an input graph. Recently,
there is a surge of interest in applying the Graph Neural Net-
work (GNN) for graph classification [33, 56]. It first aggre-
gates the messages in the neighborhoods for node represen-
tations, which are pooled for the graph representations for
prediction by a readout function. The typical implementa-
tions of readout are mean and sum functions [15,22,44,47].
Besides, it is popular to leverage the hierarchical and more
complex information in the graph, which leads to the graph-
pooling methods [5, 25, 33, 50, 56]. These methods gener-
ally leverage all the information in graphs for prediction,
neglecting the importance of the informative substructure.
Hence, subgraph recognition can enhance graph classifica-
tion with the label-relevant information in the graphs [52].

Subgraph Discovery. Subgraph discovery in the liter-
ature of traditional data mining refers to discovering sub-
graphs with specific topology [9, 12, 48]. It is similar to the
data generation task [40, 51]. Recently, there is a trend to
leverage the importance of subgraphs in graph learning. At
node-level tasks, researchers focus on passing the message
of a neighborhood subgraph to the central node [8, 14, 15].
NeuralSparse [57] chooses the most relevant K neighbor-
hoods of a central node for robust node classification. At the
graph level, it is popular to discover the information in sub-
graphs for learning graph representations. Infograph [39]
maximize the mutual information between representations
of graphs and the corresponding local patches. Another di-
rection closely related to subgraph recognition is to interpret
a pretrained GCN with interpretable subgraphs. GNNEx-
plainer [49] discover the neighborhood subgraph, which
maximally affects the prediction of the central node. Sub-
graphX [55] explains the prediction of GCN with a sub-
graph found by Monte Carlo Tree Search. However, these
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methods only explore the subgraph recognition problem
with specific tasks, and thus lack an unified view of the sub-
graph recognition problem.

3. Notations and Backgrounds
In this section, we introduce our notations and pre-

liminaries. Let G = {A,X} ∈ G be a graph with
n nodes, with A ∈ Rn×n and X ∈ Rn×d being its
adjacent matrix and node feature matrix. We denote
{(G1, Y1), (G2, Y2), · · · , (Gn, Yn)} as the set of n graphs
with its corresponding categorical labels or real-value prop-
erties. We use Gsub to denote the subgraph in G. We de-
note I(X,Y ) as the mutual information between the ran-
dom variables X and Y , which takes the form:

I(X,Y ) =

∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy

3.1. Graph Information Bottleneck

Given the input data X and its label Y , the informa-
tion bottleneck (IB) [43] principle learns the minimal suf-
ficient representation Z by optimizing the IB objective:
minZ −I(Z, Y ) + βI(Z,X). Here β is the Lagrangian pa-
rameter to balance the two terms. Inspired by it, Yu et al.
propose Graph Information Bottleneck (GIB) principle to
recognize an informative yet compressed subgraph from the
original graph [52]. The GIB objective is as follows:

min
Gsub

−I(Gsub, Y ) + βI(Gsub, G). (1)

The first term in Eq. 1 encourages Gsub to be informative
to the graph label Y . And the second term minimizes the
mutual information of G and Gsub so that Gsub only re-
ceives limited information from the input graph G. The
subgraph found by GIB is denoted as the IB-subgraph:
G∗

sub = argminGsub
−I(Gsub, Y ) + βI(Gsub, G). The

GIB objective cannot be directly optimized since the mu-
tual information is intractable to compute. Hence, it first
estimates the mutual information with MINE [4], and use
the estimated value as a proxy in the optimization of GIB.
This bilevel process is inefficient in optimization since it is
time-consuming to estimate the mutual information. Mean-
while, inaccurate estimation also leads to an unstable train-
ing process and degenerated results.

4. Method
4.1. Compression via Noise Injection

Rather than directly evaluate the compression quality of
Gsub with I(G,Gsub), we inject noise into the node repre-
sentations of G for an alternative as shown in Fig. 2.

For an input graph G ∈ G with node feature matrix X ,
adjacent matrix A and degree matrix D, we first generate

the node representations with a l-layer GNN:

H = GNN(A,X;W 1, · · · ,W l)

= σ(D− 1
2AD− 1

2 · · ·σ(D− 1
2AD− 1

2︸ ︷︷ ︸
l−layer

XW 1) · · ·W l)

(2)
where H = [h1, h2, · · · , hn]

T is the node representation
matrix. W 1, · · · ,W l are the parameters at different layers.

Then we damp the information in G by injecting noises
into node representations with a learned probability. Let ϵ
be the noise sampled from a parametric noise distribution.
We assign each node a probability of being replaced by ϵ.
Specifically, for the i-th node, we learn the probability pi
with a Multi-layer Perceptron (MLP). Then, we add a Sig-
moid function on the output of MLP to ensure pi ∈ [0, 1]:

pi = Sigmoid(MLP(hi)). (3)

We then replace the node representation hi by ϵ with prob-
ability pi:

zi = λihi + (1− λi)ϵ, (4)

where λi ∼ Bernoulli(pi). The transmission probability pi
controls the information sent from hi to zi. If pi = 1, then
all the information in hi are transfered to zi without loss.
On the contrary, when pi = 0, then zi contains no informa-
tion from hi but only noise. Compared with dropping nodes
for compression in GIB, this method allows to flexibly ad-
just the amount of information from hi to zi by changing
pi. We denote the GN = {A,Z} as the perturbed graph.
At graph level, the transmissioin probability of each node
determines the information sent from G to GN in a similar
way. Therefore, we can compress the information of G into
GN with a set of pi. We hope pi is learnable so that we can
selectively preserve the information in GN . However, λi is
a discrete random variable and we can not directly calcu-
late the gradient of pi. Therefore, we employ the concrete
relaxation [10, 18] for λi:

λ̂i = Sigmoid(
1

t
log

pi
1− pi

+ log
u

1− u
), (5)

where t is the temperature parameter and u ∼
Uniform(0, 1). Another key component in the noise injec-
tion is the specification of the injected noise. Notice the
arbitrary noise is detrimental to the semantic of the input
graph. This will lead the prediction of the perturbed graph
to be different from the graph property. Moreover, appro-
priately selected noise will endow the whole objective with
a variational upper bound. Please refer to Section 4.3 for
detailed discussions.

4.2. Variational Graph Information Bottleneck

The perturbed graph GN is employed to distill the ac-
tionable information of G for predicting its label Y . Specif-
ically, we compress the information of G via noise injection
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Figure 2. (a) Illustration of the proposed Variational Graph Information Bottleneck (VGIB) framework. VGIB employs the noise injection
method to generate a perturbed graph GN , which is used as a ”bottleneck” to distill the actionable information for predicting the graph
label. The objective of VGIB has a tractable upper bound that is easy to optimize. (b) Intuition of the noise injection method. perturbing a
significant subgraph is more harmful to the graph label than perturbing a label-irrelevant subgraph.
to obtain GN . Meanwhile, we hope that GN is maximally
informative to Y , which leads to a novel Variational Graph
Information Bottleneck (VGIB) framework:

min
GN

−I(GN , Y ) + βI(GN , G). (6)

The first term encourages GN to be sufficient for predict-
ing the graph label Y , and the second term constrains the
information that GN receives from G. These two terms re-
quire us to inject noise into G selectively so that GN re-
ceives actionable information as much as possible. The in-
tuition is that injecting noises into the IB-subgraph of G is
more harmful to the functionality of G than that into the
label-irrelevant substructures. In that sense, the nodes in
the IB-subgraph are less likely to be injected with noise.
Therefore, we can select the IB-subgraph from GN by this
criterion after training VGIB. We introduce the following
lemma before justifying the above formulation.

Lemma 4.1. Let G ∈ G and Y ∈ R be the graph and its
label. Gn ∈ G is the label-irrelevant substructure, which is
independent to Y . Denote Gsub as the arbitrary subgraph.
Suppose Gn influences Gsub only through G, the following
inequality holds:

I(Gsub, Gn) ≤ I(Gsub, G)− I(Gsub, Y ), (7)

Lemma 4.1 indicates when setting β = 1 in Eq. 1, the
GIB objective upper bounds the mutual information of Gsub

and Gn. That is to say, optimizing the GIB objective en-
courages Gsub to be less related to the label-irrelevant sub-
structure Gn. I(Gn, Gsub) is minimal when Gsub is the
IB-subgraph. The proof of Lemma 4.1 is in the Supplemen-
tary Materials. We next give the theorem that minimization
of VGIB objective in Eq. 6 also leads to the irrelevance of
Gsub and Gn.

Theorem 4.1. Let G ∈ G and Y ∈ R be the graph and
its label. Gn ∈ G is the label-irrelevant substructure in G,

which is independent to Y . Denote Gϵ ∈ G as the subgraph
formed by injected noise. Then, if we choose the subgraph
Gsub by dropping Gϵ in GN , the following inequality holds:

I(Gsub, Gn) ≤ I(GN , Gn) ≤ I(GN , G)− I(GN , Y )
(8)

Please refer to the Supplementary Materials for the proof
of Theorem 4.1. VGIB differs from GIB mainly in noise
injection. In the next section, we will show that this process
leads to convenience in optimization.

4.3. Optimization of Variational Graph Informa-
tion Bottleneck

We first examine the first term I(GN , Y ) in Eq. 6, which
encourages GN is informative of graph label Y .

−I(GN , Y ) ≤ EY,GN
− log qθ(Y |GN )

:= Lcls(GN , Y ),
(9)

where qθ(Y |GN ) is the variational approximation to
p(Y |GN ). qθ(Y |GN ) outputs the label distribution of GN

and can be modeled as a classifier. Lcls is the classification
loss. We choose the cross-entropy loss and mean square
loss for categorical Y and continuous Y , respectively.

For the second term I(GN , G) in Eq. 6, we first obtain
the graph representation zN of GN via a readout function.
We employ the sufficient encoder assumption [42] that the
information of zN is lossless in the encoding process, lead-
ing to I(zN , G) ≈ I(GN , G). By choosing the distribution
of noise and the readout function as the Gaussian distribu-
tion, I(GN , G) has a tractable variational upper bound.

Proposition 4.1 (Variational upper bound of I(GN , G)).
Let mG be the number of nodes in G. hj is the j-th node
representation of G. ϵG ∼ N (µh, σ

2
h) is the noise sampled

from the Gaussian distribution. µh, σ
2
h are mean and vari-

ance of hj in G. Suppose the readout function is chosen
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Figure 3. Qualitative results on graph interpretation. VGIB can generate more precise interpretations of the input molecules.

Table 1. Mean and standard deviation of absolute property diver-
gence between the input molecules and the found subgraphs. The
results of the baselines are copied from the existing literature [52].
The lower the better.

Method QED HLM-CLint MLM-CLint RLM-CLint

GCN+Att05 0.48±0.07 0.90±0.89 0.92±0.61 1.17±0.63
GCN+Att07 0.41±0.07 1.18±0.60 1.69±0.88 1.22±0.85
GCN+GIB 0.38±0.12 0.37±0.30 0.72±0.55 1.15±0.68

GCN+VGIB 0.32±0.12 0.34±0.28 0.69±0.58 1.02±0.64

from mean or sum. Then up to a constant, the variational
upper bound of I(GN , G) is:

LMI(ZN , G) ≤ EG(−
1

2
logAG +

1

2mG
AG +

1

2mG
B2

G)

(10)

where AG =
∑mG

j=1(1 − λj)
2 and BG =∑mG

j=1 λj(hj−µh)

σh
. Please refer to the Supplementary Mate-

rials for the proof of Proposition 4.1. One can efficiently
estimate Eq. 9 and Eq. 10 with the batched data in the train-
ing set. The overall loss is:

L = Lcls(GN , Y ) + βLMI(ZN , G) (11)

Table 2. Training time of different methods on QED dataset.

Method GCN+Att05 GCN+Att07 GCN+GIB GCN+VGIB

Time 142.01s 141.18s 1712.93s 146.53s

5. Experiments
We extensively evaluate the proposed method on three

tasks, i.e., graph interpretation, post-hoc explanation of
GNN and graph classification. For the first task, we aim to
verify whether VGIB can recognize the substructures that
interpret the properties of the input molecules [52] or not.
Secondly, we employ VGIB to generate post-hoc explana-
tion of the GNNs. For the third task, we plug VGIB into var-
ious GNN baselines to see whether the found IB-subgraph
can boost the performance of graph classification.

5.1. Graph Interpretation

In this experiment, we extract the substructures which
have the most similar properties to the original molecules.
We consider four properties: QED, HLM-CLint, MLM-
CLint, and RLM-CLint. QED measures the probability of
a molecule being a drug within the range of [0, 1.0]. HLM-
CLint, MLM-CLint, and RLM-CLint are estimated values
of in vitro human, mouse and rat liver microsome metabolic
stability, respectively (base 10 logarithm of mL/min/g)2.

2We evaluate QED values of molecules with the toolkit on https://
www.rdkit.org/. Moreover, we obtain HLM-CLint, MLM-CLint, and
RLM-CLint value of molecules on https://drug.ai.tencent.
com/.
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Table 3. Performance of different methods on explaianing the predictions of GCN in terms of fidelity scores. We set the sparsity score of
the explanatory subgraphs as 0.5 for a fair comparison.

Metric Fidelity+↑ Fidelity-↓
Property RLM-Clint HLM-Clint QED DRD2 RLM-Clint HLM-Clint QED DRD2

GNNExplainer 0.694 0.778 0.602 0.74 0.478 0.616 0.498 0.433
PGExplainer 0.632 0.692 0.598 0.686 0.502 0.62 0.56 0.54
GraphMask 0.632 0.706 0.602 0.673 0.516 0.592 0.574 0.4866
IGExplainer 0.684 0.758 0.592 0.693 0.602 0.686 0.584 0.58

GraphGrad-CAM 0.67 0.782 0.586 0.659 0.56 0.668 0.564 0.566
GIB 0.654 0.781 0.601 0.724 0.483 0.643 0.525 0.428

VGIB 0.765 0.792 0.627 0.756 0.463 0.579 0.487 0.424

We collect molecules with QED≥ 0.85, HLM-CLint≥ 2,
MLM-CLint≥ 2, and RLM-CLint≥ 2 from ZINC250K
[17], and we individually build datasets with the selected
molecules for the four properties. For each property, we use
85%, 5%, and 10% of the molecules for training, validating,
and testing, respectively. Please refer to the Supplementary
Materials for the statistics of datasets.

We compare the proposed VGIB with GIB [52] and the
attention-based method [25]. For VGIB, we first learn the
node representation with a GCN and inject noise into each
node as shown in Eq. 4 and Eq. 3. Then we obtain the
perturbed graph representation by pooling the noisy node
representations with a readout function. We thereafter opti-
mize the loss function in Eq. 11 and collect the nodes with
pi ≥ 0.5 in Eq. 3 to obtain the IB-subgraph. We simul-
taneously supervise the classifier in Eq. 9 with the repre-
sentation of the input graph and its label to enhance the
informativeness of the subgraph. For GIB, we follow the
existing method [52] and optimize the model in a bilevel
optimization scheme. As for the attention-based method,
we attentively pool the node representations with the atten-
tion scores for label prediction. Furthermore, we select the
nodes with top 50% and 70% attention scores to form the
predictive subgraphs. For each method, we adopt a 2-layer
GCN with 16 hidden dimensions for a fair comparison. We
run experiments on one TITAN RTX GPU. If the found sub-
graph is disconnected, we choose its largest connected part
to ensure chemical validity.

We report the mean and standard deviation of absolute
property divergence between the input molecules and the
found subgraphs in Table 1. We quantitatively compare the
performance of different methods on the interpretation of
graph properties. The proposed VGIB method shows fa-
vorable performance against GCN+GIB. For the attention-
based method, the performance is sensitive to the selected
value of the threshold since the results of GCN+Att05 vary
from those of GCN+Att07. Therefore, one needs to fine-
tune the threshold for different tasks. In contrast, our VGIB
is free from a manually selected threshold thanks to the
information-theoretic objective.

We then compare the training time of different methods

on the QED dataset. We train different methods 3 times
and report the average training time in Fig. 2. It is shown
that the attention-based methods achieve the fastest train-
ing due to their simple architectures. Although VGIB is
slower than the attention-based methods, it achieves sig-
nificant performance gain in finding subgraphs with more
similar properties to the input molecules. Compared with
GIB, VGIB trains over ten times faster than GIB with bet-
ter performance. The reason is that estimating the mutual
information in GIB is time-consuming. However, VGIB a
enjoys tractable upper bound of its objective, which is easy
to optimize.

5.2. Explainability of GCN

As GCN model becomes prevalent in various tasks
[14, 54], there is increasing concerns on its explainability
since GCN are treated as black-box [49]. In this section,
we employ the proposed VGIB to explain the prediction of
GCN for molecule classification on ZINC250K dataset. We
consider four properties: QED, HLM-CLint, RLM-CLint
and DRD2 construct the dataset for each property. For
QED, we label the molecules with QED≥0.85 /<0.85 as
1/0. For DRD2, we label the molecules with DRD2≥0.50
/<0.50 as 1/0. For HLM-CLint and RLM-CLint, we label
the molecules with the property value greater than 2.0 as 1
or 0 otherwise. For each property, we train the GCN on the
training set and employ VGIB to generate post-hot explana-
tion on the test set. Please refer to Supplementary Materials
for more details on the dataset splits and the training pro-
cess.

We compare VGIB with various explanation model in-
cluding GNNExplainer [49], PGExplainer [28], Graph-
Mask [37], IGExplainer [41], GraphGrad-CAM [31] and
GIB [52]. These methods interpret the prediction of GCN
with the node importance score ranging in [0, 1], where 1 in-
dicates the node is the most important to the molecule clas-
sification and 0 otherwise. Please refer to Supplementary
Materials for more details on the baseline methods.

We employ the fidelity score to evaluate how the expla-
nation is faithful to the GCN model [55]. Specifically, let
yi and ŷi be the ground-truth and the prediction of the i-th
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Table 4. Classification accuracy of graphs with sum pooling and mean pooling as the readout function. We report the mean and standard
deviation of the testing accuracy in 10-fold cross-validation for each method. The bold results are the overall best performances and the
underlining results are the best performances of certain backbones.

Method MUTAG PROTEINS IMDB-B DD COLLAB REDDIT-B
Su

m
po

ol
in

g

GCN 0.76±0.09 0.72±0.05 0.71±0.04 0.74±0.03 0.78±0.03 0.75±0.05
GIB+GCN 0.77±0.07 0.74±0.04 0.72±0.04 0.75±0.05 0.78±0.02 0.77±0.04

VGIB+GCN 0.79±0.09 0.74±0.04 0.74±0.04 0.77±0.09 0.80±0.02 0.82±0.02

GraphSAGE 0.74±0.08 0.73±0.05 0.71±0.05 0.75±0.03 0.78±0.02 0.78±0.10
GIB+GraphSAGE 0.75 ±0.07 0.73±0.04 0.72±0.05 0.76±0.04 0.79±0.02 0.80±0.03

VGIB+GraphSAGE 0.77±0.07 0.74±0.04 0.73±0.03 0.78±0.05 0.80±0.03 0.80±0.09

GIN 0.83±0.07 0.74±0.05 0.71±0.05 0.71±0.03 0.78±0.02 0.81±0.10
GIB+GIN 0.84±0.06 0.74±0.05 0.74±0.07 0.74±0.04 0.78±0.03 0.84±0.03

VGIB+GIN 0.86±0.08 0.75±0.04 0.74±0.05 0.75±0.04 0.79±0.03 0.86±0.03

GAT 0.75±0.08 0.72±0.04 0.72±0.03 0.75±0.04 0.76±0.04 0.71±0.08
GIB+GAT 0.75±0.09 0.73±0.04 0.72±0.05 0.76±0.04 0.77±0.03 0.73±0.04

VGIB+GAT 0.76±0.07 0.73±0.04 0.73±0.07 0.77±0.04 0.79±0.03 0.76±0.05

M
ea

n
po

ol
in

g

GCN 0.72±0.11 0.71±0.04 0.71±0.04 0.72±0.05 0.77±0.02 0.75±0.06
GIB+GCN 0.74±0.08 0.72±0.05 0.72±0.03 0.74±0.05 0.78±0.02 0.76±0.04

VGIB+GCN 0.76±0.10 0.73±0.04 0.73±0.04 0.75± 0.10 0.79±0.02 0.78± 0.02

GraphSAGE 0.73±0.07 0.72±0.04 0.70±0.04 0.73±0.04 0.77±0.02 0.78±0.03
GIB+GraphSAGE 0.74±0.07 0.72±0.04 0.72±0.05 0.74±0.04 0.78±0.03 0.79±0.03

VGIB+GraphSAGE 0.75±0.08 0.73±0.04 0.73±0.03 0.76±0.05 0.78±0.03 0.80±0.03

GIN 0.82±0.07 0.71±0.06 0.72±0.05 0.73±0.03 0.78±0.03 0.82±0.02
GIB+GIN 0.83±0.06 0.71±0.05 0.73±0.07 0.74±0.04 0.78±0.03 0.84±0.04

VGIB+GIN 0.84±0.09 0.72±0.05 0.74±0.05 0.75±0.04 0.79±0.03 0.85±0.03

GAT 0.74±0.08 0.71±0.04 0.71±0.04 0.70±0.06 0.76±0.03 0.77±0.04
GIB+GAT 0.75±0.10 0.73±0.04 0.72±0.05 0.72±0.04 0.77±0.03 0.79±0.04

VGIB+GAT 0.76±0.07 0.74±0.03 0.73±0.07 0.73±0.05 0.78±0.03 0.79±0.05

input molecule. Define k as the sparsity score of the ex-
planatory subgraph. The explanatory subgraph is obtained
by choosing the nodes with top k% scores from the input
molecule, and we denote its prediction as ŷki . The Fidelity-
score is computed as follows:

Fidelity− =
1

N

N∑
i=1

1(yi = ŷi)− 1(yi − ŷki ) (12)

where 1(yi = ŷi) is the indicator function which outputs 1
if yi = ŷi and 0 otherwise. Fidelity- score measures how the
prediction of the explanatory subgraph is close to the input
molecule. The lower value of Fidelity- score indicates more
faithful explanation. Similarly, we define ŷ1−k

i as the pre-
diction of the complementary subgraph, which is obtained
by removing the explanatory subgraph from the input. The
Fidelity+ score is defined as follows:

Fidelity+ =
1

N

N∑
i=1

1(yi = ŷi)− 1(yi − ŷ1−k
i ) (13)

The Fidelity+ score indicates more important nodes are
identified in the explanation.

Table 3 shows the fidelity scores of the explanations
produced by different methods. The sparsity score is set
to be k = 0.5 for all the explanatory subgraphs. As
shown in table 3, VGIB achieves best fidelity scores on
all the properties. This shows that VGIB generate faith-
ful explanation to the predictions of the GCN. Moreover,
to comprehensively evaluate different methods, we set k ∈
{0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60} and compare the
performance under different sparsity scores. As shown in
Figure 4, VGIB generate most faithful explanations to the
predictions of GCN in terms of fidelity scores by under dif-
ferent sparsity scores. This shows that VGIB can identify
most important nodes to the predictions of GCN.

5.3. Graph Classification

In this subsection, we aim to find out whether the found
subgraph can improve the performance of baselines on
graph classification or not. We evaluate different methods
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Figure 4. Performance of different methods on explaining the predictions of GCN in terms of fidelity scores (Fidelity+ ↑ and
Fidelity− ↓). VGIB generates the most faithful explanations to the predictions of GCN by identifying the most important nodes un-
der different sparsity scores.

on MUTAG [36], PROTEINS [6], DD, IMDB-BINARY,
REDDIT-BINARY, and COLLAB [35] datasets, which are
wildly used for graph classification. Please refer to Supple-
mentary Materials for the statistics of datasets.

We consider four GNN baselines including GCN [22],
GAT [44], GraphSAGE [14] and GIN [47]. We use the
mean and sum pooling as a readout function for the baseline
methods to obtain the graph representation for prediction.
Then, similar to GIB [52], we plug VGIB into these base-
lines. Specifically, we adopt the baseline models to extract
node representation. Then, we recognize the IB-subgraph
by optimizing the VGIB objective. We pool the node rep-
resentations in the IB-subgraph for classification with the
same readout function as the baselines. For a fair compari-
son, we adopt a 2-layer network architecture and 16 hidden
dimensions for different methods. We train these methods
for 100 epochs and test the models with the smallest vali-
dation loss. We report the mean and standard deviation of
accuracy across 10 folds 3.

The experimental results are summarized in Table 4.
Compared with the baselines, VGIB can discover an infor-
mative yet compressed subgraph of the input. Therefore, it
relieves the perturbation of noise structures and redundant
information and boosts the performance of the baselines.
VGIB also outperforms the GIB-based methods on most of
the datasets.

6. Discussions
Potential Negative Impacts: Our method aims to dis-

cover a predictive yet compressed subgraph of the input

3We follow the protocol in https://github.com/rusty1s/
pytorch_geometric/tree/master/benchmark/kernel

graph, and can be deployed in social network analysis and
biochemistry. The concern is that if not adequately used
under administration, our method potentially leads to the
leakage in privacy and intellectual property.

Limitations: We assume the encoding process from GN

to zN is lossless following the sufficient encoder assump-
tion [42]. Hence we approximate the compression term
I(GN , G) with I(zN , G) and obtain a tractable variational
upper bound for optimization. In fact, the encoding process
is not lossless due to the data processing inequality. Thus,
we actually approach I(GN , G) with I(zN , G) in practice.
We leave the in-depth analysis in our future work.

7. Conclusion

We propose a novel Variational Graph Information Bot-
tleneck framework for improved and efficient subgraph
recognition. The proposed noise injection method serves as
an alternative to compress the information in the discovered
subgraph and allows a tractable objective of VGIB for ef-
ficient and stable training. Using the proposed method, we
make the practical training more than 10 times faster than
the existing methods. The experimental results show that
the proposed method performs favorably against the exist-
ing methods on various tasks.
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