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Abstract

In this paper, we propose a simple yet effective video
super-resolution method that aims at generating high-
fidelity high-resolution (HR) videos from low-resolution
(LR) ones. Previous methods predominantly leverage tem-
poral neighbor frames to assist the super-resolution of the
current frame. Those methods achieve limited performance
as they suffer from the challenges in spatial frame align-
ment and the lack of useful information from similar LR
neighbor frames. In contrast, we devise a cross-frame
non-local attention mechanism that allows video super-
resolution without frame alignment, leading to being more
robust to large motions in the video. In addition, to acquire
general video prior information beyond neighbor frames,
and to compensate for the information loss caused by large
motions, we design a novel memory-augmented attention
module to memorize general video details during the super-
resolution training. We have thoroughly evaluated our work
on various challenging datasets. Compared to other re-
cent video super-resolution approaches, our method not
only achieves significant performance gains on large mo-
tion videos but also shows better generalization. Our source
code and the new Parkour benchmark dataset is available
at https://github.com/jiy173/MANA.

1. Introduction
Video super-resolution (VSR) task aims to generate

high-resolution (HR) videos from low-resolution (LR) in-
put videos and recover high frequency details in the frames.
It is attracting more attention due to its potential application
in online video streaming services and the movie industry.

There are two major challenges in the VSR tasks. The
first challenge comes from the dynamic nature of videos.
To ensure temporal consistency and improve visual fidelity,
previous methods generally seek to fuse information from
multiple neighbor frames. Due to the motion across frames,
neighbor frames need to be aligned before fusion. Recent
works have proposed various ways for aligning neighbor
frames to the current frame, either by explicit warping us-
ing optical flow [2,17,21,28] or learning implicit alignment
using deformable convolution [29, 32]. However, the qual-
ity of these works highly depends on the accuracy of spatial

Figure 1. Our memory-augmented cross-frame non-local attention
approach is robust to large motion videos (first row). Our method
reconstructs visually pleasing details on repetitive patterns (left ex-
ample) and thin structures (right example) while other video super-
resolution methods fail in these cases. Best viewed in PDF.

alignment of neighbor frames, which is difficult to achieve
in videos with large motions. As an example shown in Fig. 1
column (a), the method EDVR [32] and TOFlow [37] fail
in the scenario of large motions due to fusing misaligned
frames. This hinders the application of existing VSR meth-
ods in real-world videos such as sports videos (see our Park-
our dataset in Sec. 4.1), and entertainment videos from ani-
mation, movies and vlogs.

The second challenge comes from the irreversible loss of
high-frequency detail and the lack of useful information in
the low-resolution video. Recent learning based single im-
age super-resolution (SISR) works [5, 12, 13, 16, 18, 26, 30,
34,38,49] have intensively studied the visual reconstruction
from LR images by learning general image prior to help re-
cover high-frequency details or transferring texture from an
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HR reference image. One straightforward solution for video
super-resolution (VSR) is to directly apply SISR methods to
each frame, but it does not guarantee temporal consistency
in the visual appearance. Instead, most VSR methods try to
fuse information from neighbor frames for HR frame recon-
struction, and thus generate results superior to SISR meth-
ods. However, we argue that the information acquired from
neighbor frames is still limited, especially for videos with
large motions. In such a scenario, the correlations among
neighbor frames become smaller due to less similar neigh-
bor frames, which makes it difficult to mine useful informa-
tion from neighbor frames. As a result, the VSR essentially
degrades to the single image super-resolution.

To address the aforementioned challenges, we propose a
Memory-Augmented Non-local Attention (MANA) frame-
work for video super-resolution (VSR). Our MANA takes
a set of consecutive low-resolution video frames as inputs,
and produces the high-resolution version of the temporal
center frame by referring to the information from its neigh-
bor frames. Since consecutive frames share a large portion
of visual contents, this scheme implicitly ensures tempo-
ral consistency in the result. But most importantly, MANA
consists of two novel modules, which are specifically de-
signed for solving the VSR challenges.

To solve the frame-alignment challenge, we design the
Cross-Frame Non-local Attention module which allows us
to fuse neighbor frames without aligning them towards the
current frame. Conventional non-local attention [33] com-
putes the pair-wise correlation between each pixel in the
query and key. In the video super-resolution (VSR) case,
however, it is improper to treat pixels in all spatial loca-
tions equally like conventional non-local attention. We ob-
serve that the pixels near the query are more likely to be
good correspondences thanks to the nature of continuity.
Therefore, unlike conventional non-local attention, we em-
ploy a trainable Gaussian map centered at the query pixel to
weight the correlations. This is helpful for keeping a good
balance between all information sources, and effectively re-
duces mistaken correspondences that will negatively affect
the accuracy of super-resolution. The Gaussian weighted
cross-frame non-local attention enables our work to cir-
cumvent the frame-alignment operation, which usually per-
forms poorly in videos with large motions. As an example,
Fig. 1(a) illustrates that our method can reconstruct sharp
details like the stripes on the roof and the waving arm in
fast-moving frames.

To solve the challenge of the lack of information from
neighbor frames, we seek to fuse useful video prior in-
formation beyond the current video. This means that the
network should memorize previous experiences in super-
resolving other videos in the training set. Based on this prin-
ciple, we introduce a Memory-Augmented Attention module
to our network. In this module, we maintain a 2D memory
bank which is completely learned during the training. The
purpose is to summarize the representative local details in
the entire training set and use them as an external reference
for super-resolving the current video frame. To our knowl-

edge, our work is the first VSR method that leverages the
memory bank mechanism to incorporate information be-
yond the current video. Thanks to the general video prior
captured by this module, our method can recover details that
are missing in the LR video like the balcony railings shown
in Fig. 1(b).

To verify the superiority of our MANA method on
videos with large motions, we collect the Parkour bench-
mark dataset. Both qualitative and quantitative results on
this dataset have demonstrated that our MANA signifi-
cantly outperforms all previous approaches. In addition,
we also evaluate MANA on other public datasets includ-
ing Vimeo90K [37], SPMC [28], and Vid4 [21]. Our ap-
proach still achieves better or very competitive results. It
is worth noting that MANA shows better generalization,
because it is superior to other approaches on SPMC and
Parkour datasets, which are very different from the training
dataset Vimeo90K.

To summarize, our contributions include the follows:
Cross-frame non-local attention. We introduce a Gaus-
sian weighted cross-frame non-local attention that liberates
the video super-resolution from the error-prone frame align-
ment process, and effectively balances the local and non-
local information sources. This design makes our method
robust to videos with large motions (See Sec. 3.2).
Video super-resolution beyond current video. To the best
of our knowledge, we are the first to leverage the memory-
augmentation attention to incorporate general video prior to
assist current video super-resolution. (See Sec. 3.3).
New benchmark for large motion video super-
resolution. We introduce the Parkour dataset containing
large motion videos. To our knowledge, this is the first
benchmark for evaluating VSR methods in large motion
cases (See Sec. 4.1).

2. Related Work
Single Image Super-Resolution. Early single image super-
resolution (SISR) works resort to image processing algo-
rithms [25, 40–42]. Recent works in deep learning have
been proved to obtain superior results in SISR due to the
ability to learn prior of high-resolution images. SRCNN
proposed by Dong et al. [5] first introduces a convolu-
tional neural network in SISR. Kim et al. further ex-
plore deeper residual networks (VDSR [12]) and recur-
sive structures (DRCN [13]). ESPCN [23] encodes the
low-resolution image into multiple sub-pixel channels and
upscales to a high-resolution image by shuffling the chan-
nels back in the spatial domain, which was widely used
in recent super-resolution works. Other approaches us-
ing CNN includes pyramid structure (LapSRN [15]), re-
cursive residual network (DRRN [27]), dense skip connec-
tions (SRDenseNet [31] and RDN [48]), and adversarial
networks [3, 16, 22, 35].
Video Super-Resolution. Video super-resolution (VSR)
typically generates better results than SISR thanks to the
extra information from neighbor frames. The main fo-
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Figure 2. An overview of the structure of our video super-
resolution network. The network super-resolves the current frame
It using the neighbor frames It−τ , ..., It+τ as the input. The
cross-frame non-local attention aims at mining information from
neighbor frames and the memory-augmented attention targets
memorizing experiences in super-resolving other videos. The out-
put of these modules is used as residual to enhance the details of a
bilinearly upsampled low-resolution frame.

cus of VSR works is how to correctly fuse auxiliary
frames in the presence of dynamic contents and cam-
era motion. Some methods explicitly use optical flow
(VESPCN [2], FRVSR [21], SPMC [28], TOFlow [37]
and BasicVSR/IconVSR [4]) or homography (TGA [10]) to
align neighbor frames. However, estimating accurate opti-
cal flow/transformation is challenging when the motion be-
tween the neighbor frame and the current frame is large.
Having observed this limitation, recent methods start to ex-
plore techniques to bypass alignment or implicitly align
frames. Jo et al. propose DUF [11] that learns dynamic
upsampling filters combining the entire spatial neighbor-
hoods of a pixel in auxiliary frames. TDAN [29] and
EDVR [32] use deformable convolution layers to sample
neighbor frames according to the estimated kernel offsets.
However, these methods essentially still learn the spatial
correspondence across frames. As we will show in Sec. 4,
in large motion cases, the results from these methods are un-
satisfactory. Unlike any previous VSR methods, our method
finds the pixel correspondence in an unstructured fashion by
applying non-local attention.
Non-local Attention in Super-Resolution. Attention
mechanism has proven to be effective in various computer
vision tasks [6, 9, 20, 44, 46, 47]. Some recent SISR works
including CSNLN [18], RNAN [47] and TTSR [39] have
designed various mechanisms of non-local attention for im-
age super-resolution. Wang et al. [33] propose non-local
neural networks to capture pixel-wise correlations within a
video segment, making temporally and spatially long dis-

tance attention possible. Following this regular non-local
attention, in the task of VSR, the authors of PFNL [43]
also utilize self-attention as a feature preprocessing step for
their progressive fusion of neighbor frames. This traditional
non-local attention may find more matches to a query. But
meanwhile, it can also introduce more mistaken correspon-
dences, which will mess up the process of super-resolving
the current frame. In contrast, following the nature of video
continuity, we believe the matches near the query pixel
carry more importance than the distant ones. Hence, we
employ a trainable Gaussian map to weigh the non-local at-
tention. The comparison experiments validate our approach
indeed generates better results than PFNL [43].
Memory models Neural networks with memory show their
potential in natural language processing [1,24], image clas-
sification [51] and video action recognition [8]. These
works augment their model with an explicit memory bank
that can be updated or read during the training. Inspired
by these works, we design a memory-augmented atten-
tion module to incorporate previous knowledge gained from
super-resolving other videos. In Sec. 4, we show that the
memory module provides a significant boost in the perfor-
mance of video super-resolution.

3. Methodology
3.1. Overview

Fig. 2 demonstrates the structure of our video super-
resolution network. The goal is to super-resolve a sin-
gle low-resolution frame It ∈ R3×H×W , given the
low-resolution temporal neighbor frames {It−τ , ..., It+τ},
where H and W are the video height and width, respec-
tively. To make the discussion more concise, we will use
“current frame” to refer to It and “neighbor frames” to re-
fer to {It−τ , ..., It+τ}. T = 2τ+1 represents the time span
of neighbor frames. Note that neighbor frames include the
current frame.

The first stage of our network embeds all video frames
into the same feature space by applying the same encod-
ing network to each input frame. We denote the embedded
features as {Ft−τ , ...,Ft+τ} ∈ RC×H×W , where C is the
dimension of the feature space. As discussed in Sec. 1, our
super-resolution process refers to both the current video and
general videos. Based on this principle, we adapt the atten-
tion mechanism which allows us to query the pixels that
need to be super-resolved in the keys consisting of auxil-
iary pixels. Specifically, the second stage of our network
includes two parts: Cross-Frame Non-local Attention and
Memory-Augmented Attention.

Cross-Frame Non-local Attention aims to mine useful in-
formation from neighbor frame features. In this module,
neighbor frame features are queried by the current frame
feature. We denote the output of the cross-frame non-local
attention module as Xt ∈ RC′×H×W , where C ′ = C/2 is
the dimension of the embedding space of the cross-frame
non-local attention module (See Sec. 3.2).
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Figure 3. The cross-frame non-local attention module in our net-
work. The size are marked on the edges of the tensors. The oper-
ation marked by the yellow box is done in parallel for each pixel
Qp in the query tensor Q. Best viewed in PDF.

Memory-Augmented Attention maintains a global mem-
ory bank M ∈ RC′×N to memorize useful information
from general videos in the training set, where N represents
an arbitrary number of entries in the memory bank. We
use the current frame feature to query the memory bank di-
rectly. However, unlike the cross-frame non-local attention
module in which the keys are embedded versions of neigh-
bor frame features, the memory bank is completely learned.
The output of this module is denoted as Yt ∈ RC′×H×W .
This module will be discussed in Sec. 3.3.

Finally, the output of the cross-frame non-local attention
module Xt and memory-augmented attention module Yt

are convolved by two different convolutional layers with
kernel size 1 and added to the input current frame feature
Ft as residuals. A decoder decodes the output of atten-
tion modules and an up-sampling module shuffles the pix-
els to generate a high-resolution residual. The residual adds
details to the bilinearly up-sampled blurry low-resolution
frame, resulting in a clear high-resolution frame.

3.2. Cross-Frame Non-local Attention

One of the major procedures in the conventional video
super-resolution methods is to align the neighbor frames
so that the corresponding pixels can be fused and improve
the quality of the super-resolution of the current frame.
To achieve the alignment, the typical approaches in video
super-resolution works include optical flow [21,37] and de-
formable convolution [29, 32]. However, aligning pixels
according to color consistency is known to be a challeng-
ing task under large motion or illumination change. As a
consequence, the inaccuracy in alignment will negatively
impact the performance of video super-resolution. In our
work, we seek to avoid this performance overhead. As we
discussed in Sec. 2, the non-local attention [33] enables
capturing temporally and spatially long distance correspon-
dence. Therefore, the frame alignment can be omitted if
non-local attention is used to query pixels of the current
frame in neighbor frames.

The cross-frame non-local attention module is demon-

strated in Fig. 3. We first normalize the input frame features
using group normalization [36], resulting in the normalized
neighbor frame features

{
Ft−τ , ...,Ft+τ

}
. In our non-local

attention setup, the center feature Ft is used as the query
tensor, and neighbor frame features

{
Ft−τ , ...,Ft+τ

}
serve

as both the key and value tensors. The embedded version of
query, key and value tensor are noted as Q ∈ RC′×H×W ,
K ∈ RC′×T×H×W and V ∈ RC′×T×H×W in Fig. 3. In
the traditional setup of non-local attention, the next step
is to flatten the temporal and spatial dimension of Q and
K to Q̂ ∈ RHW×C′

and K̂ ∈ RC′×HWT and calculat-
ing the correlation matrix Γ = Q̂K̂. Since the size of Γ
is HW × HWT , this matrix imposes a large burden on
the GPU memory. To make the network more memory ef-
ficient, we conduct non-local attention on each neighbor
frames separately, i.e. the size of Γ is HW × HW . The
first dimension of Γ spans the spatial locations in Q, and
the second dimension spans the spatial locations in K.

Unlike the high-level video classification task discussed
in the original non-local attention [33], we aim to ex-
plore pixel-level information from neighbor frames in the
video super-resolution. The goal of non-local attention is
to find more matches to a query pixel. However, it can
also introduce more inaccurate correspondences. Mistak-
enly matched pixels far away from the query pixel may
have a negative effect on the video super-resolution perfor-
mance. In Sec. 4.3, we will show that traditional non-local
attention did not benefit the video super-resolution method
PFNL [43] which directly applies it to the entire group of
neighbor frames. Intuitively, most correspondences of a
pixel should generally reside in its neighbor region in the
neighbor frames thanks to the continuity characteristics of
videos. To mitigate the effect of mistakenly matched pixels,
we therefore multiply a Gaussian weight map G ∈ RHW

on each slice in the second dimension of the correlation ma-
trix Γ. Note that the center of the Gaussian map is located
at the location of the query pixel. In other words, the Gaus-
sian map is different for each slice in the first dimension of
Γ. Instead of tuning an optimal standard deviation for the
Gaussian map, we make it a trainable parameter and learn
what value leads to the best overall performance. The final
output of the cross-frame non-local attention module can be
written as:

Xt = (G
⊗

Γ) ·V (1)

where
⊗

represents the slice-wise Hadamard product de-
scribed above. The trainable Gaussian map maintains a
good balance between the local and non-local sources for
fusing information from neighbor frames in our VSR task.

3.3. Memory-Augmented Attention
Cross-frame non-local attention enables the fusion of

the information from neighbor frames in the current video.
However, the neighbor frames used in the attention are also
low-resolution with similar content to the current frame.
Therefore, the benefit from cross-frame non-local attention

17837



Figure 4. The memory-augmented attention module in our net-
work. The operation marked by the orange box is done in parallel
for each pixel Qp in the query tensor Q. Best viewed in PDF.

is limited. We seek to refer to more local detail informa-
tion beyond the current video, which requires memorizing
useful information from the entire training set. For this
purpose, our network includes a memory-augmented atten-
tion module. The module maintains a global memory bank
M ∈ RC′×N which is learned as parameters of the net-
work. We use regular non-local attention to query current
frame features Q̂ in the global memory bank M, i.e. the
correlation matrix is ΓM = Q̂M ∈ RHW×N . Finally, we
obtain the output

Ŷt = softmax(ΓM )M̂ (2)

where M̂ ∈ RN×C′
is the transposed version of the mem-

ory bank M. Similar to the cross-frame non-local attention
module, we reshape Ŷt ∈ RHW×C′

to Yt ∈ RC′×H×W as
the output of the memory-augmented attention module.

3.4. Implementation Details
Training Set. The Vimeo90K dataset is a large-scale video
dataset proposed by Xue et al. [37]. Following recent
super-resolution methods TOFlow [37], TDAN [29] and
EDVR [32], we use the training set of Vimeo90K to train
our network. Each video clip in Vimeo90K consists of 7
consecutive frames. We use the center frame as the current
frame to be super-resolved. All 7 frames are used as the
neighbor frames.
Network Structure. Besides the structures of cross-frame
non-local attention and memory-augmented attention mod-
ule shown in Fig. 2, we demonstrate the structure of
other basic building blocks in Fig. 5. The residual blocks
(Fig. 5(a)) are used to build the frame encoder and decoder.
The frame encoder and decoder are the concatenation of 5
residual blocks and 40 residual blocks respectively. The
structure of the up-sampling block is shown in Fig. 5(b).
In this paper, we focus on 4x video super-resolution task.
The up-sampling block is built by 2 pixel shuffle blocks,
each up-sample the feature map by 2 using the pixel shuffle
operation defined in ESPCN [23]. We use C = 128 for all
experiments in this paper.
Training Procedure. We implement our network in Py-
Torch [7] and use Adam optimizer [14] with β1 = 0.5 and
β2 = 0.99 for training. The weight of the last convolutional
layers of the cross-frame non-local attention module and the

Figure 5. Basic building blocks in our network. (a) Residual
blocks are used to build the encoder and decoder. (b) Upsample
block shuffles pixels in different channels into a high-resolution
frame.

Figure 6. Video stills from the Parkour dataset. Due to the large
camera motion in this dataset, it is challenging for exisitng video
super-resolution methods.

memory-augmented attention module is initialized to zero.
The training of our network consists of three stages.

In the first stage, we fix the memory-augmented atten-
tion module and train the rest part of the network for 90,000
iterations at the learning rate of 10−4. The loss function
used is L1 = ∥Ot −Gt∥1, where Ot stands for the out-
put super-resolved current frame and Gt is the ground truth
high-resolution frame.

In the second stage, we fix the network weights ex-
cept for the memory-augmented attention module. The loss
function L2 = ∥Yt −Q∥1 focus on training the memory
bank. Note that the training process optimizes the memory
bank M so that a query Q can be represented by the combi-
nation of the columns in M as accurate as possible. This is
essentially clustering and summarizing the most represen-
tative general pixel features in the encoded space. We train
this stage for 30,000 iterations at the learning rate of 10−4.

In the final stage, we fine-tune the entire network using
L1 for 30,000 iterations at the learning rate of 10−5.

4. Experiments
In this section, we compare our work with recent state-

of-the-art video super-resolution (VSR) and single image
super-resolution (SISR) methods. We select comparison
methods based on their approaches to the super-resolution
problem: VSR via explicit frame alignment (TOFlow [37],
TGA [10] and DBVSR [19]), VSR via implicit frame
alignment (EDVR [32]), VSR via regular non-local atten-
tion (PFNL [43]) and SISR via regular non-local attention
(CSNLN [18]) applied to each video frame individually.
Similar to other VSR works, in this paper, we focus on
the 4x scaling case for all the comparisons shown in this
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Figure 7. Visual comparison on the Parkour dataset, Vimeo90K [37] dataset and Vid4 [21] dataset. Example (a), (b), (c), (d) and (e) are
selected from the large motion Parkour dataset. Example (f) is from SPMC [28] dataset. Example (g) is from the Vimeo90K [37] dataset.
Example (h) is from Vid4 [21] dataset. We mark the inset locations on the video stills on the left. To make our discussion clearer, we add
arrows pointing to the region that we will be discussing in Sec. 4.2. Best viewed in PDF.

section. To obtain the low-resolution input, we use bicubic
down-sampling on the ground truth high-resolution frames.
According to our experiment, PFNL [43] and TGA [10] in-
troduce serious aliasing artifacts to the results using bicu-
bic down-sampled video. To make the comparison fair, for
PFNL [43] and TGA [10], we apply Gaussian blur to the
ground truth frames before down-sampling following the
procedure in their papers. Unless otherwise stated, our re-
sults shown in this section are generated with the memory
size of N = 512 in the memory-augmented attention mod-
ule. We conduct the experiment on a desktop computer with
an NVIDIA 2080Ti GPU. The average processing speed of
our network is 59ms per 448x256 HR frame.

4.1. Datasets and Metrics
As discussed in Sec. 1, the cross-frame non-local atten-

tion in our method enables VSR without frame alignment.
To validate the robustness of our method to large motion

videos, we randomly collected 14 parkour video clips from
the Internet. Parkour is a form of extreme sport focus-
ing on passing obstacles in a complex environment by run-
ning, climbing, and jumping. Usually taken using egocen-
tric wearable cameras, parkour videos are typical examples
in the real world where large camera motions are every-
where. Example video stills from the Parkour dataset are
shown in Fig. 6. We further evaluate our method on regular
videos using Vimeo90K [37] test set, SPMC dataset [28],
and Vid4 [21] (it contains 4 videos).

For all test sets, we use the average PSNR and SSIM [50]
scores on the RGB channel to quantitatively evaluate the
performance. In addition, we apply LPIPS [45] to eval-
uate the perceptual similarity between the super-resolved
frames and the ground truth high-resolution frame. Since
the performance can be different across computation plat-
forms and the quantitative metric calculation might be dif-
ferent in these works, we re-ran their codes and calculated
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(a) Parkour Dataset (b) Vimeo90K-Motion [37] (c)Vimeo90K Dataset [37] (d)SPMC Dataset [28]
PSNR↑
in dB

SSIM↑ LPIPS↓ PSNR↑
in dB

SSIM↑ LPIPS↓ PSNR↑
in dB

SSIM↑ LPIPS↓ PSNR↑
in dB

SSIM↑ LPIPS↓

Bicubic 29.51 0.8712 0.3101 33.90 0.9194 0.2122 29.75 0.8476 0.2948 25.67 0.7241 0.4270
MANA(Ours) 33.81 0.9397 0.1159 38.86 0.9630 0.0853 34.84 0.9404 0.1076 29.27 0.8449 0.2147
EDVR [32] 31.61 0.9113 0.1900 38.33 0.9544 0.0813 35.68 0.9372 0.1019 27.98 0.8109 0.2715
TOFlow [37] 32.35 0.9197 0.1804 36.55 0.9471 0.1186 32.96 0.9041 0.1451 28.55 0.8327 0.2661
DBVSR [19] 32.09 0.9225 0.1534 37.77 0.9563 0.0943 33.47 0.9265 0.1240 28.00 0.8186 0.2247
TGA [10] 31.14 0.9033 0.2224 38.26 0.9588 0.0919 35.03 0.9310 0.1013 29.06 0.8449 0.2390
PFNL [43] 32.04 0.9189 0.2244 35.90 0.9449 0.1522 31.86 0.8959 0.2012 28.27 0.8270 0.3100
CSNLN [18] 32.93 0.9275 0.1357 37.79 0.9523 0.1062 33.55 0.9091 0.1338 28.79 0.8275 0.2343

Table 1. Quantitative comparison on (a) Parkour dataset, (b) Vimeo90K-Motion [37], (c) Vimeo90K [37] dataset and (d) SPMC dataset [28].
The metrics used are PSNR, SSIM and LPIPS. Larger numbers indicate better results for PSNR and SSIM, smaller numbers indicate better
results for LPIPS.

the metrics in the same way on the same computer.

4.2. Visual Comparisons
The visual comparisons of various examples selected

from the Parkour, SPMC, Vimeo90K and Vid4 dataset are
shown in Fig. 7. To make the discussion concise, we label
the ID at the bottom left of each video. We also add arrows
pointing at the regions to be discussed.

Example (a), (b), (c), (d) and (e) are selected from the
Parkour dataset. These examples contain large motions
and are challenging to existing VSR methods. Our method
can reconstruct repetitive patterns like Example (a) and (b),
while explicit frame alignment methods TOFlow [37] and
TGA [10] fail due to the inaccurate frame alignment. Re-
cent method DBVSR [19] improves frame alignment by
learning to deblur, but still cannot handle repetitive patterns
in (b). EDVR [32] result is more blurry than our result
in example (a) and (b), and the blurry issue is more visi-
ble when viewed in dynamics as shown in the supplemen-
tary video. This indicates that the deformable convolution
alignment cannot handle the alignment with large frame
displacements. Both PFNL [43] and CSNLN [18] using
non-local attentions also suffer from the blurry issue, po-
tentially due to the non-local attention performance degra-
dation problem discussed in Sec. 3.2.

Example (c) focuses on the general details of an object.
The frame-aligning methods introduce either ghosting ar-
tifacts (EDVR) or deformation (TOFlow and TGA) due to
the inaccurate alignment. The results of PFNL and CSNLN
have less details than ours, indicating that our Gaussian
weighted non-local attention improves the quality of reg-
ular non-local attention. Example (d) focuses on human
face shape and details. As shown in the bicubic result, the
original facial details are completely lost due to the down-
sampling. Our method reconstructs visually pleasing de-
tails of human faces thanks to the memory-augmented mod-
ule, while the comparison methods introduce either blur
(EDVR, TOFlow and PFNL) or reconstruct shapes that do
not look like a human (TGA and CSNLN).

Example (e) and (f) contain thin structures. Similar to
examples (a) and (b), the failures in frame alignment have
negatively affected VSR methods. In these examples, the
performance of EDVR, TOFlow and TGA are even worse
than the SISR method CSNLN. The result of DBVSR is su-
perior to that of TOFlow, but is more blurry than our result.

As being discussed in Sec. 4.3, the overall average
quantitative score of our method is slightly inferior to
that of EDVR and TGA in the Vimeo90K [37] and Vid4
dataset [21] which are relatively easy for frame aligning
VSR methods. However, a larger deviation to the ground
truth does not always indicate worse performance. As
shown in example (g) selected from Vimeo90K, our method
tends to produce visually sharper results than EDVR and
TGA, which is often more preferred in the VSR task. Ex-
ample (h) is a widely used example in Vid4. Our result is
comparable to that of EDVR and TGA.

To further evaluate the robustness of our method in real-
world scenarios, we arbitrarily selected videos of different
types including animation, movies, and vlogs for video su-
per resolution. The results further prove that our approach is
superior to others (Due to limited space, results are included
in the supplementary material).

4.3. Quantitative Comparisons
Table 1 displays the quantitative comparisons of our

MANA to the state-of-the-art VSR approaches in terms of
PSNR, SSIM, and LPIPS score, where larger PSNR and
SSIM and smaller LPIPS loss indicate better results. We
mark the best result in red and the second best result in
blue. In this table, we illustrate the quantitative results of
VSR on 4 datasets: Parkour dataset, Vimeo90K-Motion,
Vimeo90K, and SPMC. The results on Vid4 can be found
in our supplementary material due to the lack of space.

Table 1 Column (a) illustrates the result comparisons on
the Parkour dataset. Videos in this dataset have extremely
large motions, making the accurate alignment of the frames
difficult. Among the comparison methods, TOFlow [37]
and DBVSR [19] explicitly estimate the optical flow for
warping neighbor frames; TGA [10] uses homography to
align neighbor frames; EDVR [32] implicitly align frames
using learned kernel offset for deformable convolution.
Hence, the traditional VSR methods rely on the explicit or
implicit alignment of neighbor frames, which generally can
be affected by large motions in videos. The results also
prove this point. As we can see, our MANA approach,
which does not require frame alignment, has outperformed
all VSR methods by a large margin. This observation indi-
cates MANA is able to cope with large motions in videos.
It is also interesting to notice that the performances of the
frame-alignment VSR methods are even inferior to that of
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Parkour Dataset Vimeo90K Dataset [37] Vid4 Dataset [21] SPMC Dataset [28]
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

No Mem 33.57 0.9367 0.1208 34.53 0.9377 0.1113 25.02 0.7739 0.2942 29.01 0.8384 0.2210
N = 128 33.72 0.9384 0.1214 34.73 0.9396 0.1089 25.17 0.7791 0.2931 29.17 0.8427 0.2189
N = 256 33.79 0.9395 0.1181 34.83 0.9407 0.1073 25.19 0.7815 0.2867 29.30 0.8452 0.2166
N = 512 33.81 0.9397 0.1159 34.84 0.9404 0.1076 25.21 0.7816 0.2842 29.27 0.8449 0.2147
N = 1024 33.75 0.9390 0.1213 34.76 0.9398 0.1117 25.19 0.7802 0.2962 29.25 0.8447 0.2234

Table 2. Evaluation on memory size in the memory-augmented attention module. The N = 512 is selected for the experiments shown in
Sec. 4.2 and Sec. 4.3

the SISR method CSNLN [18]. It is because fusing mis-
aligned frames often cause ghosting artifacts in the result.

As we can see, although PFNL [43] works better than the
frame-alignment method EDVR and TGA, its performance
is even worse than the single-frame approach CSNLN. We
conjecture that the performance gap between PFNL and
CSNLN may be caused by the design of non-local atten-
tion in PFNL, which employs pair-wise non-local attention
on all pixels in the entire spatiotemporal segment. This
regular non-local attention can help find more correspon-
dences globally, but meanwhile it can introduce more mis-
taken matches which may cause negative effects to the re-
sults of VSR. In contrast, our Gaussian weighted non-local
attention is able to balance the fusion of local and non-local
information. Hence, it significantly improves the perfor-
mance of non-local attention as shown in Table 1 (a).

Table 1 column (b) exhibits additional experimental
results on Vimeo90K-Motion, which consists of regular
videos with relatively large motions. We computed the op-
tical flow for videos in the Vimeo90K test set and ranked
them based on the average flow magnitude. The top 6%
videos are selected to form Vimeo90K-Motion. The results
further confirm that our MANA works better on videos with
some motions.

In addition, Table 1 column (c) and (d) illustrate more
quantitative result comparisons on the dataset Vimeo90K
and SPMC, respectively. As we can see, on these regular
videos, MANA also achieves better performance than the
explicit optical flow alignment methods TOFlow, DBVSR
and the other non-local attention super-resolution meth-
ods PFNL and CSNLN. The PSNR score values of our
method are slightly inferior to that of EDVR , and TGA
in the Vimeo90K dataset. However, for the large motion
videos in the Parkour dataset, our method has much larger
PSNR gains (2.2dB and 2.67dB) in performance compared
to EDVR and TGA.

It is worth noting that our approach MANA has better
generalization than others. Although our MANA only ob-
tains comparable results on Vimeo90K, it noticeably out-
performs other VSR methods on both SPMC and Parkour.
As all methods are trained on the Vimeo90K training set,
the test results on both SPMC and Parkour datasets are more
convincing. Please note the SPMC and Parkour dataset are
very different from Vimeo90K. In contrast, EDVR could
be biased towards Vimeo90K, given the significant perfor-
mance drop in the SPMC dataset. Therefore, MANA is
more robust and generalized than other approaches. This
observation is further confirmed by our additional quanti-

tative evaluations on more real-world videos shown in the
supplementary material.

4.4. Evaluation on Memory Size

In Table 2, we quantitatively compare the performance
of different configurations in our network. Specifically, we
set the memory size N of the memory-augmented atten-
tion module to 128, 256, 512 and 1024. To verify the ef-
fectiveness of the memory-augmented attention module, we
also experimented with the network with cross-frame non-
local attention module only (labeled as No Mem in Table 2).
Among these configurations, N = 512 achieves the best
result and is selected in the comparisons in Sec. 4.2 and
Sec. 4.3. Using smaller memory (N = 128 and N = 256)
results in slight performance degradation. The benefits sat-
urate when using a larger memory (N = 1024), implying
that the local details of low-resolution frames can be well
represented in low-dimensional space. The performance of
our network degrades without the memory-augmented at-
tention module. However, solely using the cross-frame non-
local attention module, our network outperforms compari-
son methods in the Parkour dataset and achieves compara-
ble performance in the Vimeo90K dataset.

5. Conclusion

We present a network for video super-resolution that
is robust to large motion videos. Unlike typical video
super-resolution works, our network is able to super-resolve
videos without aligning neighbor frames through a novel
cross-frame non-local attention mechanism. Thanks to the
memory-augmented attention module, our method can also
utilize information beyond the video that is being super-
resolved by memorizing details of other videos during the
training phase. Our method achieves significantly better re-
sults in large motion videos compared to the state-of-the-
art video super-resolution methods. The performance of
our method is slightly inferior in the videos that are rela-
tively easy for frame aligning video super-resolution meth-
ods. The limitation is that our method cannot directly han-
dle videos with compression artifacts. In real applications,
separate pre-processing will be required to remove com-
pression artifacts. We believe our method can be further
improved by introducing a pyramid structure into the cross-
frame non-local attention to increase the perception field or
extend the memory bank from 2D to the higher dimension,
but these ideas are left for future work.
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