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Abstract

Image collage task aims to create an informative and
visual-aesthetic visual summarization for an image collec-
tion. While several recent works exploit tree-based algo-
rithm to preserve image content better, all of them resort to
hand-crafted adjustment rules to optimize the collage tree
structure, leading to the failure of fully exploring the struc-
ture space of collage tree. Our key idea is to soften the
discrete tree structure space into a continuous probability
space. We propose SoftCollage, a novel method that em-
ploys a neural-based differentiable probabilistic tree gener-
ator to produce the probability distribution of correlation-
preserving collage tree conditioned on deep image feature,
aspect ratio and canvas size. The differentiable character-
istic allows us to formulate the tree-based collage gener-
ation as a differentiable process and directly exploit gra-
dient to optimize the collage layout in the level of proba-
bility space in an end-to-end manner. To facilitate image
collage research, we propose AIC, a large-scale public-
available annotated dataset for image collage evaluation.
Extensive experiments on the introduced dataset demon-
strate the superior performance of the proposed method.
Data and codes are available at https://github.
com/ChineseYjh/SoftCollage.

1. Introduction
Image collage aims to create a visual summarization

with rich information and high aesthetic quality for a group
of images. Because this task requires professional collage
knowledge, amateurs have a huge demand for automatic
image collage tools [16]. Therefore, many research efforts
have tried to automate the process of image collage. While
many works [4, 12, 18, 19, 25, 26, 33, 41] have achieved a
certain level of success in improving visual perception of
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Figure 1. The optimization paradigms of the conventional meth-
ods and the proposed SoftCollage. We formulates the tree-based
collage generation as a differentiable process via softening the dis-
crete tree structure τ into a probability space for the first time. In-
stead of the hand-crafted adjustment scheme, we directly exploit
the gradient of the criterion loss to optimize the tree probability
distribution τθ , which facilitates the tree structure exploration.

collage results, they brought about image artifacts [18, 25,
26, 41] and image overlapping [19, 33, 36, 40]. To tackle
these defects, some tree-based algorithms [3,8,16,23,37,38]
were developed to preserve image content better. A tree-
based collage is encoded as a binary tree which leads to a
recursive partition of the canvas as illustrated in Fig. 2. In
the tree, each leaf node corresponds to an image and each
interior node corresponds to a bounding box, whose des-
ignation as a horizontal (“H”) or vertical (“V”) cut corre-
sponds to dividing the box into two child boxes [3]. The
existing tree-based methods design a two-stage procedure,
where images are arranged in a standard collage tree in the
first stage and the tree is mapped to the collage via a specific
bijection mapping function in the second stage. Accord-
ingly, the collage layout optimization is cast as an optimal
tree structure search problem.

However, all the existing works only resort to heuristic
hand-crafted adjustment rules when searching the optimal
tree structure, leading to the failure of fully exploring the
structure space of collage tree (Fig. 3). Deep learning pro-
vides a promising way to learn a high-quality collage tree.
Unfortunately, the two-stage tree-based collage generation
process is undifferentiable because both stages include dis-
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Figure 2. An example of the mapping from a standard collage tree
to the tree-based collage.

crete operations that prevent back propagation. Although
recent tree-based advances [16, 23] utilized learning strate-
gies, they only applied them to yield semantic feature in the
first stage so that images with similar features clustered to-
gether. These works achieve much improvement because
placing correlated images together can facilitate collage in-
formativeness [18, 38, 41]. However, these methods still
employed hand-crafted scheme to refine tree structure and
failed to fully explore the solution space (Fig. 3). Recently,
despite Pan et al. [23] introduced back propagation for the
first time to fine-tune aspect ratio and splitting ratio, they
still failed to propagate the gradients back to optimize the
collage tree structure due to the undifferentiable character-
istic of the tree-based process.

In this paper, we attack the key problem of differen-
tiating the overall two-stage tree-based collage generation
process (Fig. 1). Specifically, firstly we propose a novel
neural-based differentiable probabilistic tree generator to
model the first stage of tree-based procedure. Our tree
generator exploits deep image feature and embedded infor-
mation including aspect ratio and canvas size to construct
a correlation-preserving probabilistic collage tree (PCtree),
which builds a probability space via modeling the node type
distribution (the cut type of the node is horizontal (“H”)
or vertical (“V”)) and the edge connection distribution (the
child node is on the left (“L”) or right (“R”)) (Fig. 5). Sec-
ondly, we formulate the tree generator optimization as an
end-to-end framework resorting to the policy gradient tech-
nique [30], which naturally overcomes the differentiation
difficulty in the second stage of tree-based procedure. In-
stead of the hand-crafted adjustment scheme in instance
level, our optimization paradigm directly utilizes the gradi-
ent of collage criteria loss to optimize the collage tree struc-
ture in the level of probability space, which facilitates the
exploration of the optimal collage structure.

Furthermore, this field lacks a benchmark dataset with
sufficient labels for quantitative evaluation. To facilitate im-
age collage research, we propose AIC, a large-scale public-
available annotated dataset for image collage evaluation.

The major contributions can be summarized as follows.

• We propose a novel neural-based probabilistic tree
generator which constructs “soft” probabilistic tree
structure to build a probability space of correlation-

(a) VSM [23] (b) Ours

Figure 3. Due to the failure of fully exploring the structure space of
collage tree, the collage generated by the state-of-the-art method
(a) still contains images suffering severe aspect ratio distortion
(red dotted rectangle) and fails to place similar images together
(blue dotted ellipse). Our result (b) preserves aspect ratio and con-
tent correlation better.

preserving collage tree conditioned on the deep image
feature, aspect ratio and canvas size.

• We formulate the tree-based collage generation proce-
dure as a differentiable process for the first time, and
introduce an end-to-end learning strategy to perform
gradient-based structure optimization.

• We provide a large-scale public-available annotated
benchmark dataset for evaluation of image collage
method.

• We conduct extensive experiments and user study, and
show that our model outperforms the state-of-the-art
methods.

2. Related Work
Previous works on image collage mainly fall into two

categories, i.e. parametric method and partitioning-based
method. Our tree-based method belongs to the latter.

Parametric methods parameterize a collage with vari-
ables including position, scale, orientation and layer index
of each image and design well-defined objective functions
to solve the optimal variables directly [4,9,12,19,25–27,33,
36,40]. These works either modeled the problem via a prob-
abilistic graphical framework [19,25,26,33,36,40] or solved
the collage parameters in a heuristic manner [4, 9, 12, 27].
To preserve correlation among images, some methods ex-
ploited a feature space to acquire the correlation and pro-
jected the images into a visualization space [1, 13, 20, 21,
29, 39]. However, these methods introduce image overlap-
ping and artifact problem.

Partitioning-based methods partition the canvas and as-
sign each image with a corresponding region to compose
a collage [3, 8, 10, 16, 18, 23, 28, 31, 37, 38, 41]. Some
works utilized Voronoi tessellation [31] and packing al-
gorithm [18, 41] to allocate canvas space for the irregular
salient region of each image, which brought about image
artifacts when blending image boundaries. Hence, tree-
based collage is developed to preserve image content bet-
ter [3, 8, 16, 23, 28, 37, 38]. Atkins [3] first introduced tree-
based collage and solved tree structure in a beam-search
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Figure 4. The pipeline of our tree generator. Here the image collection size is four, and our feature extractor initially extracts feature of
each image. Subsequently the NNP and fusion module iteratively select child nodes to yield parent feature node in a bottom-up manner
until the root feature node of the probability collage tree is acquired. Finally, the edge classifier and node classifier generate pe and pn

respectively. σ is the softmax activation.

manner. Fan [8] employed genetic algorithm to improve [3]
via designing genetic operators of collage tree. Wu and
Aizawa [38] initialized tree structure in a greedy manner
and adjusted the layout iteratively according to the hand-
crafted distortion threshold. These tree-based methods all
designed heuristic hand-crafted rules to adjust tree struc-
ture, thus failed to fully explore the solution space. Re-
cently, Pan et al. [23] utilized back propagation to refine the
aspect ratio and splitting ratio of region box in [38]. How-
ever, the gradient in [23] still fails to flow back to optimize
the tree structure due to the undifferentiable characteristic
of the tree-based collage generation process. Different from
the prior work, we attack the key problem of differentiat-
ing the process via softening the discrete structure of col-
lage tree, and hence our gradient can directly update all the
structural details of collage tree.

3. Approach

Problem formulation. According to the literature, a high-
quality collage should satisfy the following criteria: 1)
Compact. The collage should fully utilize canvas space by
blank space minimization. 2) Ratio-preserving. Image in
the collage should suffer low aspect ratio distortion to retain
the aesthetics. 3) Content-preserving. Image content, espe-
cially the salient region, should prevent occlusion. And im-
age overlapping decreases the representativeness and aes-
thetics of the collage [23]. 4) Correlation-preserving. Re-
cent works show that placing correlated images together fa-
cilitates informativeness of the collage [18, 23, 38, 41].
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Figure 5. Our probabilistic collage tree softens the standard col-
lage tree structure via modeling the node type distribution as pn

and edge connection distribution as pe.

Therefore, given an image collection {Ii} ,canvas width
w and height h, we aim to design a tree generator G.
This generator constructs a collage tree τ in the first stage
and the tree is mapped to the final collage C via a map-
ping function g in the second stage. Supposing we in-
tegrate the above four criteria into one criterion function
F , our goal is to solve the optimal tree generator G∗ =
arg maxG F

(
g
(
G(w, h, {Ii})

))
.

Overview. To solve the above two-stage problem in an
end-to-end manner, firstly we propose a “soft” probabilistic
collage tree (PCtree) and design a differentiable tree gen-
erator to construct the PCtree. Secondly, we approximate
the gradient of criterion loss to optimize our generator via
back propagation. These two steps tackle the differentia-
tion problem of the two stages repectively. In the following
parts, we firstly present the PCtree, our tree generator and
the tree generation algorithm in Sec. 3.1. Afterwards we
introduce the model architecture of our neural generator in
Sec. 3.2. Finally we present our gradient-based optimiza-
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Algorithm 1: Tree construction process
Input: w, h, {Ii}

1 N ← size({fi}) ;
2 {fi} ← {FeatureExtractor(Ii)} ;
3 repeat
4 fnx , fny ← NNP ({fi}) ;
5 fnz ← FusionModule(fnx , fny ) ;
6 pe(nx, ny)← EdgeClassifier(fnx , fny ) ;
7 pn(nz)← NodeClassifier(fnz ) ;
8 Remove fnx , fny from {fi} and add fnz into {fi} ;
9 N ← N − 1 ;

10 until N = 1;

tion paradigm in Sec. 3.3.

3.1. Probabilistic Collage Tree Generation

Probabilistic collage tree. Standard collage tree represents
collage layout using discrete structural parameters includ-
ing edge connection and node type [3], while the proposed
probabilistic collage tree (PCtree) softens the parameters
via modeling the node type distribution (the cut type of the
node is designated as horizontal (“H”) or vertical (“V”)) as
pn and the edge connection distribution (the first child node
in the child list is designated as the left (“L”) or right (“R”)
child node) as pe, as shown in Fig. 5. The nodes in PCtree
and standard collage tree are in one-to-one correspondence.
Thus, given an interior node ñ in a PCtree with child nodes
ñi and ñj , and the nodes n, ni and nj (corresponding to ñ,
ñi and ñj respectively) in a standard collage tree, we define
pn,pe ∈ R2 as

p(0)n (ñ) = p
(
cn = “H”|τθ(ñi), τθ(ñj)

)
(1)

p(1)n (ñ) = p
(
cn = “V”|τθ(ñi), τθ(ñj)

)
(2)

p(0)e (ñi, ñj) = p
(
ln = ni, rn = nj |τθ(ñi), τθ(ñj)

)
(3)

p(1)e (ñi, ñj) = p
(
ln = nj , rn = ni|τθ(ñi), τθ(ñj)

)
(4)

where p(i)n and p(i)e denotes the i-th (i ∈ {0, 1}) component
of pn and pe respectively, cn is the cut type of n, ln is the
left child node of n, rn is the right child node of n, and
τθ(x) denotes the subtree of PCtree τθ rooted at node x.

Through softening the parameters, we build a probability
space for the collage tree and the likelihood of a standard
collage tree τ given the PCtree τθ can be calculated as

p(τ |τθ) =
∏

n∈N(τ)

p(1{cn=“V”})
n

(
ñ
)
× p(0)e

(
l̃n, r̃n

)
(5)

whereN(τ) is the interior node set of τ , ñ, l̃n and r̃n denote
nodes in the PCtree corresponding to n, ln and rn respec-
tively, and 1{·} is the indicator function (the value is 1 when
the condition is true, otherwise it is 0).
Generator components. To generate the PCtree, we de-
sign four learnable components, i.e. feature extractor, fu-
sion module, edge classifier and node classifier, as shown

in Fig. 4. Feature extractor extracts image semantic fea-
tures to learn correlation among images and embeds aspect
ratio and canvas information to learn layout adjustment. Fu-
sion module fuses the features of child nodes to yield parent
node feature for the bottom-up tree construction. Edge clas-
sifier determines the edge connection distribution between
child nodes and parent node. Node classifier predicts the
cut type distribution of interior nodes.
Tree construction algorithm. To preserve correlation
among images, we adopt nearest neighbor policy (NNP) to
conduct the tree construction in a greedy manner. Given a
list of features, our NNP finds the pair of features with the
closest Euclidean distance. The tree construction process is
described in Algo. 1, where fn denotes the feature of node
n. The time complexity of this algorithm is O(N2 logN)
with the use of priority queue and hash table, where N is
the size of image collection.

3.2. Model Architecture

In this section, we elaborate on the network architecture
of our four generator components.
Feature extractor. This component is composed of two-
path feature extractors, as shown in Fig. 4. One path em-
ploys a pre-trained backbone network to extract content fea-
ture f (i)bb (θbb) from each image Ii and the network param-
eter θbb is fine-tuned during training. Another path intro-
duces information embedding edw , edh , edar to inject can-
vas size and image aspect ratio signals and these signals are
fused via a fully connected layer and the ReLU activation
function [11] as

f
(i)
inf = ReLU

(
W1[w · edw , h · edh , ari · edar ]T + b1

)
(6)

Here, ari is the aspect ratio of image Ii, and we de-
notes the dimension of f (i)inf and f (i)bb (θbb) as dinf and dbb
respectively. The elements in the embedding row vectors
edw , edh , edar are all initialized to one and they are fine-
tuned during training. W1 and b1 are also learnable param-
eters. dw, dh, dar, dbb and dinf are hyperparameters.

Because the signals from these two paths are indepen-
dent, the leaf node feature fni

of image Ii is obtained via
concatenating these two feature vectors.

fni = concat
(
f
(i)
bb (θbb), f

(i)
inf

)
(7)

Fusion module. This module should obtain the parent fea-
ture node via symmetry invariant transforms of the two
given child nodes, i.e. ffus(fni

, fnj
) = ffus(fnj

, fni
)

where ffus denotes the fusion module. Our idea is to use
the self-attentive weighted sum of the two child features
to satisfy symmetry invariance. To obtain the weight vec-
tors, we utilize self-attentive embedding technique [17] to
design Eq. (10), which injects additive operation into the
aspect ratio information fusion process. Moreover, we uti-
lize self-attention mechanism [32] to pre-process the input
features for injecting multiplicative signal (Eq. (9)). Bene-
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Algorithm 2: Optimization procedure of our model
Input: w, h, {Ii}

1 Initialize θ randomly;
2 t← 0;
3 repeat
4 Construct probabilistic collage tree τθ via θ and π in

accordance with Algo. 1 ;
5 Sample {τi}M from p(τ |τθ) ;
6 Compute L(θ) via Eq. (17);
7 θ ← θ − α×∇θL(θ) ;
8 t← t+ 1;
9 until t ≥ Tm;

fiting from the two-stage transformation, the fusion module
is able to memorize a variety of subtree structure schemes,
which boosts the learning ability of the model.

f(i,j) = [fni
, fnj

]T (8)

f
′

(i,j) = Attention
(
f(i,j)WQ, f(i,j)WK , f(i,j)WV

)
(9)

A = softmax

(
Ws2

(
tanh

(
Ws1f

′

(i,j)

)))
(10)

fnp = Ws3flatten
(
Af
′

(i,j)

)
+ b2 (11)

Here, WQ ∈ Rd×dQ ,WK ∈ Rd×dK ,WV ∈
Rd×dV ,Ws1 ∈ Rd1×dV ,Ws2 ∈ Rd2×d1 ,Ws3 ∈
Rd×d2dV , b2 are all learnable parameters, where d is the
dimension of node feature. dQ, dK , dV , d1 and d2 are all
hyperparameters. Eq. (9) is the scaled dot-product attention
parameterized by dK [32].
Node classifier. A fully connected layer is utilized to model
this component as

pn(n) = softmax(W2fn + b3) (12)
where W2 and b3 are learnable parameters.
Edge classifier. Different from pn, binary function pe

owns the property that p
(0)
e (ni, nj) + p

(0)
e (nj , ni) =

p
(0)
e (ni, nj) + p

(1)
e (ni, nj) = 1, as shown in Fig. 4. Thus,

siamese network architecture [5] is employed to model this
component as

f
′′

(i,j) = W3concat(fni , fnj ) + b4 (13)

f
′′

(j,i) = W3concat(fnj
, fni

) + b4 (14)

pe(ni, nj) = softmax
(
f
′′

(i,j), f
′′

(j,i)

)
(15)

where W3 and b4 are learnable parameters.

3.3. Gradient-Based Optimization Paradigm

Through building the probability space of collage
tree, the tree-based collage generation problem formula-
tion can be modified as solving θ∗ subject to Gθ∗ =
arg maxθ Eτ∼L(τ ;θ,π)

[
F
(
g(τ)

)]
, where π denotes our

NNP, L(τ ; θ, π) = p
(
τ |w, h, {Ii}; θ, π

)
= p(τ |τθ) and θ

is the parameter of tree generator.

Loss function. We define Eτ∼L(τ ;θ,π) [F (g (τ))] as
Fθ(τ ;π) and approximate the gradient as

∇θFθ(τ ;π) ≈ ∇θ
(

1

M

M∑
i=1

F
(
g(τi)

)
log p(τ |τθ)

)
(16)

where M is the number of sample τi. Therefore, we define
the loss function as

L(θ) = − 1

M

M∑
i=1

F
(
g(τi)

)
log p(τ |τθ) (17)

In term of mapping funcition g, We initially utilize an
efficient mapping algorithm [8] to generate collage with
canvas blank loss rb, i.e. canvas blank space ratio, and
we stretch the overall collage to fit the canvas in the post-
processing process. Our approach avoids canvas blank
space by introducing little aspect ratio distortion. The rea-
son is that canvas blank loss has a significantly worse im-
pact on the user’s visual experience than aspect ratio loss,
provided that magnitudes of the both losses are similarly
small. Moreover, our mapping function benefits from [8] in
preventing image content occlusion.

With respect to criterion F , we mainly focus on the ratio
preservation criterion because our NNP and mapping func-
tion already consider the other three criteria. For this part,
we design a reward shaping function R for canvas blank
loss rb as

R(rb) =


−R0, r3 < rb

R0(rb−r2)
r2−r3 , r2 < rb ≤ r3

R0(log10 rb−log10 r2)
log10 r1−log10 r2

, r1 < rb ≤ r2
R0, rb ≤ r1

(18)
where R0 is the bound of reward value, r1, r2 and r3 are
specific blank loss values. The shape design of Eq. (18) is
based on the observation that the difficulty of decreasing rb
may be linear in the ratio interval of r2 to r3 and it may
increase exponentially when rb is below r2. R0, r1, r2 and
r3 are hyperparameters. And aesthetics property Faes pro-
posed in [23] is also included in F . Moreover, we design
the area penalty Fp to prevent model shrinking some im-
ages too much as

Fp(C) = −R0 × 1{∃I ∈ C min(hI , wI) ≤ sp} (19)
where I is an image in collageC and sp is a hyperparameter.
Therefore, criterion F is defined as
F (C) = λrR

(
rb(C)

)
+ λaFaes

(
C
)

+ λpFp
(
C
)

(20)
where λr, λa and λp are hyperparameters.
Optimization. Different from hand-crafted adjustment
scheme, our optimization paradigm exploits ∇θL(θ) to
optimize collage tree probability distribution p(τ |τθ) in
an end-to-end manner. Algo. 2 shows the optimization
paradigm of our model, where Tm is the maximum num-
ber of iterations and α is learning rate. At inference stage,
optimal collage tree τ∗ is determined with maximum likeli-
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Theme Animals Food Fruits Transportation Sports Office Baby Clothes Houseware Instrument Makeup

Percentage(%) 3.85 11.73 23.22 12.76 4.94 6.44 4.29 18.34 9.38 1.79 3.26

Table 1. The percentage of image number under each theme of ICSS.

hood method as
τ∗ = arg max

τ
p(τ |τθ) (21)

The detailed derivations in this section is presented in the
supplementary materials.

4. Experiments
Baselines. We select three representative tree-based meth-
ods as baselines, where one is the state-of-the-art method
[23], which is also the mostly related work with ours, and
the other two are widely-used commercial softwares [2, 6].
Metrics. We introduce five quantitative metrics to analyze
collage results, which are commonly used in state-of-the art
works. Among them, three metrics, i.e. compactness Mc,
ratio preservation Mr and nonoverlapping constraint Mo,
are defined identically to [23]. The other two metrics are
described as follows.

• Correlation preservationMn. Gathering correlated im-
ages can facilitate informativeness [18, 23, 38, 41].De-
spite Pan et al. [23] considered this end, their metric
is actually both an athlete and referee due to the lack
of groundtruth label. To tackle this problem, we col-
lected an annotated dataset in Sec. 4.1. Thus, we de-
fine Mn = 1

N

∑
I ‖PI −P cI‖2, where N is collection

size, PI is the position vector of image I and P cI is the
centroid position vector of category label cI of image
I . All position coordinates are normalized by w and h.

• Saliency loss Ms. This metric measures saliency
preservation ability. The collage mask is obtained
by replacing each image in collage with the corre-
sponding saliency mask. We define Ms = 1 −
|
⋃
I SI |/(

∑
I |SI |) where SI is the saliency mask of

image I ,
⋃
I SI is the collage mask and | · | operator

calculates the saliency area of mask.

4.1. Annotated Image Collection Dataset

Collage result for unlabeled image collection cannot sup-
port the calculation of Mn and Ms. To encourage research
works in this field to compete fairly, we collect an annotated
image collection dataset, namely AIC, based on saliency de-
tection dataset DUTS [34] which is partially collected from
ImageNet [7] and has high generalization ability [35].

Firstly we select 3402 images from DUTS to build the
image collection sampling source, namely ICSS, which
covers 72 categories and under each category there is at
least 10 images. Subsequently we divide 72 categories into
11 themes manually (Tab. 1). The aspect ratio of images in
ICSS ranges from 0.4625 to 1.9048. Each image in ICSS is

Method Backbone Mr Mn Ms

SHP [6] - 1.522 0.376 0.239
CLT [2] - 1.517 0.377 0.232
VSM [23] - 1.095 0.335 0
Ours ResNet-50 [14] 1.086 0.284 0

Table 2. Quantitative metric results on the train set of AIC.

Method Mr Mn

Ours w/o Backbone 1.107 0.379
Ours w/o Info 1.254 0.252
Ours w/o Fusion 30.721 0.212
Ours w/o SA 1.503 0.278
Ours (full) 1.086 0.284

Table 3. Ablation analysis of our method on the train set of
AIC. The first method removes the backbone network and sets
dar = 1024, dw = dh = 32, dinf = 1024. The second method
removes the information embedding in the extractor. The third
method replaces the fusion module with feature average opera-
tion. The fourth method removes the scaled dot-product attention
(Eq. (9)). More results are shown in the supplementary materials.

Method Pre-trained Identical theme Size Mr Mn

Ours " % = 1.155 0.273
Ours " " < 1.311 0.251
Ours " " > 1.164 0.254
Ours " " = 1.091 0.256
Ours % " = 1.083 0.249

Table 4. Generalization study of our method on the test set of AIC.
The model is directly trained on the test set when not pre-trained.
‘>’, ‘<’ and ’=’ represent cases where model is pre-trained on a
collection of larger, smaller and identical size respectively.

labeled with category, theme and saliency mask, thus image
collection sampled from ICSS is able to support the cal-
culation of Mn and Ms. With the idea of five-fold cross-
validation, we divide the images at a ratio of 4:1 in each
category into a train set and a test set, and both sets have a
near-identical distribution.

Finally, we develop an image collection sampling frame-
work to generate AIC from ICSS. This framework requires
that each image in one collection is sampled from one iden-
tical theme of ICSS. Moreover, each collection should in-
clude images from at least two categories and each category
in collection should have at least two images in order to
acquire effective Mn value. Additionally, category distri-
bution of each collection conforms to uniform distribution
and is not biased by prior category distribution in ICSS.
This framework samples train set and test set of AIC re-
spectively from train set and test set of ICSS. As a result,
AIC includes image collections with sizes of 10, 15, 20, 25,
30, 50 and 100. The train set has 562 image collections
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5-scale Excellent (4) Good (3) Borderline (2) Poor (1) Bad (0) Score Kappa

SHP [6] 17.5% 50.8% 27.5% 4.2% 0.0% 2.816 0.82
CLT [2] 16.7% 51.2% 28.8% 3.3% 0.0% 2.813 0.80
VSM [23] 29.2% 52.9% 15.4% 2.5% 0.0% 3.088 0.76
Ours 34.2% 51.7% 12.0% 2.1% 0.0% 3.180 0.80

Side-by-side Wins Equally Good Equally Borderline Equally Poor Losses ∆ Kappa

Ours v.s. SHP [6] 60.6% 28.1% 11.3% 0.0% 0.0% 60.6% 0.75
Ours v.s. CLT [2] 63.1% 26.3% 10.6% 0.0% 0.0% 63.1% 0.71
Ours v.s. VSM [23] 26.9% 57.5% 9.4% 0.0% 6.2% 20.7% 0.67

Table 5. 5-scale human evaluation along with side-by-side human evaluation of collage results on the AIC. The score in 5-scale evaluation
is the weighted average. ∆ in side-by-side evaluation denotes the gap between the win rate and the lose rate.

Method Recall Precision Accuracy F1-Score

SHP [6] 0.723 0.625 0.555 0.658
CLT [2] 0.735 0.631 0.564 0.663
VSM [23] 0.808 0.703 0.618 0.745
Ours 0.865 0.771 0.669 0.810

Table 6. The results of information conveying test. We investi-
gate four indicators, i.e. recall, precision, accuracy and F1-score
to evaluate the information conveying ability of collages.

including 18535 images and the test set has 62 image col-
lections including 1260 images. The framework is detailed
in the supplementary materials.

4.2. Experiment Settings

Experimental data. We use the train set* of AIC for the
baseline comparison experiment and the ablation analysis,
and the test set for generalization study. The user studies are
conducted with the collage results on the train set of AIC.
Implementation details. We implement the proposed
framework using the PyTorch toolbox [24] on one GeForce
RTX 3090 GPU. We adopt the ResNet-50 [14] pre-trained
on the ImageNet [7] as the backbone network in our fea-
ture extractor and use the Adam optimizer [15] to train our
model for each image collection. The other implementation
details are presented in the supplementary materials.

4.3. Quantitative Experiments

Comparison to baseline methods. Comparing to baseline
methods, our method achieves similar or betterMr,Mn and
Ms metric results on the AIC, shown in Tab. 2. As for Mc

and Mo, baseline methods and our model all achieve the
optimal zero value due to the advantage of tree-based struc-
ture, and thus they are not included in Tab. 2 for concise-
ness. Fig. 7 shows some comparison results. More results
are presented in the supplementary materials.
Ablation analysis. To show the detailed contributions of
the components in our model, we conduct ablation experi-
ments on the AIC (Tab. 3). Only Mr and Mn metrics are
demonstrated because the other metrics do not change in the

*We learn a specific generator in each image collection respectively in
the train set. Thus, our train set is different from the definition of train set
in the traditional deep learning context.

Figure 6. Replacing the fusion module of our generator with fea-
ture average operation results in collages with only vertical cut.

ablation. It is shown that the backbone network and the in-
formation embedding in the feature extractor are effective in
preserving correlation and reducing ratio distortion respec-
tively. The results also demonstrate that the fusion mudule
is critical to the learning ability of our model, without which
our model can only yield vertical cut in collage (see Fig. 6)
and thus produces bad results. Moreover, the self-attention
mechanism improves our model much due to the injection
of multiplicative operation of aspect ratio information.
Generalization study. Different from the prior work, our
generator can learn layout knowledge during optimization
and generalize to other collection without training. To study
the bottleneck data factors that impact the model generaliza-
tion ability, we conduct an analysis via controling variates
of theme and collection size, shown in Tab. 4. The pre-
trained collections are randomly selected as long as they
satisfies the corresponding conditions. Tab. 4 shows that the
size of pre-trained collection has more significant impact on
model generalization ability than the theme of that.

4.4. User Studies

Besides the quantitative measures, we conducted two
user studies to evaluate the effectiveness of our method. We
select 16 image collections for this stage, which cover all
sizes and themes of the collections in the AIC. Each user
study was conducted with different groups of participants
via different questionnaire, and collages in each question-
naire were ordered in a random way to avoid biasing judges.
Human evaluation. Firstly we carried out the 5-scale eval-
uation. To measure the gain in our method over the base-
lines, we also conducted the side-by-side evaluation. This
comparative task is easier than 5-scale rating task for human
and thus can produce more reliable results. Additionally,
Fleiss’ Kappa score is used to gauge the reliability of the
agreement between evaluators. The details of these eval-
uations are presented in the supplementary materials. The
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SHP [6] CLT [2] VSM [23] Ours w/o Fp Ours

Figure 7. Comparison of the collage results generated by different methods on the AIC. We can see that SHP [6] and CLT [2] both
introduce content occlusion (red dotted rectangle) into the images in collage. Despite VSM [23] circumvents this defect, the results still
contain images suffering high aspect ratio distortion (red dotted rectangle), particularly when the image collection size is large. However,
our method takes advantage of the probability space to produce results closer to the global optimal. Notably employing loss function
without Fp of Eq. (19) to train our model leads to drastic imbalance in image area assignment in collages.

results, illustrated in Tab. 5, suggest that our method is sub-
stantially superior to all baselines in producing high-quality
collage from human’s perspective. The high Kappa scores
imply that a major agreement prevails among the evaluators.

Information conveying test. We further validate the effec-
tiveness of our NNP via the information conveying test ac-
cording to [22, 23]. Twenty subjects participated in the test
and they were equally divided into four groups. Each group
corresponds to one collage method. For each image collec-
tion, we showed participants the corresponding collage for
20 s and then asked them to perform a binary classification
test, namely selecting the images that they had seen in the
collage, on an image set including five groundtruth images
and five negative samples (sharing the identical theme with
the groundtruths). Tab. 6 shows the test results. Our col-
lage benefits from the NNP and thus outperforms the other
baselines. We find that the images selected by participants
account for approximately 72%, which implies that partic-

ipants are inclined to choose more images as remembered,
leading to a higher recall than precision.

5. Conclusion
In this paper, we present SoftCollage, a novel tree-based

collage method. Our key idea is to soften the discrete tree
structure into the probability space. By modeling the con-
ditional probability distribution of collage tree via the pro-
posed tree generator, we can formulate the collage genera-
tion as a differentiable process and optimize the layout with
the gradient of criterion loss instead of the hand-crafted ad-
justment scheme. We demonstrate the effectiveness of our
method via extensive experiments on the proposed large-
scale dataset AIC. Currently, the GPU memory consump-
tion of our model is high when the size of image collec-
tion is large. Because of the extensibility of our method in
model architecture design, in the future we will explore the
lightweight design and knowledge distillation of our model.
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