Contextualized Spatio-Temporal Contrastive Learning with Self-Supervision

Liangzhe Yuan\(^1\) Rui Qian\(^{1,2,*}\) Yin Cui\(^1\) Boqing Gong\(^1\) Hartwig Adam\(^1\) Ting Liu\(^1\)
Florian Schroff\(^1\) Ming-Hsuan Yang\(^1\)
\(^1\)Google Research \(^2\)Cornell University

Abstract

Modern self-supervised learning algorithms typically enforce persistency of instance representations across views. While being very effective on learning holistic image and video representations, such an objective becomes suboptimal for learning spatio-temporally fine-grained features in videos, where scenes and instances evolve through space and time. In this paper, we present Contextualized Spatio-Temporal Contrastive Learning (ConST-CL) to effectively learn spatio-temporally fine-grained video representations via self-supervision. We first design a region-based pretext task which requires the model to transform instance representations from one view to another, guided by context features. Further, we introduce a simple network design that successfully reconciles the simultaneous learning process of both holistic and local representations. We evaluate our learned representations on a variety of downstream tasks and show that ConST-CL achieves competitive results on 6 datasets, including Kinetics, UCF, HMDB, AVA-Kinetics, AVA and OTB. Our code and models will be available at https://github.com/tensorflow/models/tree/master/official/projects/const_cl.

1. Introduction

Self-supervised learning (SSL) has revolutionized natural language processing [12, 32] and computer vision [3, 4, 9, 23] due to strong representations learned from a vast amount of unlabeled data. The key breakthroughs that paved the way for SSL’s success in computer vision come from the instance discrimination pretext task [16] and the contrastive objective [39], with which for the first time the self-supervised pretraining surpasses the supervised pretraining on downstream visual tasks [26]. For videos, many self-supervised contrastive learning approaches [3, 4, 18, 43] directly extend established image-based methods [9, 26] to the spatio-temporal domain. Most of them, however, do not explicitly exploit the temporal evolutions of multiple instances and scene context in videos.

Self-supervised learning methods typically enforce semantic consistency across views to construct instance representations [9, 26]. This assumption is particularly true in the image domain because two views are typically generated from the same image. As shown in Fig. 1a, the goal is to enforce the representations of these two views to be as close as possible in the feature space. In the video domain, these view-based contrastive approaches [18, 43] may be less effective as the visual appearance of an instance frequently and drastically changes across frames. For example, one person in a video can have different poses and perform different activities over time, indicating the states and semantics of an instance are likely to change across space and time. Enforcing spatio-temporal persistency throughout the video [18] would lead to representations only encoding minimally shared information across frames, which may negatively impact spatio-temporally fine-grained downstream tasks.

Furthermore, existing self-supervised methods typically
focus on learning representations for holistic visual understanding tasks [9,43], such as image classification and video action recognition. For dense prediction tasks, such as object detection, action localization and tracking, those models are enhanced by adding task specific heads. On the other hand, several approaches are designed to learn discriminative local features for dense prediction tasks [22,53,60,61], but their performances on holistic visual understandings are often compromised [58]. In light of this, we are interested in learning representations that can be applied to both holistic and local video tasks.

We propose Contextualized Spatio-Temporal Contrastive Learning (ConST-CL), illustrated in Fig. 1b, to circumvent the undesirable strong spatio-temporal persistency enforced by the global contrastive objective. ConST-CL learns semantically consistent but discriminative local representations for various video downstream tasks, ranging from spatio-temporal action localization and object tracking to action recognition. Specifically, we design a projection function $g(\cdot)$ to take not only the instance feature but also the context feature into account, where the instance feature is extracted from the source view of a video, and the context feature is sampled from the target view. This task enforces the model to be context-aware in a video and thus is a good proxy to learn discriminative local representations.

To address the imbalanced capability of learning holistic and local video representations, we design a simple two-branch module to facilitate the network to learn high-quality video representations both globally and locally in one unified self-supervised learning scheme.

We evaluate the learned representations on a variety of downstream tasks. For holistic representations, we evaluate with video action recognition on Kinetics400 [30], UCF101 [47] and HMDB51 [31] datasets. For local representations, we conduct experiments with spatio-temporal action localization on AVA-Kinetics [35] and AVA [24] datasets, and the single object tracking on the OTB2015 [56] dataset. Our experimental results show that by pretraining with ConST-CL, the learned representations adapt well across all studied datasets, surpassing recently proposed methods that use either supervised pretraining or the self-supervised pretraining [18,21,43,60].

The main contributions of this work are:

- A region-based contrastive learning framework for fine-grained spatio-temporal representation learning.
- A contextualized region prediction task that facilitates learning semantically consistent while locally discriminative video features.
- A simple network design to effectively reconcile simultaneous holistic and local representation learning.
- Competitive performance on 6 benchmarks, including spatio-temporal action localization, object tracking, and video action recognition.

2. Related Work

Self-supervised learning in images. To effectively learn representations from images, early self-supervised methods focus on designing pretext tasks by experts. Various pretext tasks have been proposed, including colorization [33], inpainting [40], denoising [51], egomotion prediction [2], context prediction [14], orientation prediction [20], spatial jigsaw puzzle [38], etc. Recent advances in image self-supervised learning stem mainly from minimizing contrastive loss [39] on instance discrimination tasks [16]. The contrastive objective effectively enforces representations of the same instance from different views to be similar, while it repels representations from different instances in the latent space. Representative frameworks in this category include NPID [57], MoCo [10,26], SimCLR [9], etc.

Self-supervised learning in videos. In the video domain, self-supervised representation learning prospers in recent years. Contrastive objectives have been widely used to learn video representations for holistic recognition tasks [18,43,44,46,62]. Extensive pretext tasks have been exploited to learn good representation in videos. Compared with the image domain, videos naturally yield richer self-supervision signals. In [44], the goal is to enforce global context consistency and utilize long-short views of a video to align representations. In [54], the action and context features are factorized separately by learning from the conjugate examples in video dataset. Motion signals are also exploited for learning good representations [25,48]. Temporal ordering of frames in a video has also been used for self-supervised representation learning. For instance, in [34,36], temporal ordering of frames is enforced to learn representations by scuffling frames in a self-supervised manner. Similarly, forward and backward ordering of frames is used as the self-supervision signals for representation learning [55]. In addition, temporal cycle consistency is exploited to learn spatio-temporal correspondence between video frames [29,52]. On the other hand, multi-modal signals, such as audio/visual and visual/text, have been used to learn representations in a self-supervised manner that outperform models based on a single modality [4,5,37,41].

Local representations. Although existing methods focus on learning holistic representations on images or videos, several recent approaches explicitly model spatially fine-grained representations. In [8,53], several constrastive learning models have been developed for dense prediction tasks, such as object detection and image segmentation. In addition, augmented samples with pseudo ground-truth are generated to learn dense features for object detection [13,61]. Other methods introduce location priors to group pixels for learning local features. For example, [28,49,64] use unsupervised masks and [42,59] use pixel coordinates. In the video domain, many methods learn fine-grained features by
leveraging inherent temporal augmentations to determine object correspondence [22, 29, 60, 63]. [22] randomly samples two images from a video to construct the contrastive pairs for self-supervised learning and shows improved performance on video tasks. [63] employs pretext tasks of determining whether frames are from the same video and their temporal ordering. [60] observes the emergence of correspondence by learning frame-level similarity. [29] enforces forward-backward temporal consistency to learn local correspondences in videos. Most of the existing approaches focus on learning local representations and do not emphasize performances on holistic tasks. [58] explicitly raises the question about simultaneously learning holistic and local representations but only focuses on the image domain.

Different from these related works, our method leverages video context during self-supervised learning by employing a novel region-based prediction tasks, and is designed to learn holistic and local representations simultaneously with self-supervision from unlabeled videos. Unlike most of the aforementioned methods that focus on learning either holistic or local representations, we emphasize the quality of both under one unified training scheme.

3. Method

In this section, we introduce the proposed self-supervised learning framework, Contextualized Spatio-Temporal Contrastive Learning (ConST-CL) for learning spatio-temporally fine-grained representations in videos.

3.1. Region-Based Contrastive Learning in Videos

Given a video, a simple contrastive learning algorithm randomly samples two video clips \(\{x, x'\} \), and applies random data augmentation on each video clip independently. Corresponding video-level representations \(\{z, z'\} \in \mathbb{R}^C \) are extracted by the network \(f(\cdot) \) for computing a contrastive loss [39], with negative examples from other videos. We denote this video-level global contrastive loss as \(L_g \).

This training objective enforces globally average-pooled features from the same video to be similar while it repels such features from different videos. However, no explicit supervision is enforced on local features, which play an important role for dense prediction tasks.

To enforce local supervision, one way is to extend [53] to the spatio-temporal domain. Given the dense feature maps \(\{F, F'\} \in \mathbb{R}^{T \times H \times W \times C} \) from \(\{x, x'\} \), where \(T, W, H, C \) are time, height, width and channel dimension respectively, for each feature voxel \(h_i \in F \), we find its correspondence \(h'_j \in F' \) that is closest to in the feature space to form a positive pair. Thus, the dense contrastive loss in a video can be formulated as:

\[
L_e = \sum_i - \log \frac{\exp(z_i \cdot z'_j / \tau)}{\sum_k \exp(z_i \cdot z'_k / \tau)}
\]

s.t. \(j = \arg\min_j h_i \cdot h'_j \) \hfill (2)

where MLP refers to a multi-layer perceptron, \(\tau \) is the temperature parameter, \(i, j \) and \(k \) are grid indices, and \(\{z\} \) are

Figure 2. Contextualized Spatio-Temporal Contrastive Learning. Two spatio-temporally distant views are randomly sampled from one video and their dense representation feature maps \(\{F, F'\} \) are extracted by the base network \(f(x) \). Region features \(\{h, h'\} \) are pooled from respective dense feature maps by spatio-temporal ROIAlign and \(F'_c \) are a set of context features sampled from the dense feature maps \(F' \). The projection head \(g(h, F'_c) \) is learned to transform representations \(h \) from one view to the other, guided by the context features \(F'_c \).

We use the transformer [50] architecture that takes region feature \(h \) as Query and context features \(F'_c \) as Keys and Values. The InfoNCE loss is used to encourage the similarity between the reconstructed representations \(z \) and their correspondences \(h' \).
features, with Contrastive Learning (ConST-CL). In a nutshell, ConST-CL is a supervised method, Contextualized Spatio-Temporal contrastive learning by organizing the representations from other videos. Here, we simply regard all the dense features from other videos as negative examples for loss computation.

Assuming that we have access to the location priors of regions of interest \(\{ r_i \} \), we can derive the vanilla region-based contrastive learning by organizing the representations using the region location:

\[
 z_i = g(h_i) = \text{MLP}(\text{ROIAlign}(F, r_i)),
\]

where we override the notation \(h_i \) to be the pooled region features, with \(i \) being the region index. In this paper, we parameterize a region as a bounding box of a certain frame \(r = \{ t, x_{\min}, y_{\min}, x_{\max}, y_{\max} \} \). The region representation \(h_i \) is pooled from the dense feature map \(F \) by ROIAlign [45].

The full learning objective is the linear combination of the global loss and the local loss weighted by the scale factor \(\omega \). And we average over the \(N \) mini-batch during training:

\[
 \mathcal{L} = \frac{1}{N} \sum (\mathcal{L}_g + \omega \mathcal{L}_r).
\]

3.2. Contextualized Spatio-Temporal Contrastive Learning (ConST-CL)

The vanilla region-based contrastive learning framework described in Section 3.1 has one limitation: the loss always encourages the representations of the same instance at different timestamps to be similar, while the appearance of an instance in a video may change across frames. For example, one person in a video can appear in different poses and perform different activities. Simply enforcing the similarity of the same instance at different temporal locations of the video will inadvertently encourage the model to encode only the minimal information, which is less effective for downstream video understanding tasks.

To resolve this issue, we propose a novel self-supervised method, Contextualized Spatio-Temporal Contrastive Learning (ConST-CL). In a nutshell, ConST-CL requires the network to learn to “reconstruct” the representation of a region in a target view given its representation from the source view and the context features around the target view.

\[
 z_i = g(h_i, F'_c) = g(\text{ROIAlign}(F, r_i), F'_c),
\]

\[
 \mathcal{L}_r = \sum_i - \log \frac{\exp(z_i \cdot h'_j / \tau)}{\exp(z_i \cdot h'_j / \tau) + \sum_k \exp(z_i \cdot \hat{h}_k / \tau)},
\]

s.t. \(j = \text{argmin}_j h_i \cdot h'_j \),

where \(F'_c \) denotes the set of context features around the target view, and \(i, j, k \) and \(\hat{h} \) are region indices, and \(\{ \hat{h} \} \) are representations from other videos. Here we would like to note: (1) comparing with Eq. (3), we extend the representation decoding function \(g(\cdot) \) from an unary function to a binary function \(g(\cdot, \cdot) \) in Eq. (5); (2) we do not force bijective mapping between regions in two clips, so the different numbers of regions between views do not cause a problem.

Eq. (5-6) formulate ConST-CL in a general manner, which considers all regions from all frames. It might pose computational challenges, so in practice, we instead construct two sets of regions by sampling from one temporal slice of each feature map. The temporal sampling strategy will be discussed in the following ablation studies.

Fig. 2 shows an illustration of ConST-CL. Given a pooled region feature \(h_i \) from the source view and a set of context features \(F'_c \) from the target view, a projection function \(z_i = g(h_i, F'_c) \) is learned with the objective to minimize the representation distance between the reconstructed relating representation \(z_i \) and its corresponding native representation \(h'_j \) in the target view. The context features \(F'_c \) are a subset of feature voxels sampled from the dense feature map \(F' \). In our case, we subsample a few frames from the dense video representations \(F' \) along the temporal dimension. We define the number of frames used to construct \(F'_c \) as the context length, whose effect on the performance is studied in Section 4.4. Different from simply contrasting features that are projected into the shared feature space, ConST-CL requires every feature vector in \(\{ F, F' \} \) to encode more information about itself and the context, such that with context features from another view, \(g(\cdot, \cdot) \) can reconstruct the instance encoding conditionally.

We implement \(g(\cdot, \cdot) \) using a transformer [50] architecture. First, we linearly project each instance feature vector from the source view \(h_i \) to a Query token, and the context feature vectors from the target view \(F'_c \) to Key-Value token pairs. The multi-head cross-attention is then used to look up the Key-Value pairs by the Query token. Finally, we apply the InfoNCE loss [39] on the transformed instance feature \(z_i \) and its correspondence \(h'_j \) using Eq. (6).
3.3. Region Generation

Random boxes. Generating random boxes on-the-fly during the training is the most straightforward method. For all of our related experiments, we randomly generate 8 boxes on each frame. In Section 4.4, we show that our method performs interestingly well trained with these random boxes.

Boxes from low-level image cues. We also consider two methods to generate boxes from low-level image cues. Specifically, we use the SLIC [1] algorithm to generate 16 superpixels on each frame. Following [28], we alternatively use the graph-based image segmentation method [19] to generate 16 image segments for each frame.

Boxes from detectors. We also use off-the-shelf modern detectors to generate object-centric bounding boxes for weakly supervised learning. A CenterNet-based [66] person detector is employed to generate bounding boxes on persons only. As an alternative, we use a generic object detector, which is based on Cascade RCNN [17].

3.4. Balancing Global and Local Losses

Existing methods [60,65] have shown discriminative local features can be extracted by applying supervisory signals on holistic representations. Intuitively, adding constraints on both holistic and local representations are mutually beneficial, because discriminative local features would contribute to holistic recognition, while expressive holistic features could be derived from local features. In practice, however, we find that directly adding the proposed region-based local loss on the dense feature map right before the average pooling layer in the ResNet, the self-supervised training is less stable and sensitive to the hyper-parameters for balancing the global and local losses.

To address this issue, we propose a simple solution. As we use ResNet3D-50 as our base model, instead of adding the local loss on the $C5$ endpoint, we modify the ResNet architecture and replicate the $res5$ block, forming a “Y” structure, as shown in Fig. 3. Then the global and local losses are attached on endpoint $C5_g$ and $C5_r$, respectively, and they co-constrain the latent feature map in $C4$ during training. When fine-tuning the model for downstream tasks, we take either $C5_g$ or $C5_r$ branch depending on the task. This design introduces only moderate additional computes during the pre-training stage and is at no extra cost for fine-tuning and inference. We will show in Section 4.4 that the proposed “Y” structure results in better trade-off for both video-level and instance-level downstream tasks.

4. Experiments

We evaluate clip-level video representation models on the Kinetics400 [30] dataset following the linear probing protocol, and the UCF101 [47] and HMDB51 [31] datasets using both linear probing and fine-tuning. To evaluate the learned spatio-temporally fine-grained representations, we conduct experiments on the AVA-Kinetics [35] and AVA v2.2 [24] datasets for spatio-temporal action localization and the OTB2015 [56] dataset for single object tracking.

4.1. Implementation Details

We use the ResNet3D-50 (R3D50) as our backbone feature extractor following [43]. All features are ℓ_2 normalized before being used to compute the self-supervised loss.

For the holistic representation learning branch, we use a 3-layer MLP with 2048 hidden nodes to project a 2048-dimensional feature vector into a 128-dimensional feature vector. On the local representation learning branch, we use the same attention-based architecture as described in [50]. The attention units are stacked into multiple heads and layers to construct the ConST-CL head for the instance prediction task. In this work, the head of ConST-CL consists of 3-layer 3-head attention units with hidden dimension of 128. We use the ReLU activation function without dropout. A final linear layer is used to project the 128-dim feature vector back to 2048-dim. We add spatio-temporal positional encodings to the query, key and value tokens before inputting into the transformer head in order to preserve location information. To construct contrastive pairs for local branch, we always sample examples from the center frame in both views for the experiments unless otherwise specified. The self-supervised pre-training is performed on the Kinetics400 [30] dataset. During evaluations, all the heads used for self-supervised learning are discarded.

All models are pre-trained with mini-batch of 1024. During the pre-training, we use the SGD optimizer with momentum of 0.9. The learning rate is linearly warmed-up to 40.96 during the first 5 epochs, followed by half-period cosine learning rate decay [27] to 0. A weight decay of 10^{-6} is applied to all kernels. We set the temperature τ to be 0.1 for the global loss and 0.2 for the local loss. The scale factor ω is 0.01 to balance the global and local losses.

For results in Table (1,2), we pre-train the backbone model for 200k steps, which is around 850 epochs on the Kinetics400 dataset with the randomly generated region boxes. And the context length is set to 5. For all ablation studies, we use backbone models from a shorter pre-training schedule, which trains for 100k steps.

4.2. Downstream Tasks

It is of great interest to understand whether one representation model can be applied to both holistic and local understandings, as intuitively the better local representations can facilitate holistic recognition tasks and vice versa. In this work, we apply the learned representation models to (1) video action recognition tasks that require holistic representations on the Kinetics400 [30], UCF101 [47] and HMDB51 [31] datasets; and (2) spatio-temporal action lo-
Table 1. Downstream task performances based on pre-trained representations.

<table>
<thead>
<tr>
<th>Method</th>
<th>Backbone</th>
<th>Pre-training Dataset</th>
<th>AVA-Kinetics</th>
<th>AVA</th>
<th>Object Tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>mAP (GT)</td>
<td>mAP (Det)</td>
<td>mAP (GT)</td>
</tr>
<tr>
<td>INet-sup [35]</td>
<td>I3D</td>
<td>K400</td>
<td>35.9</td>
<td>22.9</td>
<td>27.5</td>
</tr>
<tr>
<td>K400-sup</td>
<td>R3D50</td>
<td>K400</td>
<td>26.7</td>
<td>19.8</td>
<td>-</td>
</tr>
<tr>
<td>SimSiam [11]</td>
<td>R50</td>
<td>INet</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VINC [22]</td>
<td>R50</td>
<td>R2V2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SeCo [63]</td>
<td>R50</td>
<td>K400</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VFS [60]</td>
<td>R50</td>
<td>K400</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ρMoCo [18]</td>
<td>Slow-only</td>
<td>K400</td>
<td>-</td>
<td>-</td>
<td>20.3</td>
</tr>
<tr>
<td>ρBYOL [18]</td>
<td>Slow-only</td>
<td>K400</td>
<td>-</td>
<td>-</td>
<td>23.4</td>
</tr>
<tr>
<td>VFS-inflated</td>
<td>R3D50</td>
<td>K400</td>
<td>34.6</td>
<td>25.9</td>
<td>29.1</td>
</tr>
<tr>
<td>CVRL [43]</td>
<td>R3D50</td>
<td>K400</td>
<td>31.6</td>
<td>24.1</td>
<td>24.9</td>
</tr>
<tr>
<td>ConST-CL</td>
<td>R3D50</td>
<td>K400</td>
<td>39.4</td>
<td>30.5</td>
<td>31.1</td>
</tr>
</tbody>
</table>

The learned representations are evaluated for spatio-temporally fine-grained tasks, including spatio-temporal action recognition on the AVA v2.2 and AVA-Kinetics (using both ground-truth and detected person boxes) and single object tracking on OTB2015. ConST-CL achieves the state-of-the-art results across the board, suggesting the effectiveness of our proposed framework that is capable of coherently learning better local visual representations in videos.

4.3. Main Results

In Table 1, we study the model performance on dense vision tasks by using the pre-trained models from different methods. We evaluate the spatio-temporal action localization on the AVA-Kinetics [35] and AVA v2.2 [24]. Following [21, 35], the models are evaluated under two settings: using either ground-truth boxes or detected boxes as region proposals on the validation set. On AVA-Kinetics, ConST-CL achieves 39.4% mAP when using ground-truth boxes and 30.5% mAP when using detected boxes, outperforming the supervised method [35] by a large margin. ConST-CL also outperforms the baseline self-supervised method CVRL [43] model with more than 24% relative performance gain. In addition, we compare to the VFS [60] which is designed for dense vision tasks. As VFS uses 2D ResNet, we follow the common practice to inflate all 2D kernels in the network into 3D [7] and load the pre-trained weights from VFS for the fair comparison. In the table, ConST-CL outperforms the VFS-inflated method by more than 4.6% mAP, showing the effectiveness of our proposed method on spatio-temporal action recognition task. On the AVA v2.2, we observe similar trend that ConST-CL outperforms competing methods, achieving 31.1% and 24.1% mAP using ground-truth and detected boxes respectively.

On OTB2015 [56], we first compare with prior methods designed for dense task only. Table 1 shows that ConST-CL outperforms the evaluated methods by a large margin. Specifically, compared to VFS [60], ConST-CL achieves 78.1%(+Δ4.2%) in precision score and 55.2%(+Δ2.7%) in success score. To rule out the effect of architecture difference (2D network vs. 3D network), we inflate the 2D ResNet into 3D and load the VFS pre-trained checkpoint, denoted as VFS-inflated in the table. Compared to VFS, VFS-inflated performs similarly to its 2D counterpart, which indicates the effect of this architecture differ-

1 We use the same set of boxes as in [18, 35] for fair comparisons.
Table 2. **Downstream video action recognition.** ConST-CL achieves competitive results on fine-tuning experiments, indicating it can learn strong holistic visual representations in videos.

<table>
<thead>
<tr>
<th>Method</th>
<th>Frames</th>
<th>Params (M)</th>
<th>FLOPs (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVRL</td>
<td>16×2</td>
<td>44.6</td>
<td>91.2</td>
</tr>
<tr>
<td>ρMOCO (ρ=2)</td>
<td>8×2</td>
<td>44.6</td>
<td>83.6</td>
</tr>
<tr>
<td>ρBYOL (ρ=4)</td>
<td>16×2</td>
<td>44.6</td>
<td>167.0</td>
</tr>
<tr>
<td>ConST-CL</td>
<td>16×2</td>
<td>71.7</td>
<td>113.0</td>
</tr>
<tr>
<td>ρMoCo (ρ=2)</td>
<td>16×2</td>
<td>44.6</td>
<td>167.0</td>
</tr>
<tr>
<td>ρMoCo (ρ=4)</td>
<td>16×2</td>
<td>44.6</td>
<td>167.0</td>
</tr>
<tr>
<td>ConST-CL</td>
<td>16×2</td>
<td>71.7</td>
<td>113.0</td>
</tr>
</tbody>
</table>

Table 3. **Model sizes and computational costs** for different SSL methods with video-based networks. The SSL heads are included for the parameter and FLOPs counts.

Table 4. **Ablation on the temporal sampling strategy.** The “Center” and “Nearest” temporal sampling strategy perform equally well and better than “Random” sampling for ConST-CL.

<table>
<thead>
<tr>
<th>Method</th>
<th>Endpoint</th>
<th>UCF</th>
<th>HMDB</th>
<th>AVA-K</th>
<th>OTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVRL</td>
<td></td>
<td>91.6</td>
<td>66.2</td>
<td>30.9</td>
<td>75.9</td>
</tr>
<tr>
<td>ConST-CL</td>
<td>Random</td>
<td>56.2</td>
<td>57.8</td>
<td>34.8</td>
<td>75.4</td>
</tr>
<tr>
<td>ConST-CL</td>
<td>Center</td>
<td>94.1</td>
<td>67.7</td>
<td>36.9</td>
<td>77.1</td>
</tr>
<tr>
<td>ConST-CL</td>
<td>Nearest</td>
<td>93.8</td>
<td>68.1</td>
<td>36.9</td>
<td>76.4</td>
</tr>
</tbody>
</table>

Table 5. **Ablation on the loss endpoints.** We apply region-based contrastive loss on different endpoints and show that the $C_5 + C_5$ configuration achieves the best trade-off between the global and local losses with the best downstream task performances.

<table>
<thead>
<tr>
<th>Method</th>
<th>Endpoint</th>
<th>UCF</th>
<th>HMDB</th>
<th>AVA-K</th>
<th>OTB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CVRL</td>
<td></td>
<td>91.6</td>
<td>66.2</td>
<td>30.9</td>
<td>75.9</td>
</tr>
<tr>
<td>ConST-CL</td>
<td>C_4</td>
<td>93.5</td>
<td>67.5</td>
<td>32.0</td>
<td>75.3</td>
</tr>
<tr>
<td>ConST-CL</td>
<td>C_5</td>
<td>93.4</td>
<td>66.7</td>
<td>33.6</td>
<td>74.3</td>
</tr>
<tr>
<td>ConST-CL</td>
<td>$C_5 + C_5$</td>
<td>94.3</td>
<td>68.7</td>
<td>36.7</td>
<td>77.7</td>
</tr>
</tbody>
</table>

Temporal sampling strategy. To construct the contrastive region pairs, we sample one frame from the source and the target clip respectively. In Table 4, we study three different temporal sampling strategies. For “random” strategy, we randomly sample frames from the source and the target views to construct the contrastive pairs. For “center” strategy, we simply choose the center frame from the dense feature maps in both views for ConST-CL. For “nearest” strategy, we always choose the temporally closest frame pairs from two views. If two randomly sampled clips temporally overlap, then we draw samples from their overlapping frames. Otherwise, frames at the closest two ends of the video clips are selected. Table 4 shows that the “random” sampling strategy is consistently worse than the other approaches. This can be attributed to the temporally random sampling introduces significant noise and negatively affect the model performance. We do not see significant performance differences by using the “center” or “nearest” sampling strategy. For the simplicity, we choose the “center” sampling strategy throughout our experiments.

Loss endpoints. We analyze how global and local contrastive losses can be integrated together for vision tasks. In this study, we attach the proposed local loss to different endpoints of the network and analyze how it interacts with the global loss. As shown in Fig. 3(a) the region features are from the C_5 endpoint for this model. For the model in Fig. 3(b), we first perform a 2×2 average pooling on the C_4 feature map to reduce its spatial resolution from 14×14 to 7×7 and then apply the region-level loss. For the model in Fig 3(c), we duplicate the $res5$ block of the network and then apply the global loss on C_5 branch and the region loss on the C_5 branch respectively. During the inference stage for the model in Fig 3(c), we use feature maps from C_5 and C_5' for video and instance-level tasks respectively. In Table 5, we observe that by simply adding the proposed region-based contrastive loss on C_4 or C_5, ConST-CL out-

4.4. Ablation Study

Temporal sampling strategy. To construct the contrastive region pairs, we sample one frame from the source and the target clip respectively. In Table 4, we study three different temporal sampling strategies. For “random” strategy, we randomly sample frames from the source and the target views to construct the contrastive pairs. For “center” strategy, we simply choose the center frame from the dense feature maps in both views for ConST-CL. For “nearest” strategy, we always choose the temporally closest frame pairs from two views. If two randomly sampled clips temporally overlap, then we draw samples from their overlapping frames. Otherwise, frames at the closest two ends of the video clips are selected. Table 4 shows that the “random” sampling strategy is consistently worse than the other approaches. This can be attributed to the temporally random sampling introduces significant noise and negatively affect the model performance. We do not see significant performance differences by using the “center” or “nearest” sampling strategy. For the simplicity, we choose the “center” sampling strategy throughout our experiments.

In this study, we attach the proposed local loss to different endpoints of the network and analyze how it interacts with the global loss. As shown in Fig. 3(a) the region features are from the C_5 endpoint for this model. For the model in Fig. 3(b), we first perform a 2×2 average pooling on the C_4 feature map to reduce its spatial resolution from 14×14 to 7×7 and then apply the region-level loss. For the model in Fig 3(c), we duplicate the $res5$ block of the network and then apply the global loss on C_5 branch and the region loss on the C_5 branch respectively. During the inference stage for the model in Fig 3(c), we use feature maps from C_5 and C_5' for video and instance-level tasks respectively. In Table 5, we observe that by simply adding the proposed region-based contrastive loss on C_4 or C_5, ConST-CL out-
The fact that we use multi-head self-attention with fewer hidden units, which is more parameter efficient. Finally, when increasing context lengths, we notice only slight increases in the number of FLOPs.

Boxes type. Table 7 shows how different location priors affect the representations learning. We study three types of boxes generated using different methods: randomly generated boxes, boxes derived from low-level image cues and detector-generated boxes. Overall, our method performs equally well regardless whether region locations are accurate or not. We reason that each region could be understood as an instance crop in the scene and ConST-CL does not require the crop to be object-centric. This observation is aligned with previous self-supervised learning methods on images [9,26] and videos [43]. The experiment suggests the robustness of the proposed method.

4.5. Limitations

One missing piece in the current framework is the self-supervisory signal for learning even finer-grained representations. We hope to enrich our method by incorporating dense self-supervision in the future. Moreover, the current solution of organizing global-local self-supervisory signals is limited to the convolutional neural network backbone. For the recent vision transformer (ViT) [15], it is non-trivial to apply our proposed method directly in its current form.

5. Conclusion

In this paper, we propose a novel self-supervised learning framework that facilitates learning versatile spatio-temporally fine-grained representations in videos. A simple architecture design is proposed to reconcile holistic and local representations learning in one single framework. Extensive experiments are carried out to demonstrate the efficacy of the proposed method. In the future, we plan to experiment on more video tasks, such as video segmentation and temporal localization.

Acknowledgment. We thank Olivier Henaff (DeepMind) for providing image segmentation code; Ang Li (DeepMind) for the help with A V A-Kinetics; Xiao Zhang (U. Chicago) and Jianing Wei (Google) for the help with object tracking.
References

[18] Christoph Feichtenhofer, Haoqi Fan, Bo Xiong, Ross Girshick, and Kaiming He. A large-scale study on unsupervised spatiotemporal representation learning. In CVPR, 2021. 1, 2, 6, 7
[26] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In CVPR, 2019. 1, 2, 8