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Abstract

Modern self-supervised learning algorithms typically
enforce persistency of instance representations across
views. While being very effective on learning holistic image
and video representations, such an objective becomes sub-
optimal for learning spatio-temporally fine-grained fea-
tures in videos, where scenes and instances evolve through
space and time. In this paper, we present Contextualized
Spatio-Temporal Contrastive Learning (ConST-CL) to ef-
fectively learn spatio-temporally fine-grained video repre-
sentations via self-supervision. We first design a region-
based pretext task which requires the model to transform in-
stance representations from one view to another, guided by
context features. Further, we introduce a simple network de-
sign that successfully reconciles the simultaneous learning
process of both holistic and local representations. We evalu-
ate our learned representations on a variety of downstream
tasks and show that ConST-CL achieves competitive re-
sults on 6 datasets, including Kinetics, UCF, HMDB, AVA-
Kinetics, AVA and OTB. Our code and models will be avail-
able at https://github.com/tensorflow/models/
tree/master/official/projects/const_cl.

1. Introduction
Self-supervised learning (SSL) has revolutionized nat-

ural language processing [12, 32] and computer vision [3,
4, 9, 23] due to strong representations learned from a vast
amount of unlabeled data. The key breakthroughs that
paved the way for SSL’s success in computer vision come
from the instance discrimination pretext task [16] and the
contrastive objective [39], with which for the first time the
self-supervised pretraining surpasses the supervised pre-
training on downstream visual tasks [26]. For videos, many
self-supervised contrastive learning approaches [3,4,18,43]
directly extend established image-based methods [9, 26] to
the spatio-temporal domain. Most of them, however, do
not explicitly exploit the temporal evolutions of multiple in-
stances and scene context in videos.
∗Work done as a student researcher at Google.
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Figure 1. (a) A typical contrastive learning algorithm draws two
augmented views {x,x′} from one source s and trains an en-
coder network f(·) to construct representations h and h′. A pro-
jection function g(·) is trained to project representations into a
shared space and to maximize the agreement between two views.
(b) Contextualized Spatio-Temporal Contrastive Learning uses a
binary projection function g(·, ·) to transform a representation h
from one view to the other, guided by context features F ′

c from the
other view. The contrastive objective encourages the transformed
representation z to agree with its correspondence h′.

Self-supervised learning methods typically enforce se-
mantic consistency across views to construct instance rep-
resentations [9, 26]. This assumption is particularly true
in the image domain because two views are typically gen-
erated from the same image. As shown in Fig. 1a, the
goal is to enforce the representations of these two views
to be as close as possible in the feature space. In the video
domain, these view-based contrastive approaches [18, 43]
may be less effective as the visual appearance of an in-
stance frequently and drastically changes across frames.
For example, one person in a video can have different poses
and perform different activities over time, indicating the
states and semantics of an instance are likely to change
across space and time. Enforcing spatio-temporal persis-
tency throughout the video [18] would lead to representa-
tions only encoding minimally shared information across
frames, which may negatively impact spatio-temporally
fine-grained downstream tasks.

Furthermore, existing self-supervised methods typically
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focus on learning representations for holistic visual under-
standing tasks [9,43], such as image classification and video
action recognition. For dense prediction tasks, such as ob-
ject detection, action localization and tracking, those mod-
els are enhanced by adding task specific heads. On the other
hand, several approaches are designed to learn discrimina-
tive local features for dense prediction tasks [22,53,60,61],
but their performances on holistic visual understandings are
often compromised [58]. In light of this, we are interested in
learning representations that can be applied to both holistic
and local video tasks.

We propose Contextualized Spatio-Temporal Con-
trastive Learning (ConST-CL), illustrated in Fig. 1b, to cir-
cumvent the undesirable strong spatio-temporal persistency
enforced by the global contrastive objective. ConST-CL
learns semantically consistent but discriminative local rep-
resentations for various video downstream tasks, ranging
from spatio-temporal action localization and object tracking
to action recognition. Specifically, we design a projection
function g(·, ·) to take not only the instance feature but also
the context feature into account, where the instance feature
is extracted from the source view of a video, and the context
feature is sampled from the target view. This task enforces
the model to be context-aware in a video and thus is a good
proxy to learn discriminative local representations.

To address the imbalanced capability of learning holis-
tic and local video representations, we design a simple two-
branch module to facilitate the network to learn high-quality
video representations both globally and locally in one uni-
fied self-supervised learning scheme.

We evaluate the learned representations on a variety of
downstream tasks. For holistic representations, we eval-
uate with video action recognition on Kinetics400 [30],
UCF101 [47] and HMDB51 [31] datasets. For lo-
cal representations, we conduct experiments with spatio-
temporal action localization on AVA-Kinetics [35] and
AVA [24] datasets, and the single object tracking on the
OTB2015 [56] dataset. Our experimental results show that
by pretraining with ConST-CL, the learned representations
adapt well across all studied datasets, surpassing recently
proposed methods that use either supervised pretraining or
the self-supervised pretraing [18, 21, 43, 60].

The main contributions of this work are:
• A region-based contrastive learning framework for

fine-grained spatio-temporal representation learning.
• A contextualized region prediction task that facilitates

learning semantically consistent while locally discrin-
imative video features.
• A simple network design to effectively reconcile si-

multaneous holistic and local representation learning.
• Competitive performance on 6 benchmarks, includ-

ing spatio-temporal action localization, object track-
ing, and video action recognition.

2. Related Work

Self-supervised learning in images. To effectively learn
representations from images, early self-supervised methods
focus on designing pretext tasks by experts. Various pre-
text tasks have been proposed, including colorization [33],
inpainting [40], denoising [51], egomotion prediction [2],
context prediction [14], orientation prediction [20], spa-
tial jigsaw puzzle [38], etc. Recent advances in image
self-supervised learning stem mainly from minimizing con-
trastive loss [39] on instance discrimination tasks [16]. The
contrastive objective effectively enforces representations of
the same instance from different views to be similar, while it
repels representations from different instances in the latent
space. Representative frameworks in this category include
NPID [57], MoCo [10, 26], SimCLR [9], etc.

Self-supervised learning in videos. In the video do-
main, self-supervised representation learning prospers in
recent years. Contrastive objectives have been widely
used to learn video representations for holistic recognition
tasks [18, 43, 44, 46, 62]. Extensive pretext tasks have been
exploited to learn good representation in videos. Compared
with the image domain, videos naturally yield richer self-
supervision signals. In [44], the goal is to enforce global
context consistency and utilize long-short views of a video
to align representations. In [54], the action and context fea-
tures are factorized separately by learning from the conju-
gate examples in video dataset. Motion signals are also ex-
ploited for learning good representations [25,48]. Temporal
ordering of frames in a video has also been used for self-
supervised representation learning. For instance, in [34,36],
temporal ordering of frames is enforced to learn repre-
sentations by scuffling frames in a self-supervised man-
ner. Similarly, forward and backward ordering of frames
is used as the self-supervision signals for representation
learning [55]. In addition, temporal cycle consistency is
exploited to learn spatio-temporal correspondence between
video frames [29, 52]. On the other hand, multi-modal sig-
nals, such as audio/visual and visual/text, have been used to
learn representations in a self-supervised manner that out-
perform models based on a single modality [4, 5, 37, 41].

Local representations. Although existing methods focus
on learning holistic representations on images or videos,
several recent approaches explicitly model spatially fine-
grained representations. In [8, 53], several constriave learn-
ing models have been developed for dense prediction tasks,
such as object detection and image segmentation. In addi-
tion, augmented samples with pseudo ground-truth are gen-
erated to learn dense features for object detection [13, 61].
Other methods introduce location priors to group pixels for
learning local features. For example, [28, 49, 64] use unsu-
pervised masks and [42, 59] use pixel coordinates. In the
video domain, many methods learn fine-grained features by
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Figure 2. Contextualized Spatio-Temporal Contrastive Learning. Two spatio-temporally distant views are randomly sampled from one
video and their dense representation feature maps {F, F ′} are extracted by the base network f(x). Region features {h, h′} are pooled
from respective dense feature maps by spatio-temporal ROIAlign and F ′c are a set of context features sampled from the dense feature maps
F ′. The projection head g(h, F ′c) is learned to transform representations h from one view to the other, guided by the context features F ′c.
We use the transformer [50] architecture that takes region feature h as Query and context features F ′c as Keys and Values. The InfoNCE
loss is used to encourage the similarity between the reconstructed representations z and their correspondences h′.

leveraging inherent temporal augmentations to determine
object correspondence [22, 29, 60, 63]. [22] randomly sam-
ples two images from a video to construct the contrastive
pairs for self-supervised learning and shows improved per-
formance on video tasks. [63] employs pretext tasks of de-
termining whether frames are from the same video and their
temporal ordering. [60] observes the emergence of corre-
spondence by learning frame-level similarity. [29] enforces
forward-backward temporal consistency to learn local cor-
respondences in videos. Most of the existing approaches
focus on learning local representations and do not empha-
size performances on holistic tasks. [58] explicitly raises the
question about simultaneously learning holistic and local
representations but only focuses on the image domain.

Different from these related works, our method leverages
video context during self-supervised learning by employ-
ing a novel region-based prediction tasks, and is designed
to learn holistic and local representations simultaneously
with self-supervision from unlabeled videos. Unlike most
of the aforementioned methods that focus on learning either
holistic or local representations, we emphasize the quality
of both under one unified training scheme.

3. Method

In this section, we introduce the proposed self-
supervised learning framework, Contextualized Spatio-
Temporal Contrastive Learning (ConST-CL) for learning
spatio-temporally fine-grained representations in videos.

3.1. Region-Based Contrastive Learning in Videos

Given a video, a simple contrastive learning algorithm
randomly samples two video clips {x, x′}, and applies ran-
dom data augmentation on each video clip independently.
Corresponding video-level representations {z, z′} ∈ RC

are extracted by the network f(·) for computing a con-
trastive loss [39], with negative examples from other videos.
We denote this video-level global contrastive loss as Lg .
This training objective enforces globally average-pooled
features from the same video to be similar while it repels
such features from different videos. However, no explicit
supervision is enforced on local features, which play an im-
portant role for dense prediction tasks.

To enforce local supervision, one way is to extend [53] to
the spatio-temporal domain. Given the dense feature maps
{F, F ′} ∈ RT×H×W×C from {x, x′}, where T,W,H,C
are time, height, width and channel dimention respectively,
for each feature voxel hi ∈ F , we find its correspondence
h′j ∈ F ′ that it is closest to in the feature space to form a
positive pair. Thus, the dense contrastive loss in a video can
be formulated as:

zi = g(hi) = MLP(hi), (1)

Lr =
∑
i

− log
exp(zi · z′j/τ)

exp(zi · z′j/τ) +
∑

k exp(zi · ẑk/τ)
,

s.t. j = argmin
j

hi · h′j , (2)

where MLP refers to a multi-layer perceptron, τ is the tem-
perature parameter, i, j and k are grid indices, and {ẑ} are
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Figure 3. Balancing global and local losses. We analyze three
different endpoints to impose global and local training losses. ⊗
indicates a pooling operation. Throughout the experiments, we
find that by branching the res5 block in the network and apply-
ing Lg and Lr on R5g and R5r respectively, two losses mutually
benefit and the representations thrive by co-training.

representations from other videos. Here, we simply regard
all the dense features from other videos as negative exam-
ples for loss computation.

Assuming that we have access to the location priors of
regions of interest {ri}, we can derive the vanilla region-
based contrastive learning by organizing the representations
using the region location:

zi = g(hi) = MLP(ROIAlign(F, ri)), (3)

where we override the notation hi to be the pooled region
features, with i being the region index. In this paper, we
parameterize a region as a bounding box of a certain frame
r = {t, xmin, ymin, xmax, ymax}. The region representation hi
is pooled from the dense feature map F by ROIAlign [45].

The full learning objective is the linear combination of
the global loss and the local loss weighted by the scale fac-
tor ω. And we average over the N mini-batch during train-
ing:

L =
1

N

∑
(Lg + ωLr) . (4)

3.2. Contextualized Spatio-Temporal Contrastive
Learning (ConST-CL)

The vanilla region-based contrastive learning framework
described in Section 3.1 has one limitation: the loss always
encourages the representations of the same instance at dif-
ferent timestamps to be similar, while the appearance of an
instance in a video may change across frames. For exam-
ple, one person in a video can appear in different poses and
perform different activities. Simply enforcing the similar-
ity of the same instance at different temporal locations of
the video will inadvertently encourage the model to encode
only the minimal information, which is less effective for
downstream video understanding tasks.

To resolve this issue, we propose a novel self-
supervised method, Contextualized Spatio-Temporal Con-
trastive Learning (ConST-CL). In a nutshell, ConST-CL re-

quires the network to learn to “reconstruct” the represen-
tation of a region in a target view given its representation
from the source view and the context features around the
target view.

zi = g(hi, F
′
c) = g(ROIAlign(F, ri), F

′
c), (5)

Lr =
∑
i

− log
exp(zi · h′j/τ)

exp(zi · h′j/τ) +
∑

k exp(zi · ĥk/τ)
,

s.t. j = argmin
j

hi · h′j , (6)

where F ′c denotes the set of context features around the tar-
get view, and i, j and k are region indices, and {ĥ} are
representations from other videos. Here we would like to
note: (1) comparing with Eq. (3), we extend the represen-
tation decoding function g(·) from an unary function to a
binary function g(·, ·) in Eq. (5); (2) we do not force bijec-
tive mapping between regions in two clips, so the different
numbers of regions between views do not cause a problem.
Eq.(5- 6) formulate ConST-CL in a general manner, which
considers all regions from all frames. It might pose compu-
tation challenges, so in practice, we instead construct two
sets of regions by sampling from one temporal slice of each
feature map. The temporal sampling strategy will be dis-
cussed in the following ablation studies.

Fig. 2 shows an illustration of ConST-CL. Given a
pooled region feature hi from the source view and a set of
context features F ′c from the target view, a projection func-
tion zi = g(hi, F

′
c) is learned with the objective to mini-

mize the representation distance between the reconstructed
relating representation zi and its corresponding native rep-
resentation h′j in the target view. The context features F ′c
are a subset of feature voxels sampled from the dense fea-
ture map F ′. In our case, we subsample a few frames from
the dense video representations F ′ along the temporal di-
mension. We define the number of frames used to construct
F ′c as the context length, whose effect on the performance
is studied in Section 4.4. Different from simply contrast-
ing features that are projected into the shared feature space,
ConST-CL requires every feature vector in {F, F ′} to en-
code more information about itself and the context, such
that with context features from another view, g(·, ·) can re-
construct the instance encoding conditionally.

We implement g(·, ·) using a transformer [50] architec-
ture. First, we linearly project each instance feature vector
from the source view hi to a Query token, and the context
feature vectors from the target view F ′c to Key-Value token
pairs. The multi-head cross-attention is then used to look up
the Key-Value pairs by the Query token. Finally, we apply
the InfoNCE loss [39] on the transformed instance feature
zi and its correspondence h′j using Eq. (6).
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3.3. Region Generation

Random boxes. Generating random boxes on-the-fly dur-
ing the training is the most straightforward method. For all
of our related experiments, we randomly generate 8 boxes
on each frame. In Section 4.4, we show that our method per-
forms interestingly well trained with these random boxes.
Boxes from low-level image cues. We also consider two
methods to generate boxes from low-level image cues.
Specifically, we use the SLIC [1] algorithm to generate 16
superpixels on each frame. Following [28], we alternatively
use the graph-based image segmentation method [19] to
generate 16 image segments for each frame.
Boxes from detectors. We also use off-the-shelf mod-
ern detectors to generate object-centric bounding boxes for
weakly supervised learning. A CenterNet-based [66] per-
son detector is employed to generate bounding boxes on
persons only. As an alternative, we use a generic object
detector, which is based on Cascade RCNN [17].

3.4. Balancing Global and Local Losses

Existing methods [60, 65] have shown discriminative lo-
cal features can be extracted by applying supervisory sig-
nals on holistic representations. Intuitively, adding con-
straints on both holistic and local representations are mutu-
ally beneficial, because discriminative local features would
contribute to holistic recognition, while expressive holistic
features could be derived from local features. In practice,
however, we find that directly adding the proposed region-
based local loss on the dense feature map right before the
average pooling layer in the ResNet, the self-supervised
training is less stable and sensitive to the hyper-parameters
for balancing the global and local losses.

To address this issue, we propose a simple solution. As
we use ResNet3D-50 as our base model, instead of adding
the local loss on the C5 endpoint, we modify the ResNet
architecture and replicate the res5 block, forming a “Y”
structure, as shown in Fig. 3. Then the global and local
losses are attached on endpoint C5g and C5r, respectively,
and they co-constrain the latent feature map in C4 during
training. When fine-tuning the model for downstream tasks,
we take either C5g or C5r branch depending on the task.
This design introduces only moderate additional computes
during the pre-training stage and is at no extra cost for fine-
tuning and inference. We will show in Section 4.4 that the
proposed “Y” structure results in better trade-off for both
video-level and instance-level downstream tasks.

4. Experiments
We evaluate clip-level video representation models on

the Kinetics400 [30] dataset following the linear probing
protocol, and the UCF101 [47] and HMDB51 [31] datasets
using both linear probing and fine-tuning. To evaluate the

learned spatio-temporally fine-grained representations, we
conduct experiments on the AVA-Kinetics [35] and AVA
v2.2 [24] datasets for spatio-temporal action localization
and the OTB2015 [56] dataset for single object tracking.

4.1. Implementation Details

We use the ResNet3D-50 (R3D50) as our backbone fea-
ture extractor following [43]. All features are `2 normalized
before being used to compute the self-supervised loss.

For the holistic representation learning branch, we use
a 3-layer MLP with 2048 hidden nodes to project a 2048-
dimensional feature vector into a 128-dimensional feature
vector. On the local representation learning branch, we use
the same attention-based architecture as described in [50].
The attention units are stacked into multiple heads and lay-
ers to construct the ConST-CL head for the instance pre-
diction task. In this work, the head of ConST-CL consists
of 3-layer 3-head attention units with hidden dimension of
128. We use the ReLU activation function without dropout.
A final linear layer is used to project the 128-dim feature
vector back to 2048-dim. We add spatio-temporal posi-
tional encodings to the query, key and value tokens before
inputting into the transformer head in order to preserve lo-
cation information. To construct contrastive pairs for local
branch, we always sample examples from the center frame
in both views for the experiments unless otherwise speci-
fied. The self-supervised pre-training is performed on the
Kinetics400 [30] dataset. During evaluations, all the heads
used for self-supervised learning are discarded.

All models are pre-trained with mini-batch of 1024. Dur-
ing the pre-training, we use the SGD optimizer with mo-
mentum of 0.9. The learning rate is linearly warmed-up to
40.96 during the first 5 epochs, followed by half-period co-
sine learning rate decay [27] to 0. A weight decay of 10−6

is applied to all kernels. We set the temperature τ to be 0.1
for the global loss and 0.2 for the local loss. The scale factor
ω is 0.01 to balance the global and local losses.

For results in Table (1,2), we pre-train the backbone
model for 200k steps, which is around 850 epochs on the
Kinetics400 dataset with the randomly generated region
boxes. And the context length is set to 5. For all ablation
studies, we use backbone models from a shorter pre-training
schedule, which trains for 100k steps.

4.2. Downstream Tasks

It is of great interest to understand whether one repre-
sentation model can be applied to both holistic and local
understandings, as intuitively the better local representa-
tions can facilitate holistic recognition tasks and vice versa.
In this work, we apply the learned representation models
to (1) video action recognition tasks that require holistic
representations on the Kinetics400 [30], UCF101 [47] and
HMDB51 [31] datastes; and (2) spatio-temporal action lo-
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Pre-training AVA-Kinetics AVA Object Tracking
Method Backbone Dataset mAP (GT) mAP (Det) mAP (GT) mAP (Det) Precision Success

INet-sup [35] I3D K400 35.9 22.9 27.5 19.1 - -
K400-sup R3D50 K400 26.7 19.8 - 22.2 71.2 51.46

SimSiam [11] R50 INet - - - - 61.0 43.2
VINCE [22] R50 R2V2 - - - - 66.0 47.6
SeCo [63] R50 K400 - - - - 71.9 51.8
VFS [60] R50 K400 - - - - 73.9 52.5

ρMoCo [18] Slow-only K400 - - - 20.3 - -
ρBYOL [18] Slow-only K400 - - - 23.4 - -
VFS-inflated R3D50 K400 34.6 25.9 29.1 22.4 73.3 52.7
CVRL [43] R3D50 K400 31.6 24.1 24.9 18.4 75.4 53.7

ConST-CL R3D50 K400 39.4 30.5 31.1 24.1 78.1 55.2

Table 1. Downstream task performances based on pre-trained representations. The learned representations are evaluated for spatio-
temporally fine-grained tasks, including spatio-temporal action recognition on the AVA v2.2 and AVA-Kinetics (using both ground-truth
and detected person boxes) and single object tracking on OTB2015. ConST-CL achieves the state-of-the-art results across the board,
suggesting the effectiveness of our proposed framework that is capable of coherently learning better local visual representations in videos.

calization and single object tracking tasks that require local
representations on the AVA-Kinetics [35], AVA v2.2 [24]
and OTB2015 [56] datasets.
Video action recognition. we perform linear evaluation
by fixing all the backbone weights on Kinetics400 [30],
UCF101 [47] and HMDB51 [31]. The input is a 32-frame
video clip with temporal stride of 2 and resolution of 224.
We train the linear classifier for 100 epochs. We also use the
pre-trained models to initialize the network and fine-tune all
layers for 50 epochs on UCF101 and HMDB51.
Spatio-temporal action localization. We attach the same
action transformer head as in [21, 35] to our R3D50 back-
bone, and follow the setting in [35] for simplicity. We train
our model with ground-truth person bounding boxes and
use either ground-truth boxes or boxes generated using off-
the-shelf person detectors1 for region proposals during eval-
uation. The model is trained with batch size 256 for 50k
steps. The input has 32 frames with resolution of 400 and
temporal stride of 2.
Single object tracking. We also evaluate our learned rep-
resentations via single object tracking task, which requires
semantically consistent spatio-temporal features to deter-
mine object-level correspondence. We follow the same
practice as in [22, 60, 63] to adopt the SiameseFC [6] as
the tracker and modify the spatial stride and dilation rate in
the res4 and res5 blocks. Note that our backbone is a 3D-
convolutional network, and for each input frame we also
sample its neighboring n frames from each side and use the
2n + 1 frames as the input. After the res5 block, we slice
the center frame along the time dimension of the local fea-
ture map F for the input to the tracking head. Here we use
n = 2 as the largest temporal kernel in the network is 5. We
use the pre-trained checkpoint to initialize the backbone and
fine-tune the tracker for all experiments.

1We use the same set of boxes as in [18, 35] for fair comparisons.

4.3. Main Results

In Table 1, we study the model performance on dense
vision tasks by using the pre-trained models from different
methods. We evaluate the spatio-temporal action localiza-
tion on the AVA-Kinetics [35] and AVA v2.2 [24]. Follow-
ing [21, 35], the models are evaluated under two settings:
using either ground-truth boxes or detected boxes as region
proposals on the validation set. On AVA-Kinetics, ConST-
CL achieves 39.4% mAP when using ground-truth boxes
and 30.5% mAP when using detected boxes, outperform-
ing the supervised method [35] by a large margin. ConST-
CL also outperforms the baseline self-supervised method
CVRL [43] model with more than 24% relative perfor-
mance gain. In addition, we compare to the VFS [60] which
is designed for dense vision tasks. As VFS uses 2D ResNet,
we follow the common practice to inflate all 2D kernels in
the network into 3D [7] and load the pre-trained weights
from VFS for the fair comparison. In the table, ConST-CL
outperforms the VFS-inflated method by more than 4.6%
mAP, showing the effectiveness of our proposed method on
spatio-temporal action recognition task. On the AVA v2.2,
we observe similar trend that ConST-CL outperforms com-
peting methods, achieving 31.1% and 24.1% mAP using
ground-truth and detected boxes respectively.

On OTB2015 [56], we first compare with prior methods
designed for dense task only. Table 1 shows that ConST-
CL outperforms the evaluated methods by a large margin.
Specifically, compared to VFS [60], ConST-CL achieves
78.1%(+∆4.2%) in precision score and 55.2%(+∆2.7%)
in success score. To rule out the effect of architecture
difference (2D network vs. 3D network), we inflate the
2D ResNet into 3D and load the VFS pre-trained check-
point, denoted as VFS-inflated in the table. Compared to
VFS, VFS-inflated performs similarly to its 2D counter-
part, which indicates the effect of this architecture differ-
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Linear Fine-tune
Method K400 UCF HMDB UCF HMDB

VINCE [22] 49.1 - - - -
SeCo [63] 61.9 - - 88.3 55.6

VFS-inflated [60] 33.1 - - 71.4 41.0
ρMoCo (ρ=2) [18] 67.4 - - 93.2 -
ρBYOL (ρ=4) [18] 71.5 - - 95.5 73.6

CVRL [43] 66.1 89.2 57.3 92.2 66.7

ConST-CL 66.6 89.1 59.9 94.8 71.9

Table 2. Downstream video action recognition. ConST-CL
achieves competitive results on fine-tuning experiments, indicat-
ing it can learn strong holistic visual representations in videos.

Method Frames Params (M) FLOPs (G)
CVRL [43] 16×2 44.6 91.2

ρMOCO (ρ=2) [18] 8×2 44.6 83.6
ρMOCO (ρ=2) [18] 16×2 44.6 167.0
ρBYOL (ρ=4) [18] 16×4 44.6 334.0

ConST-CL 16×2 71.7 113.0

Table 3. Model sizes and computational costs for different SSL
methods with video-based networks. The SSL heads are included
for the parameter and FLOPS counts.

ence on the tracking task is insignificant. When compared
with CVRL, ConST-CL achieves clear performance gain for
single object tracking on the OTB2015 benchmark.

In Table 2, our method performs comparable to CVRL
and ρMOCO (ρ=2) using linear probing and achieves com-
petitive fine-tuning results with top-1 accuracy of 94.8%
and 71.9% on UCF101 and HMDB51, respectively. It is
worth pointing out that our method improves upon CVRL
on fine-tuning UCF101 and HMDB51, even though we do
not use any extra supervision on holistic representations
other than the CVRL’s loss Lg . These findings are consis-
tent with our intuition that the holistic and the local rep-
resentation modeling can be mutually beneficial. In our
method, the two losses simultaneously contribute to and
constrain on the latent feature map C4 in the network.
These results also demonstrate the effectiveness of the pro-
posed model design that coherently organizes different lev-
els of representations in a single framework.

Finally, in Table 3 we report the model size and com-
putational cost including both the backbone and the SSL
heads in different video self-supervised learning methods.
Comparing to CVRL, ConST-CL increased model sizes and
computational cost moderately, mainly due to the branched
res5 block and additional transformer head. The Slow-only
network and training strategy used in [18] is different from
ours, making the side-to-side comparison difficult. Thus we
leave the results in the table for reference.

4.4. Ablation Study

Temporal sampling strategy. To construct the contrastive
region pairs, we sample one frame from the source and the

Method Sampling UCF HMDB AVA-K OTB
CVRL - 91.6 66.2 30.9 75.9

ConST-CL Random 56.2 57.8 34.8 75.4
ConST-CL Center 94.1 67.7 36.9 77.1
ConST-CL Nearest 93.8 68.1 36.9 76.4

Table 4. Ablation on the temporal sampling strategy. The “Cen-
ter” and “Nearest” temporal sampling strategy perform equally
well and better than “Random” sampling for ConST-CL.

Method Endpoint UCF HMDB AVA-K OTB
CVRL - 91.6 66.2 30.9 75.9

ConST-CL C4p 93.5 67.5 32.0 75.3
ConST-CL C5 93.4 66.7 33.6 74.3
ConST-CL C5g+C5r 94.3 68.7 36.7 77.7

Table 5. Ablation on the loss endpoints. We apply region-based
contrastive loss on different endpoints and show that theC5g+C5r
configuration achieves the best trade-off between the global and
local losses with the best downstream task performances.

target clip respectively. In Table 4, we study three differ-
ent temporal sampling strategies. For “random” strategy,
we randomly sample frames from the source and the target
views to construct the contrastive pairs. For “center” strat-
egy, we simply choose the center frame from the dense fea-
ture maps in both views for ConST-CL. For “nearest” strat-
egy, we always choose the temporally closest frame pairs
from two views. If two randomly sampled clips tempo-
rally overlap, then we draw samples from their overlapping
frames. Otherwise, frames at the closest two ends of the two
video clips are selected. Table 4 shows that the “random”
sampling strategy is consistently worse than the other ap-
proaches. This can be attributed to that the temporally ran-
dom sampling introduces significant noise and negatively
affect the model performance. We do not see significant
performance differences by using the “center” or “nearest”
sampling strategy. For the simplicity, we choose the “cen-
ter” sampling strategy throughout our experiments.
Loss endpoints. We analyze how global and local con-
trastive losses can be integrated together for vision tasks.
In this study, we attach the proposed local loss to different
endpoints of the network and analyze how it interacts with
the global loss. As shown in Fig. 3(a) the region features
are from the C5 endpoint for this model. For the model in
Fig. 3(b), we first perform a 2×2 average pooling on the
C4 feature map to reduce its spatial resolution from 14×14
to 7×7 and then apply the region-level loss. For the model
in Fig 3(c), we duplicates the res5 block of the network
and then apply the global loss on C5g branch and the region
loss on the C5r branch respectively. During the inference
stage for the model in Fig 3(c), we use feature maps from
C5g and C5r for video and instance-level tasks respectively.
In Table 5, we observe that by simply adding the proposed
region-based contrastive loss on C4p or C5, ConST-CL out-
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Context Loss UCF HMDB AVA-Kinetics OTB
length endpoint(s) Top-1 Top-1 mAP (GT) mAP (Det) Precision Success #Params (M) #FLOPs (G)

- R5 91.6 66.2 30.9 23.4 75.9 53.6 44.6 45.6
0 2R5 91.8 66.0 35.3 27.5 75.4 56.6 77.7 55.5
1 2R5 93.4 66.7 36.7 28.0 77.7 55.0 71.7 55.6
3 2R5 93.7 67.4 36.9 28.1 77.5 54.5 71.7 56.1
5 2R5 93.4 67.5 37.6 28.1 79.0 55.4 71.7 56.5

Table 6. Ablation study on the context length and the computational overhead. “-” indicates no ConST-CL is used and the model
is only trained with the Lg; “0” indicates no context is provided and the model simply degrades to the vanilla region-based contrastive
learning. From the table, we observe the trend that more context is helpful to learn better spatio-temporal representations. We notice the
number of parameter increment is largely from the duplicated res5 block while our transformer based head is more parameter efficient
than the MLP head for the region-based contrastive learning.

UCF AVA-K OTB
Box type Top-1 mAP (GT) Precision Success
Random 94.3 36.9 77.0 54.0
SLIC [1] 93.4 36.4 76.3 53.7
FH [19] 94.1 36.9 77.1 54.3

Person Detector 93.4 36.7 77.7 55.0
Object Detector 93.7 37.2 77.8 54.1

Table 7. Ablation study on the box type. When applying differ-
ent types of boxes during the self-supervised training, we find that
model learns equally well regardless of the region location quality.

performs the baseline method CVRL on downstream tasks
already. By branching the res5 block as shown in Fig 3(c),
we achieve the best trade-off of two losses and the holistic
and local representations obtain better performance gains
on downstream tasks.
Context length. We study the effect of contextualization by
varying the number of feature maps sampled along the time
axis from the target view to input to the ConST-CL trans-
former head. Different number of context length indicates
the number of feature maps sampled along the time axis.
Note that when the context length is zero, the method sim-
ply degrades to the vanilla region-based contrastive learn-
ing described in Section 3.1. Table 6 shows our model
learns better representations as the context length is in-
creased. This can be attributed to that as more context
features provide richer information about the target view,
the model can learn a better decoder function g(·, ·), result-
ing in higher-quality spatio-temporal representations. In Ta-
ble 6, we also present the number of model parameters and
FLOPs for one pass of self-supervised training. Comparing
the vanilla region-based model (second row) to the baseline
model CVRL (first row), we note that the number of model
parameters is increased by 74.2% and the number of FLOPs
is increased by 20.9%, where the overheads largely result
from the duplicated res5 block. When switching to the pro-
posed transformer decoder with context length equals to 1,
the number of model parameters is decreased to 71.76M
while the FLOPs is increased by 0.16B. This is due to the
fact that we use multi-head self-attention with fewer hidden

units, which is more parameter efficient. Finally, when in-
creasing context lengths, we notice only slight increases in
the number of FLOPs.
Boxes type. Table 7 shows how different location priors af-
fect the representations learning. We study three types of
boxes generated using different methods: randomly gener-
ated boxes, boxes derived from low-level image cues and
detector-generated boxes. Overall, our method performs
equally well regardless whether region locations are accu-
rate or not. We reason that each region could be understood
as an instance crop in the scene and ConST-CL does not
require the crop to be object-centric. This observation is
aligned with previous self-supervised learning methods on
images [9,26] and videos [43]. The experiment suggests the
robustness of the proposed method.

4.5. Limitations

One missing piece in the current framework is the self-
supervisory signal for learning even finer-grained represen-
tations. We hope to enrich our method by incorporating
dense self-supervision in the future. Moreover, the current
solution of organizing global-local self-supervisory signals
is limited to the convolutional neural network backbone.
For the recent vision transformer (ViT) [15], it is non-trivial
to apply our proposed method directly in its current form.

5. Conclusion
In this paper, we propose a novel self-supervised learn-

ing framework that facilitates learning versatile spatio-
temporally fine-grained representations in videos. A sim-
ple architecture design is proposed to reconcile holistic and
local representations learning in one single framework. Ex-
tensive experiments are carried out to demonstrate the effi-
cacy of the proposed method. In the future, we plan to ex-
periment on more video tasks, such as video segmentation
and temporal localization.
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