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Abstract

Canonical correlation analysis (CCA) matters in multi-
view representation learning. But, CCA and its most vari-
ants are essentially based on explicit or implicit covariance
matrices. It means that they have no ability to model the
nonlinear relationship among features due to intrinsic lin-
earity of covariance. In this paper, we address the preced-
ing problem and propose a novel canonical F-correlation
framework by exploring and exploiting the nonlinear rela-
tionship between different features. The framework projects
each feature rather than observation into a certain new
space by an arbitrary nonlinear mapping, thus resulting
in more flexibility in real applications. With this frame-
work as a tool, we propose a correlative covariation pro-
jection (CCP) method by using an explicit nonlinear map-
ping. Moreover, we further propose a multiset version of
CCP dubbed MCCP for learning compact representation of
more than two views. The proposed MCCP is solved by an
iterative method, and we prove the convergence of this it-
eration. A series of experimental results on six benchmark
datasets demonstrate the effectiveness of our proposed CCP
and MCCP methods.

1. Introduction

Canonical correlation analysis (CCA) [17], proposed by
Hotelling, is a classic yet powerful technique in multidi-
mensional data analysis for finding the relationship between
two sets of random variables. CCA aims to seek pairs of lin-
ear projection vectors such that the projected variables are
maximally correlated in the low-dimensional space. CCA
has been applied to many applications such as multiview
clustering [5], feature fusion [30], multilabel classification
[29], and multiview representation learning (MRL) [23].

To date, there have been numerous useful variants of

CCA, which can be broadly divided into three categories:
supervised, semi-supervised, and unsupervised methods.
Supervised variants of CCA take the label information of all
the observations of different views into consideration during
model training. For example, discriminative CCA [21, 32]
was proposed by incorporating intraclass and interclass in-
formation of two view samples into CCA. Multilabel CCA
[27,29] was presented by regarding one view as the data and
the other view as class labels. To deal with multiview (more
than two views) cases, some multiview supervised exten-
sions of CCA have been proposed recently based on intra-
class and interclass information of multiview observations;
see, e.g., discriminative and labeled multiple CCA [11, 12].

Semi-supervised variants of CCA not only take advan-
tage of unlabeled multiview data, but also labeled multiview
data for learning latent representation. For example, Chen
et al. [9] proposed a semi-supervised and semi-paired CCA
method, which uses the global structure information of un-
labeled data and local discriminative information of labeled
data and meanwhile, exploits the limited paired data. Wan
and Zhu [34] presented a cost-sensitive semi-supervised
CCA approach, which carries out label propagation with
CCA in a unified cost-sensitive learning framework.

In real-world applications, there are usually no shortage
of unlabeled data but labels are expensive. Therefore, it is
of great significance to develop unsupervised CCA’s vari-
ants which can make full use of all of the multiview obser-
vations. In this paper, we consider the problem of CCA’s
generalization in unsupervised learning scenarios, which is
a much harder problem owing to the absence of class la-
bels that would guide the search for relevant information
and compact multiview representation learning.

Much effort has been focused on unsupervised variants
of CCA for compact multiview representation or feature
learning. For example, in small sample size (SSS) problems
where the dimensionality of feature vectors is larger than
the number of observations, regularized CCA [16, 29] was
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proposed to prevent overfitting and the singularity of sample
covariance matrices. Due to a large portion of features that
are not informative to many multiview learning tasks, sparse
CCA [3, 10, 15] was presented to learn pairs of projection
directions with sparsity constraints for improving the in-
terpretation ability of canonical projections. In addition,
orthogonal CCA (OCCA) [41] was developed to preserve
the covariance of the original data and the Euclidean metric
structure of canonical subspaces. Probabilistic CCA [39]
was proposed to provide a probabilistic interpretation for
classical CCA. Recently, Xu and Li [37] proposed a truly
alternating least-squares based CCA (TALSCCA) for per-
formance improvement in practice.

For high-dimensional multiview data, there are usually
very complex nonlinear associations in real world. From
this perspective, unsupervised nonlinear extensions of CCA
have attracted increasing attention in recent years. Early
nonlinear generalizations of CCA mainly include kernel
CCA (KCCA) [2, 16] and neural networks based CCA
[18, 22]. The basic idea of KCCA is to implicitly project
the input data of two views into higher-dimensional fea-
ture spaces by using two nonlinear mappings determined
by some kernels. This makes it possible for the nonlin-
ear relationship between two views in the original data
spaces to become linear in feature spaces, thus allowing
the use of classical CCA to learn the latent compact rep-
resentations from two views. Recent kernel variants can be
found in [14, 24, 33]. Neural networks based CCA com-
bines CCA with neural networks for finding the nonlin-
ear correlation between two views with different combina-
tion strategies. Due to the advantages of deep neural net-
work (DNN), Andrew et al. [1] proposed a deep version
of CCA, dubbed deep CCA (DCCA), which learns deep
nonlinear representations of two view data by maximizing
the linear correlation between the outputs of two individ-
ual DNNs. Moreover, there are some other deep exten-
sions of CCA [13, 35, 40] that have been developed based
on different DNN architectures. Another popular unsuper-
vised nonlinear extensions of CCA are based on the theory
of manifold learning; see, for example, locality preserving
CCA [31] and graph CCA [7].

All the aforementioned unsupervised variants of CCA
are only applicable to two view scenario. To handle multi-
view cases, multiset CCA (MCCA) [20,26] was proposed to
simultaneously achieve multiple latent representation sub-
spaces for multiple views. Recent years have witnessed an
upsurge of research interests in multiview unsupervised ex-
tensions of CCA; see, for example, tensor CCA (TCCA)
[25], deep probabilistic CCA [19], and TCCA network [38].
Another interesting multiview extensions are based on the
idea of generalized CCA [4] that minimizes the difference
between one common latent representation and individual
representations, e.g., graph MCCA [6] and L2,1-CCA [36].

Although CCA and its variants above have obtained im-
pressive learning performance for MRL, most of them still
face an intractable challenge. That is, CCA and its most
variants (e.g., KCCA, DCCA, OCCA, and MCCA) are as-
sociated with the so-called spectral solvers, which are based
on the top or bottom eigenvalues and eigenvectors of spe-
cially constructed data matrices. Such matrices specially
constructed are essentially based on explicit or implicit co-
variance matrices, which evaluate the linear relationship of
different features. This means that they have no ability to
model the nonlinear relationship among features due to the
intrinsic linearity of covariance measure.

In this paper, we address the preceding problem and pro-
pose a novel canonical F-correlation framework by explor-
ing and exploiting the nonlinear relationship between dif-
ferent features. By utilizing this framework as a tool, we
propose a correlative covariation projection (CCP) method,
where an explicit nonlinear mapping is used for the con-
struction of F-intraset and F-interset covariation matri-
ces. Further, we extend CCP and propose a multiset CCP
(MCCP) approach (see Fig. 1 for illustration) for learning
the uncorrelated compact representation of more than two
views, which is desirable in many real applications. Exten-
sive experimental results on six real-world datasets show
that our proposed CCP and MCCP methods outperform re-
lated methods including the state-of-the-arts in classifica-
tion and clustering tasks. It is worthwhile to highlight the
contributions of this paper as follows:

1) To the best of our knowledge, canonical F-correlation
framework is novel in MRL, where an arbitrary nonlin-
ear mapping can be used to project each feature rather
than observation into a certain new space. Hence, our
proposed framework is naturally capable of modeling
the nonlinear relationship between different features,
which can not be well modeled by traditional CCA-
related methods.

2) With this framework, CCP is proposed by explicitly us-
ing a specific Gaussian kernel mapping, which not only
has the great capability to discover the nonlinear feature
relevance, but also to perform the MRL whether the sce-
nario is an SSS problem or not.

3) To perform MRL beyond the limit of two views, MCCP
is proposed by maximizing the accumulated correlations
between any pair of views, which is solved by an itera-
tive method. The convergence of this iteration is demon-
strated theoretically.

2. Covariance and CCA
2.1. Covariance

Let f1 ∈ Rn and f2 ∈ Rn contain n observations of
two feature variables. It is straightforward to compute their
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Figure 1. The flowchart of our framework. In the original data space, each feature f ti is mapped into a certain new space by using a
nonlinear function ϕ(·), where i = 1, 2, · · · ,m and t = 1, 2, · · · , di, m and di are, respectively, the number of views and dimension of
i-th view. Then, the ϕ-transformed multiview data are maximally correlated with minimum redundancy within each view. The resulting
compact representations are used for downstream multiview tasks such as classification and clustering.

covariance in the form of

Cov(f1, f2) =
1

n
(f1 − µ11)

T (f2 − µ21), (1)

where Cov(·, ·) denotes the covariance operator, µ1 and µ2

are the mean of all n observations of f1 and f2, respectively,
i.e., µ1 = 1/n(fT1 1) and µ2 = 1/n(fT2 1), and 1 is an all-
one vector. As shown in (1), it is easy to find that the covari-
ance is the inner product of two scaled vectors in essence.
Hence, it actually measures the linear relationship between
two feature variables.

2.2. CCA

Assume two-view data are given as X1 ∈ Rd1×n and
X2 ∈ Rd2×n, where d1 and d2 are the dimension of sam-
ples, and n is the number of samples. CCA aims to maxi-
mize the correlation between wT

1 X1 and wT
2 X2, which can

be expressed as the following optimization problem:

max
w1,w2

wT
1 S12w2

s.t. wT
1 S11w1 = wT

2 S22w2 = 1,
(2)

where w1 ∈ Rd1 and w2 ∈ Rd2 are a pair of projection
vectors, S12 is the between-set covariance matrix of X1 and
X2, S11 and S22 are within-set covariance matrices of X1

and X2, respectively. It has been shown that optimization
problem in (2) can be solved by the following eigenequation[

S12

S21

] [
w1

w2

]
= λ

[
S11

S22

] [
w1

w2

]
, (3)

where λ is the eigenvalue corresponding to the eigenvec-
tor [wT

1 wT
2 ]

T , and S21 = ST
12. In CCA, multiple pairs of

projection vectors can be obtained by computing the eigen-
vectors corresponding to the top eigenvalues of (3).

3. Proposed method
3.1. Motivation

As introduced in Section 2.2, CCA is based on within-
and between-set covariance matrices. But, these covariance
matrices have at least two common drawbacks, as follows:

• First, the covariance metric defined in (1) only assesses
the linear variability of two random variables, as dis-
cussed in Section 2.1. Thus, covariance matrices in
CCA naturally lack the capability to evaluate the non-
linear relationship among different features. Clearly, it
limits the representation learning performance of CCA
in real world.

• Second, in SSS cases, it is well-known that within-set
covariance matrices in CCA are bound to be singular,
thus making CCA unavailable for two-view represen-
tation learning. Although regularized CCA [16, 29]
can tackle the singularity issue of covariance matrices,
so far as we know, it is still not clear how to choose
the optimal regularization parameters theoretically and
practically.

To overcome the above shortcomings, we explore and ex-
ploit the nonlinear relationships between different features
and thus propose a CCP method and its extension for MRL.
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3.2. Formulation

Canonical F-correlation framework. Let f ti ∈ Rn be
the feature vector corresponding to the t-th row of Xi in
i-th view, i = 1, 2 and t = 1, 2, · · · , di. Then, Xi can be
rewritten as the form of Xi = [f1i , f

2
i , · · · , f

di
i ]T . Let

ϕ(·) : Rn 7→ RN

be a nonlinear mapping function from Rn to RN , where N
is the dimension of a certain new space. We use ϕ(·) to
map all n-dimensional feature vectors {f ti }

di
t=1 in the origi-

nal input spaces into a new N -dimensional space and obtain

ϕ(f ti ) =
[
ϕ1(f ti ), ϕ

2(f ti ), · · · , ϕN (f ti )
]T

. (4)

Using (4), we can define the F-intraset and F-interset co-
variation matrices in RN as:

CF
ij =

[
CF

ij(k, t)
]
=

[
ϕ(fki )

Tϕ(f tj )
]
∈ Rdi×dj , (5)

where CF
ij(k, t) denotes the (k, t)-th entry of CF

ij , i, j =
1, 2, k = 1, 2, · · · , di, and t = 1, 2, · · · , dj .

Through using (5), our proposed canonicalF-correlation
framework aims to seek a pair of linear transformations
W1 ∈ Rd1×d and W2 ∈ Rd2×d (d ≤ min(d1, d2)) by
the following optimization problem:

max
W1,W2

Tr(WT
1 C

F
12W2)

s.t. WT
1 C

F
11W1 = Id, W

T
2 C

F
22W2 = Id,

(6)

where Tr(·) denotes the trace of a matrix and Id ∈ Rd×d is
the identity matrix.

Discussion: In contrast to conventional nonlinear vari-
ants of CCA such as KCCA and DCCA, which make use
of the nonlinear mapping to project each observation in two
views, our framework employs a nonlinear function ϕ(·) to
map each feature rather than each observation into a cer-
tain new space, thus leading to the following four advan-
tages: 1) In the proposed framework, our F-intraset and F-
interset covariation matrices can better uncover the nonlin-
ear relationship hidden in different features, while within-
and between-set covariance matrices in, for instance, CCA
and OCCA, fail to model this relationship due to their in-
herent linearity. 2) Our canonical F-correlation framework
projects each original feature vector of both views into an
N -dimensional space. As N > n, it seems to mean that our
framework naturally yields new observation components
for learning compact multiview representations. It is ob-
vious to benefit SSS cases. 3) The presented framework has
no change in the dimensionality of two-view observations.
In contrast, KCCA and its variants map original observa-
tions of two views into higher- or even infinite-dimensional
feature spaces, where numerous large-scale learning prob-
lems are turned into SSS cases. 4) Due to the flexibility

of use of nonlinear function ϕ(·), the proposed framework
can be taken as a general platform, where new canonical
correlation methods for compact multiview representation
learning are further developed. In addition, our framework
can incorporate CCA as a special case when ϕ(f ti ) = f ti and
each feature f ti is centered.

CCP. The nonlinear function ϕ(·) in (6) can be chosen
as kernel mappings, neural networks, deep networks, etc.
Thus, different ϕ(·) will lead to different special methods.
In this paper, we select ϕ(·) as Gaussian kernel mapping1,
thus resulting in optimization problem of CCP as follows:

max
W1,W2

Tr(WT
1 K

F
12W2)

s.t. WT
1 K

F
11W1 = Id, W

T
2 K

F
22W2 = Id,

(7)

where KF
ij ∈ Rdi×dj and its (k, t)-th entry is computed by

KF
ij(k, t) = ϕ(fki )

Tϕ(f tj ) = ker(fki , f
t
j ) (8)

with ker(·, ·) as a Gaussian kernel function, i.e.,

ker(fki , f
t
j ) = exp

(
−∥fki − f tj∥2/(2σ2)

)
, (9)

σ > 0 is the width parameter of Gaussian kernel, ∥ · ∥ de-
notes the 2-norm of a vector, i, j = 1, 2, k = 1, 2, · · · , di,
and t = 1, 2, · · · , dj . Clearly, KF

11 and KF
22 are symmetric

positive semi-definite matrices.

3.3. Solution of CCP

Theorem 1. Suppose {f ti ∈ Rn}di
t=1 are a set of di dis-

tinct feature vectors in view i, where i = 1, 2. Then, F-
intraset covariation matrices, KF

11 and KF
22, must be non-

singular.
The proof of Theorem 1 can be found in the supplemen-

tary material. According to Theorem 1, it is clear that KF
11

and KF
22 are bound to be symmetric positive definite. Thus,

KF
ii = (KF

ii )
1
2 (KF

ii )
1
2 , i = 1, 2, (10)

must exist. Due to the nonsingularity of KF
11 and KF

22, let

Wi = (KF
ii )

− 1
2W̃i, i = 1, 2. (11)

Let K̃F
12 = (KF

11)
− 1

2KF
12(K

F
22)

− 1
2 . Together with (11), op-

timization problem in (7) can be equivalently reformulated
as

max
W̃1,W̃2

Tr(W̃T
1 K̃

F
12W̃2)

s.t. W̃T
1 W̃1 = Id, W̃

T
2 W̃2 = Id.

(12)

For the solution to optimization problem in (12), we have
the following important theorem:

1Kernel mapping possesses the remarkable advantage that the associ-
ated kernel matrix is positive semi-definite.
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Theorem 2. Let singular value decomposition (SVD) of
K̃F

12 be K̃F
12 = UΣVT , Σ = diag(σ1, · · · , σr) ∈ Rr×r,

where UTU = VTV = Ir, {σi}ri=1 are the singular values
in descending order, i.e., σ1 ≥ · · · ≥ σr > 0, and r =
rank(K̃F

12) ≤ min(d1, d2). Then,

W̃1 = U(:, 1 : d) and W̃2 = V(:, 1 : d) (13)

are a solution of (12), where A(:, 1 : d) denotes the matrix
that consists of the first d columns of A, and d ≤ r.

The proof of Theorem 2 can be found in the supplemen-
tary material. Using (11), we can obtain the resulting pro-
jection matrices of CCP in the form of W1 = (KF

11)
− 1

2U(:

, 1 : d) and W2 = (KF
22)

− 1
2V(:, 1 : d).

3.4. Out-of-sample projection

For an unseen sample xT = [xT
1 ,x

T
2 ] with xi ∈ Rdi , we

can compute its latent representation in the form of yi =
WT

i xi, i = 1, 2. For y1 and y2, we combine them by
the following strategy: yT =

[
yT
1 ,y

T
2

]
, which is used to

represent sample x for downstream tasks.

3.5. Comparison with other methods

Comparison with CCA. CCP and CCA are both unsu-
pervised two-view subspace learning methods. Differently,
CCP has the capability to model the nonlinear relationships
between different features of two views, while CCA does
not. On the other hand, when d1 > n and d2 > n, CCP
can efficiently learn the latent low-dimensional representa-
tion due to the nonsingularity of F-intraset covariation ma-
trices. In this situation, CCA is not available owing to the
singularity of within-set covariance matrices.

Comparison with KCCA. Both CCP and KCCA use
the nonlinear mapping to project two view inputs into new
spaces. They, however, are quite different. First, KCCA
uses kernel functions to essentially measure the similarity
between two samples, while our CCP to evaluate the simi-
larity between any two features. Second, KCCA often suf-
fers from a famous trivial learning problem [16]. Recall
that, in KCCA, dual representation vector in one view is
obtained by the following naive eigenvalue problem [16]:

Inu = λu (14)

when kernel matrix is invertible, where λ is the eigenvalue
associated with the eigenvector u. Clearly (14) has nothing
to do with training data, thus providing useless results. In
contrast, our CCP does not encounter this problem, which
can be efficiently solved by an SVD; see Section 3.3. Third,
KCCA needs to employ all training data when computing
the representations of unseen observations. This makes the
testing phase of KCCA heavily dependent on training data
as well as time-consuming in large-scale learning problems.
On the contrary, our CCP computes two explicit projection

matrices W1 and W2, and directly applies them to unseen
observations, as shown in Section 3.4. Besides, the size
of kernel matrix in KCCA is n × n, while our F-interset
covariation matrix is of size d1×d2. This suggests that CCP
can learn more features than KCCA when min(d1, d2) > n.

4. Extension
We extend CCP to learn compact representation from

more than two views, which thus leads to a multiset CCP
(MCCP) method. Given m-view training samples {Xi =
[f1i , f

2
i , · · · , f

di
i ]T ∈ Rdi×n}mi=1, the optimization problem

of MCCP can be formulated as

max
W1,··· ,Wm

m∑
i=1

m∑
j=1

Tr(WT
i K

F
ijWj)

s.t. WT
i K

F
iiWi = Id, i = 1, 2, · · · ,m,

(15)

where KF
ij ∈ Rdi×dj with (k, t)-th element as ker(fki , f

t
j ),

i, j = 1, 2, · · · ,m, k = 1, 2, · · · , di, and t = 1, 2, · · · , dj .
Clearly, MCCP reduces to CCP when m = 2.

Since the orthogonal constraints are nonconvex, (15) is
a nonconvex optimization problem. Except for the m = 2
case, the nonconvexity of this problem makes it intractable
to solve. Thus, we resort to an iterative method to compute
these variables.

Let w̃i = (KF
ii )

1
2wi with wi as k-th column of Wi.

Assume we have obtained the first k − 1 sets of projection
vectors, i.e., Qi = [w̃1

i , w̃
2
i , · · · , w̃

k−1
i ] ∈ Rdi×(k−1), i =

1, 2, · · · ,m and 1 ≤ k ≤ d. Then, optimization problem in
(15) can be reformulated as

max
w̃1,··· ,w̃m

m∑
i=1

m∑
j=1

w̃T
i K̃

F
ijw̃j

s.t. w̃T
i w̃i = 1, QT

i w̃i = 0, i = 1, 2, · · · ,m,

(16)

where K̃F
ij = (KF

ii )
− 1

2KF
ij(K

F
jj)

− 1
2 .

Let Pi = Idi − QiQ
T
i . It is obvious that each Pi is

a projection operator which maps a vector to the space or-
thogonal to the range space of Qi. Through {Pi}mi=1, opti-
mization problem in (16) can be equivalently reformulated
as

max
w̃1,··· ,w̃m

m∑
i=1

m∑
j=1

w̃T
i P

T
i K̃

F
ijPjw̃j

s.t. w̃T
i w̃i = 1, i = 1, 2, · · · ,m.

(17)

Using the Lagrange multiplier technique, we can obtain the
following updating rules:

λi ←
∣∣∣∣∣∣ m∑
j=1

PT
i K̃

F
ijPjw̃j

∣∣∣∣∣∣, (18)

w̃i ←
1

λi

m∑
j=1

PT
i K̃

F
ijPjw̃j . (19)
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Figure 2. Classification accuracy of each method with two views on (a) WebKB, (b) BBC-Sport, (c) Krvskp, and (d) DNANominal.

Method Yale-RG Yale-RL Yale-GL COIL-20-RG COIL-20-RL COIL-20-GL

CCA 80.4± 4.70 73.8± 4.94 74.5± 3.52 58.2± 2.44 59.6± 1.89 47.5± 1.93
KCCA 76.8± 2.91 71.8± 3.31 78.3± 1.86 71.7± 2.76 59.6± 5.72 64.0± 4.11
RCCA 78.4± 2.79 73.4± 4.79 76.4± 3.77 69.3± 2.01 71.1± 2.04 63.3± 4.01
DCCA 79.6± 3.63 72.8± 4.03 79.5± 2.70 72.2± 2.34 70.5± 2.30 69.3± 1.68
DCCAE 79.8± 3.60 72.4± 3.59 80.1± 2.20 72.5± 2.31 70.1± 2.03 69.4± 3.35
TALSCCA 80.8± 4.10 75.9± 4.52 77.3± 3.19 72.7± 3.81 70.5± 3.12 68.1± 2.37
L2,1-CCA 80.3± 4.50 77.9± 5.26 77.0± 4.29 61.1± 2.08 72.4± 1.76 65.2± 1.87
CCP 82.9± 4.60 80.1± 6.57 82.9± 3.05 76.9± 2.50 75.9± 2.49 72.7± 1.82

Table 1. Classification accuracy (%) of each method with two views on Yale and COIL-20 and corresponding standard deviations.

The detailed derivation of (18) and (19) can be found in
the supplementary material. Regarding these two updating
rules, we have the following convergence theorem:

Theorem 3. The objective function in (17) is nonde-
creasing and converges under the updating rules in (18) and
(19).

The detailed proof of Theorem 3 can be found in the sup-
plementary material.

5. Experiments
Extensive experiments on six real-world datasets are car-

ried out to demonstrate the effectiveness of CCP and MCCP
for learning compact multiview representation. We com-
pare CCP and MCCP with existing related methods includ-
ing the state-of-the-arts in classification and clustering.

5.1. Data preparation

The statistics of six datasets are summarized below: We-
bKB [28]: It contains 1051 samples of two classes (i.e.,
course and non-course), where there are 230 samples in
course and 821 samples in non-course. Each sample has
two views that are 1840-dimensional hyperlink feature and
3000-dimensional textual content feature. BBC-Sport [8]:
It contains 544 documents of five topic classes collected

from the BBC Sport website. Each document is divided
into two sub-parts, thus yielding two different views with
dimensions as 3183 and 3203, respectively. Krvskp [42]:
It includes 3196 samples of two classes with 36 dimen-
sions. We use the first 18 dimensions of each sample as
one view and the rest as the other view for yielding two
views. DNANominal [42]: It consists of 3186 gene sam-
ples with dimensionality as 60, which are classified into
three classes: acceptor, donor, and non-splice. Likewise,
the first 30 dimensions of each gene sequence are used as
one view and the rest as the other view. Yale [8]: It con-
sists of 165 grayscale images of 15 individuals with various
lighting conditions and facial expressions. Each individual
has 11 frontal facial images with size of 120 × 91. Three
views are yielded by using raw images, Gabor, and local bi-
nary pattern (LBP) features, whose respective dimensions
are 10920. COIL-20 [13]: It contains 1440 grayscale im-
ages of 20 objects taken at pose intervals of 5 degrees. Each
object has 72 images with size of 128×128. On this dataset,
we employ raw images, Gabor, and LBP features to form
three views, each with 16384 dimensions.

5.2. Compared methods

To demonstrate how the learning performance can be im-
proved by our methods, we compare the following ten meth-

19265



Dataset Metric CCA KCCA RCCA DCCA DCCAE TALSCCA MCCA L2,1-CCA MCCP

Yale ACC 76.3 72.9 73.6 77.0 76.4 78.8 77.9 82.2 82.5
Std 4.60 3.77 2.61 1.72 2.49 3.45 3.67 3.73 3.17

COIL-20 ACC 59.6 62.2 58.6 75.3 74.5 70.1 56.6 66.3 76.9
Std 2.30 3.44 3.87 2.60 2.61 2.73 2.37 2.15 1.89

Table 2. Classification accuracy (%) of each method with more than two views on Yale and COIL-20 and corresponding standard deviations.

ods: CCA, a classic yet powerful tool for two view repre-
sentation learning. KCCA, a kernel extension of CCA. In
our experiments, the kernel function is chosen as Gaussian
kernel and optimal parameter is selected between 1 and 25
at sampled interval of 1. Randomized CCA (RCCA) [24],
a randomized and nonlinear variant of CCA. DCCA [1],
a deep nonlinear variant of CCA. We use the MATLAB
code2 to implement DCCA. Deep canonically correlated
autoencoders (DCCAE) [35], which not only maximizes
the canonical correlation between the learned deep repre-
sentations, but also minimizes the reconstruction errors of
two autoencoders. The MATLAB package2 is adopted to
perform DCCAE. TALSCCA [37], an alternating least-
squares based CCA method. MCCA [26], a multiview
extension of CCA that can learn the compact representa-
tions of more than two views. L2,1-CCA [36], which takes
L2,1-norm constraints into consideration for compact MRL.
CCP and MCCP, which are two new methods proposed in
this paper. There is a parameter σ in our methods, as shown
in (9).We empirically set it as σ = 10i−6, i = 0, 1, · · · , 8
and choose the value with the best CCP and MCCP per-
formance. Note that all the foregoing ten methods involve
a principal component analysis (PCA) phase. In this PCA
phase, we keep more than 98% data energy of each view for
all datasets.

5.3. Classification results

We randomly choose ten samples per class on WebKB
and BBC-Sport, three samples per class on Yale and COIL-
20, and 500 samples per class on Krvskp and DNANominal
to generate the training sets, respectively, while the rest are
used for testing. On each dataset, 10 independent tests are
performed to test the performance. The nearest neighbor
classifier is used and we explore the performance of each
method on all possible feature dimensions and report the
best results.

Two-view scenario. For WebKB, BBC-Sport, Krvskp,
and DNANominal, we directly carry out two-view classifi-
cation. Fig. 2 shows the average classification accuracy of
each method. For Yale and COIL-20, there are three dif-
ferent pairwise view combinations in total, i.e., raw-Gabor,
raw-LBP, and Gabor-LBP, which are denoted as X-RG, X-

2https://ttic.uchicago.edu/˜wwang5/dccae.html

RL, and X-GL, respectively, and X denotes the dataset. The
classification is performed on each pairwise combination.
Table 1 lists the average classification results across ten runs
of each method and the corresponding standard deviations.

From Fig. 2, we can see the following interesting points.
First, on both WebKB and BBC-Sport, our CCP method
obviously outperforms the other seven methods. Second,
on Krvskp , CCP and TALSCCA perform comparably and
better than the other six methods, and CCA, DCCA, and
DCCAE perform comparably to one another. In addition,
on this dataset, it is particularly worth noticing that L2,1-
CCA performs the worst, although it is a dedicated MRL
method. Third, on DNANominal, CCP performs much bet-
ter than other methods. From Table 1, we can clearly see
that CCP consistently outperforms other methods, irrespec-
tive of pairwise view combinations. These results suggest
that our CCP is a powerful tool for compact MRL and clas-
sification tasks.

More than two view scenario. For a fair comparison,
we use the same preprocessing strategy as in [30] to trans-
form three views into two views, and then CCA, KCCA,
RCCA, DCCA, DCCAE, and TALSCCA are carried out
based on the two new views, respectively. For MCCA, L2,1-
CCA, and our MCCP, we directly use them to learn compact
multiview representation from three views. Table 2 sum-
marizes the average classification accuracy (ACC) of these
nine methods on Yale and COIL-20 and the corresponding
standard deviations (Std). As can be seen, our proposed
MCCP method is superior to the other eight methods on
Yale and COIL-20. These results demonstrate that the pro-
posed MCCP method is effective for multiview classifica-
tion.

5.4. Clustering results

We evaluate the clustering performance of our proposed
CCP and MCCP methods in multiview clustering tasks. For
each dataset, the number of clusters is set to the class num-
ber. All the methods are, respectively, used for compact
MRL. After MRL, we apply K-means algorithm for clus-
tering. The accuracy (ACC) and normalized mutual infor-
mation (NMI) are used to estimate the clustering quality.
Note that the higher the values of ACC and NMI are, the
better each method performs. Table 3 reports the clustering
performance of each method with two views under two met-
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Dataset Metric CCA KCCA RCCA DCCA DCCAE TALSCCA L2,1-CCA CCP

WebKB ACC 0.9610 0.9191 0.9458 0.9762 0.9686 0.9638 0.9743 0.9800
NMI 0.7225 0.5155 0.6267 0.7986 0.7501 0.7371 0.7824 0.8290

BBC-Sport ACC 0.8750 0.7261 0.8254 0.6691 0.7757 0.8621 0.6581 0.9430
NMI 0.8012 0.6984 0.6652 0.4982 0.5367 0.7932 0.6870 0.8352

Krvskp ACC 0.5563 0.5241 0.5701 0.5645 0.5350 0.5319 0.5917 0.6834
NMI 0.0090 0.0143 0.0482 0.0561 0.0439 0.0036 0.0616 0.1148

DNANominal ACC 0.5182 0.5436 0.3685 0.5063 0.5543 0.5712 0.5022 0.6871
NMI 0.1296 0.0775 0.0309 0.1038 0.1445 0.1408 0.1299 0.3022

Yale-RG ACC 0.5394 0.6788 0.6364 0.5576 0.6364 0.6667 0.7273 0.7273
NMI 0.6430 0.7273 0.7508 0.7416 0.7574 0.7504 0.7656 0.8112

Yale-RL ACC 0.5818 0.6364 0.5879 0.6424 0.6545 0.5697 0.5879 0.7030
NMI 0.7059 0.6807 0.6892 0.6939 0.6979 0.7102 0.7221 0.7408

Yale-GL ACC 0.6545 0.6182 0.6061 0.6424 0.5818 0.6061 0.6667 0.7394
NMI 0.7481 0.7016 0.7035 0.7190 0.7119 0.7154 0.7810 0.8013

COIL-20-RG ACC 0.5222 0.6368 0.4792 0.6396 0.6556 0.5486 0.4299 0.6604
NMI 0.6725 0.7598 0.6142 0.7882 0.8148 0.7135 0.6216 0.8257

COIL-20-RL ACC 0.6007 0.6778 0.5701 0.6757 0.6563 0.6181 0.5493 0.6875
NMI 0.7396 0.7763 0.7011 0.7611 0.7835 0.7432 0.6960 0.8120

COIL-20-GL ACC 0.5347 0.6333 0.6090 0.6646 0.6632 0.6035 0.4549 0.6736
NMI 0.6730 0.7755 0.6789 0.7667 0.7696 0.7121 0.6334 0.7814

Table 3. Clustering performance of each method with two views under two metrics on different datasets.

Dataset Metric CCA KCCA RCCA DCCA DCCAE TALSCCA MCCA L2,1-CCA MCCP

Yale ACC 0.6485 0.6121 0.6485 0.6606 0.6000 0.6182 0.5939 0.6364 0.6727
NMI 0.7129 0.6848 0.6659 0.7174 0.6883 0.7318 0.7069 0.7170 0.7440

COIL-20 ACC 0.6646 0.5396 0.5007 0.6681 0.6500 0.5708 0.5431 0.4875 0.6826
NMI 0.7768 0.7019 0.5640 0.8082 0.7981 0.7530 0.6919 0.6148 0.8135

Table 4. Clustering performance of each method with more than two views under two metrics on Yale and COIL-20.

rics on different datasets. As we can see, the proposed CCP
method consistently performs better than other methods on
all datasets, whether the metric is ACC or NMI.

In addition, we also perform multiview clustering tests.
The experimental settings are the same as those used in two-
view clustering experiments. For methods with two-view
inputs, we use again the same preprocessing strategy as that
used in [30]. Table 4 records the clustering performance of
each method with more than two views. As can be seen, our
MCCP performs the best among all the methods, regardless
of the metrics and datasets. In brief, these results demon-
strate that our CCP and MCCP methods are also powerful
for multiview clustering.

6. Conclusion
In this paper, we present a novel canonical F-correlation

framework by exploring and exploiting the nonlinear rela-
tionship between different features. With this framework,
we propose a CCP method by using an explicit nonlinear

mapping. Moreover, we extend CCP and propose an MCCP
for learning compact representation of more than two views.
MCCP is solved by an iterative method and the convergence
of this iteration is proved in theory. A series of experimental
results on six benchmark datasets demonstrate the effective-
ness of our proposed CCP and MCCP methods in classifi-
cation and clustering. A future interesting study is how to
theoretically choose the optimal parameter of our methods.
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