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Abstract

Estimating the accurate depth from a single image is
challenging since it is inherently ambiguous and ill-posed.
While recent works design increasingly complicated and
powerful networks to directly regress the depth map, we take
the path of CRFs optimization. Due to the expensive com-
putation, CRFs are usually performed between neighbor-
hoods rather than the whole graph. To leverage the poten-
tial of fully-connected CRFs, we split the input into windows
and perform the FC-CRFs optimization within each win-
dow, which reduces the computation complexity and makes
FC-CRFs feasible. To better capture the relationships be-
tween nodes in the graph, we exploit the multi-head atten-
tion mechanism to compute a multi-head potential function,
which is fed to the networks to output an optimized depth
map. Then we build a bottom-up-top-down structure, where
this neural window FC-CRFs module serves as the decoder,
and a vision transformer serves as the encoder. The ex-
periments demonstrate that our method significantly im-
proves the performance across all metrics on both the KITTI
and NYUv2 datasets, compared to previous methods. Fur-
thermore, the proposed method can be directly applied to
panorama images and outperforms all previous panorama
methods on the MatterPort3D dataset. 1

1. Introduction
Depth prediction is a classical task in computer vision

and is essential for numerous applications such as 3D recon-
struction, autonomous driving, and robotics [8, 13, 41, 42].
Such a vision task aims to estimate the depth map from
a single color image, which is an ill-posed and inherently
ambiguous problem since infinitely many 3D scenes can be
projected to the same 2D scene. Therefore, this task is chal-
lenging for traditional methods [22, 23, 30], which are usu-
ally limited to low-dimension and sparse distances [22], or
known and fixed objects [23].

Recently, many works have employed the deep networks
to directly regress the depth maps and achieved good per-
formances [1, 2, 6, 7, 17, 18]. Nevertheless, since there are
no geometric constraints of multi-view [9,40,43] to exploit,

1Project page: https://weihaosky.github.io/newcrfs

Figure 1. The neural window fully-connected CRFs take image
feature F and upper-level prediction X as input, and compute the
fully-connected energyE in each window, which is then fed to the
networks to output an optimized depth map.

the focus of most works is designing more powerful and
more complicated networks. This renders this task a diffi-
cult fitting problem without the help of other guidance.

In traditional monocular depth estimation, some meth-
ods build the energy function from Markov Random Fields
(MRFs) or Conditional Random Fields (CRFs) [30, 31, 37].
They exploit the observation cues, such as the texture and
position information, along with the last prediction to build
the energy function, and then optimize this energy to ob-
tain a depth prediction. This approach is demonstrated to
be effective in guiding the estimation of the depth, and is
also introduced in some deep methods [11,20,29,38]. How-
ever, they are all limited in neighbor CRFs rather than fully-
connected CRFs (FC-CRFs) due to the expensive computa-
tion, while the fully-connected CRFs capture the relation-
ship between any node in a graph and are much stronger.

To address the above challenge, in this work we seg-
ment the input to multiple windows, and build the fully-
connected CRFs energy within each window, in which way
the computation complexity is reduced considerably and the
fully-connected CRFs becomes feasible. To capture more
relationships between the nodes in the graph, we exploit the
multi-head attention mechanism [35] to compute the pair-
wise potential of the CRFs, and build a new neural CRFs
module, as is shown in Figure 1. By employing this neural
window FC-CRFs module as decoder, and a vision trans-
former as encoder, we build a straightforward bottom-up-
top-down network to estimate the depth. To make up for
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the isolation of each window, a window shift action [21]
is performed, and the lack of global information in these
window FC-CRFs is addressed by aggregating the global
features from global average pooling layers [45].

In the experiments, our method is demonstrated to out-
perform previous methods by a significant margin on both
the outdoor dataset, KITTI [8], and the indoor dataset,
NYUv2 [32]. Although the state-of-the-art performance
on KITTI and NYUv2 has been saturated for a while, our
method further reduces the errors considerably on both
datasets. Specifically, the Abs-Rel error and the RMS er-
ror of KITTI are decreased by 10.3% and 9.8%, and that
of NYUv2 are decreased by 7.8% and 8.2%. Our method
now ranks first among all submissions on the KITTI on-
line benchmark. In addition, we evaluate our method on
the panorama images. As is well-known, the networks de-
signed for perspective images usually perform poorly on
the panorama dataset [14, 33, 34, 36]. Remarkably, our
method also sets a new state-of-the-art performance on the
panorama dataset, MatterPort3D [3]. This demonstrates
that our method can handle the common scenarios in the
monocular depth prediction task.

The main contributions of this work are then summarized
as follows:
• We split the input image into sub-windows and per-

form fully-connected CRFs optimization within each win-
dow, which reduces the high computation complexity and
makes the FC-CRFs feasible.
•We employ the multi-head attention to capture the pair-

wise relationships in the window FC-CRFs, and embed this
neural CRFs module in a network to serve as the decoder.
• We build a new bottom-up-top-down network for

monocular depth estimation and show a significant im-
provement of the monocular depth across all metrics on
KITTI, NYUv2, and MatterPort3D datasets.

2. Related Work

2.1. Traditional Monocular Depth Estimation

Prior to the emergence of deep learning, monocular
depth estimation is a challenging task. Many published
works limit themselves in either estimating 1-D distances
of obstacles [22] or limited in several known and fixed ob-
jects [23]. Then Saxena et al. [30] claim that local features
alone are insufficient to predict the depth of a pixel, and the
global context of the whole image needs to be considered
to infer the depth. Therefore, they use a discriminatively-
trained Markov Random Field (MRF) to incorporate mul-
tiscale local and global image features, and model both
depths at individual pixels as well as the relation between
depths at different pixels. In this way, they infer good depth
maps from the monocular cues like colors, pixel positions,
occlusion, known object sizes, haze, defocus, etc. Since

then, MRFs [31] and CRFs [37] have been well used in
monocular depth estimation in traditional methods. How-
ever, the traditional approaches still suffer from estimating
accurate high-resolution dense depth maps.

2.2. Neural Networks Based Monocular Depth

In monocular depth estimation, neural network based
methods have dominated most benchmarks. There are
mainly two kinds of approaches for learning the mapping
from images to depth maps. The first approach directly re-
gresses the continuous depth map from the aggregation of
the information in an image [1, 6, 12, 17, 18, 26, 28, 39]. In
this approach, coarse and fine networks are first introduced
in [6] and then improved by multi-stage local planar guid-
ance layers in [17]. A bidirectional attention module is pro-
posed in [1] to utilize the feed-forward feature maps and
incorporate the global context to filter out ambiguity. Re-
cently, more methods have begun to employ vision trans-
formers to aggregate the information of images [28]. The
second approach tries to discretize the depth space and con-
vert the depth prediction to a classification or ordinal re-
gression problem [2, 7]. A spacing-increasing quantization
strategy is used in [7] to discretize the depth space more rea-
sonably. Then, an adaptive bins division is computed by the
neural networks for better depth quantization. Also, other
approaches bring in auxiliary information to help the train-
ing of the depth network, such as sparse depth [10] or seg-
mentation information [15,24,27,44]. All these approaches
try to directly regress the depth map from the image feature,
which falls into a difficult fitting problem. The structures of
their networks become increasingly complex. In contrast
to these works, we build an energy with the fully-connected
CRFs, and then optimize this energy to obtain a high-quality
depth map.

2.3. Neural CRFs for Monocular Depth

Since the graph models, like MRFs and CRFs, are ef-
fective in traditional depth estimation, some methods try to
embed them into neural networks [11,19,20,29,38]. These
methods regard the patches of pixels as nodes and perform
the graph optimization. One such approach first uses net-
works to regress a coarse depth map and then utilizes CRFs
to refine it [19], where the post-processing function of CRFs
is proven to be effective. However, the CRFs are sepa-
rated from neural networks. To better combine CRFs and
networks, other methods integrate CRFs into the layers of
the neural networks and train the whole framework end-
to-end [11, 20, 29, 38]. But they are all limited to CRFs
rather than fully-connected CRFs due to the high computa-
tion complexity.

In this work, different from previous methods, we split
the whole graph into multiple sub-windows, such that the
fully-connected CRFs become feasible. Also, inspired by
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Figure 2. Graph model of fully-connected CRFs and window
fully-connected CRFs. In a fully-connected CRFs graph (a), tak-
ing the orange node as an example, it is connected to all other
nodes in the graph. In a window fully-connected CRFs, however,
the orange node is only connected to all other nodes within one
window.

recent works in vision transformer [5, 21, 35], we use the
multi-head attention mechanism to capture the pairwise re-
lationship in FC-CRFs and propose a neural window fully-
connected CRFs module. This module is embedded into the
network to play the role of the decoder, such that the whole
framework can be trained end-to-end.

3. Neural Window Fully-connected CRFs
This section first introduces the window fully-connected

CRFs, followed by its integration with neural networks. Af-
terward, the network structure is displayed, where the neu-
ral window FC-CRFs module is embedded into a top-down-
bottom-up network to serve as the decoder.

3.1. Fully-connected Conditional Random Fields

In traditional methods, Markov random fields (MRFs)
or conditional random fields (CRFs) are leveraged to han-
dle dense prediction tasks such as monocular depth estima-
tion [30] and semantic segmentation [4]. They are shown to
be effective in correcting the erroneous predictions based on
the information of the current and adjacent nodes. Specif-
ically, in a graph model, these methods favor similar label
assignments to nodes that are proximal in space and color.

Thus, in this work we employ CRFs to help the depth
prediction. Since the depth prediction of the current pixel is
determined by long-range pixels in one image, to increase
the receptive field, we use fully-connected CRFs [16] to
build the energy. In a graph model, the energy function of
the fully-connected CRFs is usually defined as

E(x) =
∑
i

ψu(xi) +
∑
ij

ψp(xi, xj), (1)

where xi is the predicted value of node i, and j denotes all
other nodes in the graph. The unary potential function ψu

is computed for each node by the predictor according to the
image features.

The pairwise potential function ψp connects pairs of
nodes as

ψp = µ(xi, xj)f(xi, xj)g(Ii, Ij)h(pi, pj), (2)

where µ(xi, xj) = 1 if i = j and µ(xi, xj) = 0 otherwise,
Ii is the color of node i, pi is the position of node i. The
pairwise potential usually considers the color and position
information to enforce some heuristic punishments, which
make the predicted values xi, xj more reasonable and logi-
cal.

In regular CRFs, the pairwise potential only computes
the edge connection between the current node and neigh-
boring nodes. In fully-connected CRFs, however, the con-
nections between the current node and any other nodes in a
graph need to be computed, as shown in Figure 2 (a).

3.2. Window Fully-connected CRFs

Although the fully-connected CRFs can bring global-
range connections, its disadvantage is also obvious. On the
one hand, the number of edges connecting all pixels in an
image is large, which makes the computation of this kind of
pairwise potential quite resource-consuming. On the other
hand, the depth of a pixel is usually not determined by dis-
tant pixels. Only pixels within some distance need to be
considered.

Therefore, in this work we propose the window-based
fully-connected CRFs. We segment an image into multiple
patch-based windows. Each window includesN×N image
patches, of which each patch is composed of n × n pixels.
In our graph model, each patch rather than each pixel is
regarded as one node. All patches within one window are
fully-connected with edges, while the patches of different
windows are not connected, as displayed in Figure 2 (b). In
this case, the computation of pairwise potential only consid-
ers the patches within one window, so that the computation
complexity is reduced significantly.

Taking an image with h × w patches as an example,
the computation complexity of FC-CRFs and window FC-
CRFs for one iteration are

Ω(FC-CRFs) = hw × Ω(ψu) + hw(hw − 1)× Ω(ψp)

Ω(Window FC) = hw × Ω(ψu) + hw(N2 − 1)× Ω(ψp),
(3)

whereN is the window size, Ω(µu) and Ω(µp) are the com-
putation complexity of one unary potential and one pairwise
potential, respectively.

In the window fully-connected CRFs, all windows are
non-overlapped, which means there is no information con-
nection between any windows. The adjacent windows,
however, are physically connected. To resolve the isolation
of windows, we shift the windows by (N

2 ,
N
2 ) patches in

the image and calculate the energy function of shifted win-
dows after computing that of the original windows, similar
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Figure 3. Network structure of the proposed framework. The encoder first extracts the features in four levels. A PPM head aggregates
the global and local information and makes the initial prediction X from the top image feature F . Then in each level, the neural window
fully-connected CRFs module builds multi-head energy from X and F , and optimizes it to a better prediction X ′. Between each level a
rearrange upscale is performed considering the sharpness and network weight.

to swin-transformer [21]. In this way, the isolated neigh-
boring pixels are connected in the shifted windows. Hence,
each time we calculate the energy function, we calculate
two energy functions successively, one for the original win-
dows and the other one for the shifted windows.

3.3. Neural Window FC-CRFs

In traditional CRFs, the unary potential is usually acted
by a distribution over the predicted values, e.g.,

ψu(xi) = − logP (xi|I), (4)

where I is the input color image and P is the probability
distribution of the value prediction. The pairwise potential
is usually computed according to the colors and positions of
pixel pairs, e.g.,

ψp(xi, xj) = µ(xi, xj)||xi − xj ||e−
||Ii−Ij ||

2σ2 e−
||pi−pj ||

2σ2 .
(5)

This potential encourages distinct-color and distant pixels
to have various value predictions while punishing the value
discrepancies in similar-color and adjacent pixels.

These potential functions are designed by hands and can-
not be too complicated. Thus they are hard to represent
high-dimensional information and describe complex con-
nections. So in this work, we propose to use neural net-
works to perform the potential functions.

For the unary potential, it is computed from the image
features such that it can be directly obtained by the network
as

ψu(xi) = θu(I, xi), (6)

where θ is the parameters of a unary network.
For the pairwise potential, we realize that it is composed

of values of the current node and other nodes, and a weight

computed based on the color and position information of
the node pairs. So we reformulate it as

ψp(xi, xj) = w(Fi,Fj , pi, pj)||xi − xj ||, (7)

where F is the feature map and w is the weighting function.
We calculate the pairwise potential node by node. For each
node i, we sum all its pairwise potentials and obtain

ψpi = α(Fi,Fj , pi, pj)xi +
∑
j 6=i

β(Fi,Fj , pi, pj)xj , (8)

where α, β are the weighting functions and will be com-
puted by the networks.

Inspired by recent works in transformer [5, 35], we cal-
culate a query vector q and a key vector k from the feature
map of each patch in a window and combine vectors of all
patches to matrices Q and K. Then we calculate the dot
product of matrices Q and K to get the potential weight
between any pair, after which the predicted values X are
multiplied by the weights to get the final pairwise potential.
To introduce the position information, we also add a rela-
tive position embedding P . Therefore, the equation 8 can
be calculated as

ψpi = SoftMax(q ·KT + P ) ·X∑
i

ψpi = SoftMax(Q ·KT + P ) ·X, (9)

where · denotes dot production. Thus, the output of the
SoftMax gets the weights α and β of Equation 8. Therefore,
the dot product between Q and K calculates the scores be-
tween each node with any other node, which determines the
message passing weights with P , while the dot product be-
tween previous prediction X and the output of the SoftMax
performs the message passing.
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Input image DORN Ours Error map

Figure 4. Qualitative results on the KITTI online benchmark, which are generated by the online server.

3.4. Network Structure

Overview. To embed the neural window fully-connected
CRFs into a depth prediction network, we build a bottom-
up-top-down structure, where four levels of CRFs optimiza-
tions are performed, as is shown in Figure 3. We embed this
neural window FC-CRFs module into the network to act as
a decoder, which predicts the next-level depth according to
the coarse depth and image features. For the encoder, we
employ the swin-transformer [21] to extract the features.

For an image with the size of H × W , there are four
levels of image patches for the feature extraction encoder
and the CRFs optimization decoder, from 4 × 4 pixels to
32 × 32 pixels. At each level, N × N patches make up a
window. The window size N is fixed at all levels, so there
will be H

4N×
W
4N windows at the bottom level and H

32N×
W
32N

windows at the top level.

Global Information Aggregation. At the top level, to
make up for the lack of global information of the window
FC-CRFs, we use the pyramid pooling module (PPM) [45]
to aggregate the information of the whole image. Similar
to [45], we use global averaging pooling of scales 1, 2, 3, 6
to extract the global information, which is then concate-
nated with the input feature to map to the top-level predic-
tion X by a convolutional layer.

Neural Window FC-CRFs Module. In each neural win-
dow FC-CRFs block, there are two successive CRFs opti-
mizations, one for regular windows and the other one for
shifted windows. To cooperate with the transformer en-
coder, the window size N is set to 7, which means each
window contains 7×7 patches. The unary potential is com-
puted by a convolutional network and the pairwise poten-
tial is computed according to equation 9. In each CRFs
optimization, multiple-head Q and K are calculated to ob-
tain multi-head potentials, which can enhance the relation-

ship capturing ability of the energy function. From the top
level to the bottom level, a structure of 32, 16, 8, 4 heads
is adopted. Then the energy function is fed into an opti-
mization network composed of two fully-connected layers
to output the optimized depth map X ′.

Upscale Module. After the neural window FC-CRFs de-
coders at the top three levels, a shuffle operation is per-
formed to rearrange the pixels, by which the image is up-
scaled from h

2 ×
w
2 × d to h×w× d

4 . On the one hand, this
operation increases the flow to the next level with a larger
scale without losing the sharpness like upsampling. On the
other hand, this reduces the feature dimension to lighten the
subsequent networks.

Training Loss. Following previous works [2, 17, 18], we
use a Scale-Invariant Logarithmic (SILog) loss proposed by
[6] to supervise the training. Given the ground-truth depth
map, we first calculate the logarithm difference between the
predicted depth map and the real depth:

∆di = log d̂i − log d∗i , (10)

where d∗i is the ground-truth depth value and d̂i is the pre-
dicted depth at pixel i.

Then for K pixels with valid depth values in an image,
the scale-invariant loss is computed as

L = α

√
1

K

∑
i

∆d2i −
λ

K2
(
∑
i

∆di)2, (11)

where λ is a variance minimizing factor, and α is a scale
constant. In our experiments, λ is set to 0.85 and α is set to
10 following previous works [17].
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Method cap Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Eigen et al. [6] 0-80m 0.190 1.515 7.156 0.270 0.692 0.899 0.967
Liu et al. [20] 0-80m 0.217 − 7.046 − 0.656 0.881 0.958
Xu et al. [38] 0-80m 0.122 0.897 4.677 − 0.818 0.954 0.985

DORN [7] 0-80m 0.072 0.307 2.727 0.120 0.932 0.984 0.995
Yin et al. [39] 0-80m 0.072 − 3.258 0.117 0.938 0.990 0.998

BTS [17] 0-80m 0.059 0.241 2.756 0.096 0.956 0.993 0.998
PackNet-SAN [10] 0-80m 0.062 − 2.888 − 0.955 − −

Adabin [2] 0-80m 0.058 0.190 2.360 0.088 0.964 0.995 0.999
DPT* [28] 0-80m 0.062 − 2.573 0.092 0.959 0.995 0.999
PWA [18] 0-80m 0.060 0.221 2.604 0.093 0.958 0.994 0.999

Ours 0-80m 0.052 0.155 2.129 0.079 0.974 0.997 0.999

Table 1. Quantitative results on the Eigen split of KITTI dataset. Seven widely used metrics are reported. “Abs Rel” error is the main
ranking metric. Note that the “Sq Rel” error is calculated in a different way here. “*” means using additional data for training.

Method dataset SILog ↓ Abs Rel ↓ Sq Rel ↓ iRMSE ↓ RMSE ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

DORN [7] val 12.22 11.78 3.03 11.68 3.80 0.913 0.985 0.995
BTS [17] val 10.67 7.51 1.59 8.10 3.37 0.938 0.987 0.996

BA-Full [1] val 10.64 8.25 1.81 8.47 3.30 0.938 0.988 0.997
Ours val 8.31 5.54 0.89 6.34 2.55 0.968 0.995 0.998

DORN [7] online test 11.77 8.78 2.23 12.98 − − − −
BTS [17] online test 11.67 9.04 2.21 12.23 − − − −

BA-Full [1] online test 11.61 9.38 2.29 12.23 − − − −
PackNet-SAN [10] online test 11.54 9.12 2.35 12.38 − − − −

PWA [18] online test 11.45 9.05 2.30 12.32 − − − −
Ours online test 10.39 8.37 1.83 11.03 − − − −

Table 2. Quantitative results on the official split of KITTI dataset. Eight widely used metrics are reported for the validation set while only
four metrics are available from the online evaluation server for the test set. “SILog” error is the main ranking metric. Our method ranks
1st among all submissions on the KITTI depth prediction online benchmark at the submission time of this paper.

4. Experiments

4.1. Implementation Details

Our work is implemented in Pytorch and experimented
on Nvidia GTX 2080 Ti GPUs. The network is optimized
end-to-end with the Adam optimizer (β1 = 0.9, β1 =
0.999). The training runs for 20 epochs with the learning
rate of 1× 10−4 and batch size of 8. The output depth map
of our network is of 1

4 ×
1
4 size of the original image, which

is then resized to the full resolution.

4.2. Datasets

KITTI dataset. KITTI dataset [8] is the most used
benchmark with outdoor scenes captured from a moving
vehicle. There are two mainly used splits for monocular
depth estimation. One is the training/testing split proposed
by Eigen et al. [6] with 23488 training image pairs and 697
testing images. The other one is the official split proposed
by Geiger et al. [8] with 42949 training image pairs, 1000
validation images, and 500 testing images. For the official
split, the ground-truth depth maps for the testing images are
withheld by the online evaluation benchmark.

NYUv2 dataset. NYUv2 [32] is an indoor datasets with

120K RGB-D videos captured from 464 indoor scenes.
We follow the official training/testing split to evaluate our
method, where 249 scenes are used for training and 654 im-
ages from 215 scenes are used for testing.

MatterPort3D dataset. To verify the effectiveness
of our method on more domains, we also evaluate our
method on the panorama images. MatterPort3D [3] is the
biggest real-world dataset among all widely used datasets in
panorama depth estimation. Following the official split, we
use 7829 images from 61 houses to train our network and
then evaluate the model on the merged set of 957 validation
images and 2014 testing images. All images are resized to
1024× 512 in both training and evaluation.

4.3. Evaluations

Evaluation on KITTI. For outdoor scenes, we evalu-
ate our method on the KITTI dataset. We first perform the
training and testing on the Eigen split, of which the test-
ing images are available so that the network can be bet-
ter tuned. The results are reported in Table 1, where we
can see that our method outperforms previous methods by a
significant margin. Almost all errors are reduced by about
10%. Specifically, the “Abs-Rel”, “Sq Rel”, “RMSE” and
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Input image BTS Adabins Ours Ground truth
Figure 5. Qualitative results on the NYUv2 dataset.

Method Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↓ log10 ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

Liu et al. [20] 0.230 − 0.824 − 0.095 0.614 0.883 0.971
Xu et al. [38] 0.125 − 0.593 − 0.057 0.806 0.952 0.986

DORN [7] 0.115 − 0.509 − 0.051 0.828 0.965 0.992
Yin et al. [39] 0.108 − 0.416 − 0.048 0.875 0.976 0.994

BTS [17] 0.110 0.066 0.392 0.142 0.047 0.885 0.978 0.994
DAV [12] 0.108 − 0.412 − − 0.882 0.980 0.996

PackNet-SAN* [10] 0.106 − 0.393 − − 0.892 0.979 0.995
Adabin [2] 0.103 − 0.364 − 0.044 0.903 0.984 0.997
DPT* [28] 0.110 − 0.357 − 0.045 0.904 0.988 0.998
PWA [18] 0.105 − 0.374 − 0.045 0.892 0.985 0.997

Ours 0.095 0.045 0.334 0.119 0.041 0.922 0.992 0.998

Table 3. Quantitative results on NYUv2. “Abs Rel” and “RMSE” are the main ranking metrics. “*” means using additional data.

“RMSElog” errors are decreased by 10.3%, 18.4%, 9.8%,
and 10.2%, respectively. Although our method is trained
without additional data, it can outperform previous meth-
ods trained with additional training data.

We then evaluate our method on the KITTI official split,
where the testing images are hidden. The results on the
validation set and the testing set are all presented in Ta-
ble 2. The results of the testing set are cited from the on-
line benchmark and the results of the validation set are cited
from BANet [1]. Here we can see that our method reduces
the main ranking metric, the SILog error, markedly. Our
method now ranks 1st among all submissions on the KITTI
depth prediction online server. The colorful visualizations
of the predicted depth maps and the error maps generated by
the online server are shown in Figure 4. Our method pre-
dicts cleaner and smoother depth while maintaining sharper
edges of objects, e.g., the edges of the humans.

Evaluation on NYUv2. For indoor scenes, we evaluate
our method on the NYUv2 dataset. Since the state-of-the-

art performance on NYUv2 dataset has been saturated for
a while, some methods have begun to use additional data
to pretrain the model and then finetune it on NYUv2 train-
ing set [10, 28]. Differently, without any additional data,
our method can significantly improve the performance in all
metrics, as is shown in Table 3. Specifically, the “Abs Rel”
error is reduced to within 0.1 and the “δ < 1.252” accu-
racy reaches 99%. This emphasizes the contribution of our
method in improving the results. The qualitative results in
Figure 5 illustrate that our method estimates better depth es-
pecially in difficult regions, such as repeated texture, messy
environment, and bad light.

Evaluation on MatterPort3D. As is studied in previ-
ous works, directly applying a deep network for perspective
images to the standard representation of spherical panora-
mas, i.e., the equirectangular projection, is suboptimal, as
it becomes distorted towards the poles [14, 33, 34, 36]. As
such, methods in this task try all kinds of ways to con-
vert the panorama images to distortion-free shape, e.g., the
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Method Abs Rel ↓ Abs ↓ RMSE ↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

OmniDepth [46] 0.2901 0.4838 0.7643 0.1450 0.6830 0.8794 0.9429
BiFuse [36] 0.2048 0.3470 0.6259 0.1134 0.8452 0.9319 0.9632

SliceNet [25] 0.1764 0.3296 0.6133 0.1045 0.8716 0.9483 0.9716
HoHoNet [33] 0.1488 0.2862 0.5138 0.0871 0.8786 0.9519 0.9771
UniFuse [14] 0.1063 0.2814 0.4941 0.0701 0.8897 0.9623 0.9831

Ours 0.0906 0.2252 0.4778 0.0638 0.9197 0.9761 0.9909

Ours* 0.0793 0.1970 0.4279 0.0575 0.9376 0.9812 0.9933

Table 4. Quantitative results on the Matterport3D dataset. “*” means using additional data for training.

Setting Abs Rel Sq Rel RMSE Rlog 1.25 1.252

Baseline 0.069 0.256 2.610 0.103 0.947 0.993
Neural CRFs 0.055 0.185 2.322 0.086 0.965 0.995

+ S 0.054 0.174 2.297 0.084 0.968 0.996
+ S + R 0.054 0.168 2.271 0.083 0.970 0.996

+ S + R + P 0.052 0.155 2.129 0.079 0.974 0.997

8, 4, 2, 1 0.055 0.165 2.203 0.083 0.970 0.996
16, 8, 4, 2 0.054 0.162 2.172 0.081 0.972 0.997

32, 16, 8, 4 0.052 0.155 2.129 0.079 0.974 0.997

Table 5. Ablation study on the Eigen split of KITTI dataset. The
first six metrics of those used in Table 1 are reported here. “S”
refers to window shift, “R” refers to rearrange upscale, and “P”
refers to PPM head. The last three rows display the results of
using different numbers of heads.

cubemap projection [14, 36], the horizontal feature repre-
sentation [33], and spherical convolutional filters [34]. In
comparison to the above-mentioned methods, we directly
apply our network designed for perspective images to the
panorama images, and outperforms all previous methods,
as is presented in Table 4. Specifically, the “Abs Rel” and
“Abs” errors are decreased by 14.8% and 20.0%.

In addition, we realize that the number of the training set
of MatterPort3D is small, so we collect more data in the real
world. We use 50K images to pretrain the network and then
finetune it on the MatterPort3D training set, which results in
a better performance, as shown in Table 4. The model pre-
trained with more data is denoted by “Ours*”. This demon-
strates the pretraining with more images can clearly boost
the performance in panorama depth estimation.

4.4. Abalation Study

To better inspect the effect of each module in our
method, we evaluate each component by an ablation study
and present the results in Table 5.

Baseline vs. Neural CRFs. To verify the effectiveness
of the proposed neural window fully-connected FC-CRFs,
we build a baseline model. This model is a well-used UNet
structure with the same encoder as ours. In other words,
compared to our full method, the PPM head and the rear-
range upscale are removed, and the decoder is replaced by

the well-used convolutional decoder. Then based on this
baseline, we only replace the decoder with our neural win-
dow FC-CRFs module, and obtain a noticeable performance
improvement as shown in Table 5. The “Abs Rel” error is
reduced from 0.069 to 0.055, and then to 0.054 by adding
the shift action. This demonstrates the effectiveness of the
neural window FC-CRFs in estimating accurate depths.

Rearrange upscale. On top of the basic neural
FC-CRFs structure, we add the rearrange upscale mod-
ule. The performance increment gained from this module
is not large, but visually the output depth maps have sharper
edges, and the parameters of the network are reduced.

PPM head. The PPM head aggregates the global infor-
mation, which is lacking in window FC-CRFs. This mod-
ule can help in some regions that are difficult for estimating
with only local information, e.g., the complex texture and
the white walls. From the results in Table 5, we see this
module contributes to the performance of our framework.

Multi-head energy. The CRFs energy is calculated
in a multi-head manner. With more heads, the ability of
capturing the pairwise relationship would be stronger but
the weight of the network would be heavier. In previous
experiments, the numbers of the heads in four levels are
set to 32, 16, 8, 4. Here we use fewer heads to see how a
lightweight structure performs. From the results in Table 5,
fewer heads lead to a small performance decrease.

5. Conclusion
We propose a neural window fully-connected CRFs

module to address the monocular depth estimation problem.
To solve the expensive computation of FC-CRFs, we split
the input into sub-windows and calculate the pairwise po-
tential within each window. To capture the relationships
between nodes of the graph, we exploit the multi-head at-
tention to compute a neural potential function. This neu-
ral window FC-CRFs module can be directly embedded
into a bottom-up-top-down structure and serves as a de-
coder, which cooperates with a transformer encoder and
predicts accurate depth maps. The experiments show that
our method significantly outperforms previous methods and
sets a new state-of-the-art performance on KITTI, NYUv2,
and MatterPort3D datasets.
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